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AN EXPLICIT CONSTRUCTION OF FINITE-ROW

DIGITAL (0, s)-SEQUENCES

Roswitha Hofer and Gottlieb Pirsic

ABSTRACT. In this paper we revisit the finite-row (0, s)-sequences as intro-
duced by Hofer and Larcher, in particular those constructed by a scrambling of
the Faure sequence. We give a simple explicit formula based on the Stirling num-
bers (of the first kind) for the scrambling matrices. This explicit formula provides
more insight into the (somewhat peculiar) recursively defined scrambling matrix
used in the constructions of Hofer and Larcher and also into the correspond-
ing finite-row generator matrices. It is then applied to the investigation of the
self-similar structure of the generator matrices and to efficient generation of the
sequence.

Communicated by Robert F. Tichy

1. Introduction

In many applications, e.g., simulation, digital imaging, financial mathemat-
ics, one is interested in accurately approximating numerically the integral of a
function f : [0, 1]s → R,

Is(f) :=

∫

[0,1]s
f(x)dx,

where the integration domain may be very high-dimensional, having perhaps
hundreds of dimensions. One way of accomplishing this task is to use a quasi-
Monte Carlo (QMC) rule such as

QN,s(f) :=
1

N

N−1∑

n=0

f(xn),
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where (xn)
N−1
n=0 is a finite sequence (or the initial terms of an infinite sequence)

of a deterministic point set in [0, 1)s. It is well-known in the theory of QMC
methods, that the so-called low-discrepancy point sets and sequences yield a
low integration error when a QMC algorithm is used (see, among many others,
[1, 2, 8, 10, 13]).

One of the most widespread and powerful techniques to construct low-discre-
pancy point sequences in the s-dimensional unit cube is the concept of digi-
tal (t, s)-sequences (see e.g. [11, 13]) or, more general, digital (T, s)-sequences
(see [9]). In this paper we restrict ourselves to the special case of digital (0, s)-
sequences (this corresponds to the best possible asymptotic order for the upper
bound of discrepancy).

We recall the digital method :Definition 1. Let s ≥ 1 denote the dimension and let q be a prime. Further let
C1, . . . , Cs be N × N-matrices over the finite field Fq. We construct a sequence

(xn)n≥0, xn =
(

x
(1)
n , . . . , x

(s)
n

)

, n ∈ N0, by generating the jth coordinate of the

nth point, x
(j)
n , as follows. We represent n = n0+n1q+n2q

2+ · · · in base q and
set

Cj · (n0, n1, . . .)
⊤ =:

(

y
(j)
1 , y

(j)
2 , . . .

)⊤

∈ Fq
N

and

x(j)
n :=

y
(j)
1

q
+

y
(j)
2

q2
+ · · · .

(Note that since q is prime we can identify the elements of Fq with residue classes
modulo q; also, we do not distinguish the residue classes from their representa-
tives {0, 1, . . . , q − 1}.)

The sequence generated by the matrices C1, . . . , Cs is called a digital (0, s)-
sequence over Fq if for every m ∈ N and for all d1, d2, . . . , ds ∈ N0 with d1 +
· · ·+ ds = m the (m ×m)-matrix whose rows consist of the rows of each upper
left (di ×m)-submatrix of Ci, for i = 1, . . . , s, has full rank m.

Note that the condition on the rank structure of the generator matrices
sketched above is very restrictive. E.g. it is known that such special genera-
tor matrices can only exist if the dimension s is at most equal to the base q (see
e.g. [13]). One famous example of digital (0, s)-sequences was given by Faure in
[3]:
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AN EXPLICIT CONSTRUCTION OF FINITE-ROW DIGITAL (0, s)-SEQUENCESExample 1 (Faure sequences). Let q be a prime. For i ∈ {0, 1, . . . , q − 1} we

define the i th Pascal matrix in base q by P (i) := (p
(i)
k,j)k,j≥1,

p
(i)
k,j =

{(
j−1
k−1

)
ij−k 1 ≤ k ≤ j

0 k ≤ 0 or k > j

modulo q, where k ∈ Z, j ∈ N and 00 := 1. Then the matrices P (0), · · · , P (q−1)

generate a digital (0, q)-sequence in base q.

For q = 2 this sequence had been given earlier by Sobol [14]. A development
to increasingly more general versions has been made e.g. in [11, 12, 13, 15].

In [6] the question was posed, if there exist matrices where in each row only
finitely many entries are nonzero, while the above rank-structure conditions are
still satisfied, and the notion of finite-row generator matrices was introduced.
This question was raised during the investigation of the discrepancy of the so
called Niederreiter-Halton sequences which are built by juxtaposing the compo-
nents of digital (T, s)-sequences in different prime bases. E.g., the 5-dimensional
sequence where the first two components are given by the Faure sequence in
base 2 and the remaining three components are given by the Faure sequence in
base 3 is an example of a Niederreiter-Halton sequence. The idea of constructing
multi-dimensional sequences by combining the components of digital sequences
in different prime bases is motivated by the special properties of the so called
Halton sequences (introduced in [5]). A Halton sequence is built by juxtaposing
van der Corput sequences, which are special digital (0, 1)-sequences, in different
prime bases and surprisingly the multi-dimensional sequence constructed that
way is also a low-discrepancy sequence. Of course a natural question is to ask
if there are more examples of digital sequences that can be used as components
of Niederreiter-Halton sequences, resulting in a good low-discrepancy sequence.
Unfortunately not all digital (0, s)-sequences have good mixing properties con-
cerning the low-discrepancy property. For example in [6] it was shown that the
discrepancy of the 5-dimensional sequence from above satisfies quite large lower
bounds. Altogether the results obtained in [6] for certain different classes of
Niederreiter-Halton sequences suggested to combine digital (0, s)-sequences that
are generated by matrices consisting of rows with as few as possible nonzero
entries. This motivated the investigation of the finite-row generator matrices.

Of course the restrictive condition on the rank structure forces the matrices
to contain a certain amount of nonzero entries. In [6] it was shown that in the
best possible case for every d > 0, i ∈ {1, . . . , s} the dth row of Ci should have
a length of sd+ 1− π(i), for some permutation π on {1, . . . , s}. In this case we
say that the matrix has shortest possible row length in the sense of Hofer and
Larcher.
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From the following Proposition by Faure and Tezuka in [4] it is easy to deduce
the existence of such finite-row (0, s)-sequences.Proposition 1. Let C1, . . . , Cs ∈ Fq

N×N be the generator matrices of a digi-
tal (0, s)-sequence in prime base q ≥ s. If M is a non-singular upper triangu-
lar (NUT) matrix over Fq, then the matrices C1M, . . . , CsM generate a digital
(0, s)-sequence in prime base q ≥ s.

The strategy is to determine for given generator matrices C1, . . . , Cs a suitable
matrix M column by column, by solving systems of equations related to the
restrictions on the row lengths. Note that the matrix multiplication with a NUT
matrix from the right in effect is a special rearrangement of the sequence; in
order to find a suitable rearrangement by the strategy above, one has to solve
systems of equations. We refer the interested reader to [6] for more details.

Since for the Faure sequence in any prime base q very simple explicit formulas
for the generator Pascal matrices are known (compare Example 1) it is natural
to ask for a more effective way to compute a proper NUT matrix M which goes
along with the Pascal matrices. In [6] a recursion for such a scrambling matrix
M was discovered: set

c1 := (1, 0, 0, 0, . . .)⊤, cd+1 = P (1)

(
0
cd

)

,

for d ∈ N. Then M := (c1, c2, c3, . . .).

Note that from the fact that P (i) = (P (1))i it is easy to check that the matrix
P (q−1)M =: S can also be produced by the recursion

c1 := (1, 0, 0, 0, . . .)⊤, cd+1 =

(
0

P (1)cd

)

for d ∈ N. Hence S is also an appropriate scrambling matrix to obtain a finite-row
(0, q)-sequence.

In this paper we prove an explicit formula for the matrix S in Section 2.1,
viz.,

S =

([
j − 1

k − 1

])

k,j≥1

modulo q, where
[
m
n

]
is the Karamata notation for the unsigned Stirling number

of the first kind (note the striking similarity of S to the first Pascal matrix

(
(

j−1
k−1

)

)k,j≥1) modulo q. There exist several equivalent definitions for
[
m
n

]
, e.g.,

as the number of permutations of m elements with n cycles or by a recursion.

From this explicit formula we are able to derive further interesting properties
of the finite-row generator matrices and also of the associated digital (0, q)-
sequence. In Section 2.2 we determine forN = qq·m,m ∈ N a special permutation
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AN EXPLICIT CONSTRUCTION OF FINITE-ROW DIGITAL (0, s)-SEQUENCES

π of {0, 1, · · · , qq·m − 1} that can be applied towards efficient generation of the
sequence in the following way: for the first N points of the sequence it suffices to
compute the first component, while the other components result from applying
the permutation, i.e.,

xn = (x(1)
n , x

(1)
π(n), . . . , x

(1)
πq−1(n)), n = 0, 1, . . . , N − 1.

Furthermore, we show a self-similar structure of the finite-row generator ma-
trices in Section 2.3. We conclude the paper with some open problems as outlook
to further research in Section 3.

2. Results

Let q be a given prime base. We define matrices M(a), S1(a) ∈ Fq
N×N where

a ∈ {1, . . . , q− 1}. The matrix M(a) shall be defined by its columns, i.e., we set

c1 := (1, 0, 0, 0, . . .)T ∈ Fq
N, cd+1 :=

(
0

P (a) · cd

)

,

for d ∈ N, where P (a) is the ath Pascal matrix defined in Example 1. Then
M(a) := (c1, c2, c3, . . .).

2.1. An explicit formula for the matrix

Set S1(a) := (
[
j−1
i−1

]

aj−i)i,j≥1 modulo q, where
[
n
k

]
denotes the unsigned

Stirling number of the first kind, defined by:
[
n

k

]

=

[
n− 1

k − 1

]

+ (n− 1)

[
n− 1

k

]

, for k, n ∈ N (1)

with initial values
[
0
0

]
= 1 and

[
n

0

]
=
[
0
n

]
= 0 for all n > 0.Theorem 1. We have M(a) = S1(a).

P r o o f. We prove the equality by induction on the columns.

First we observe that the equality holds for the initial column vector:

c1 = (1, 0, 0, . . .)T = (

[
0

0

]

a0,

[
0

1

]

a−1,

[
0

2

]

a−2, . . .)T .

For the induction step we assume that

cd = (

[
d− 1

0

]

ad−1,

[
d− 1

1

]

ad−2,

[
d− 1

2

]

ad−3, . . .)T
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and compute

cd+1 =

(
0

P (a) · cd

)

=





0
(
∑

j≥1

(
j−1
i−1

)
aj−i

[
d−1
j−1

]

ad−j
)T

i≥1





=





0
(

ad−i
∑

j≥1

(
j−1
i−1

) [
d−1
j−1

])T

i≥1





=





0
(

ad−i
[
d
i

])T

i≥1



 ,

where for the last step we used the equality
∑

j≥0

(
j

i

)[
d

j

]

=

[
d+ 1

i+ 1

]

, d, i ≥ 0,

which can be found e.g., in [7, chapter 1.2.6.]. Finally the fact that
[
d
0

]

ad = 0

for d ∈ N yields the desired result

cd+1 =

([
d+ 1− 1

0

]

ad+1−1,

[
d+ 1− 1

1

]

ad+1−2,

[
d+ 1− 1

2

]

ad+1−3, . . .

)T

.

�

2.2. Relations between the generator matrices and a componentwise

construction based on special permutations

Now we use the matrix S1(a) as scrambling matrix in application of Proposi-
tion 1. This gives the matrices P (0)S1(a), P

(1)S1(a), . . . , P
(q−1)S1(a) generating

a digital (0, q)-sequence.

The following theorem shows an interesting property of these matrices. We
determine very thin band matrices Q(a, b), such that P (b) ·S1(a) = S1(a)·Q(a, b),
which implies that for each choice of a ∈ {1, . . . , q − 1} the scrambled matrices
have shortest possible row lengths in the sense of Hofer and Larcher.Theorem 2. We have

P (b) · S1(a) = S1(a) ·Q(a, b),

where

Q(a, q − a) = Q(a) :=
(

δk,j − a(j − 1)δk,j−1

)

k,j≥1
,
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Q(a, b) := Q(a)l =

(

(−a)j−k

(
j − 1

k − 1

)

(l)j−k

)

k,j≥1

,

for l(q − a) ≡ b (mod q). (For integers m,n, the notation (n)m refers to the
falling factorial n(n− 1) · · · (n−m+1), empty products equal 1, also for n = 0.)

The matrices Q(a)l are band matrices with bandwidth l+ 1 for 1 ≤ l < q and
Q(a)q ≡ (δk,j)k,j≥1 modulo q.

For the proof of the theorem we make use of the Stirling numbers of the
second kind

{
n
k

}
, n, k ∈ N, which have a combinatorial interpretation as the

number of ways to partition a set of n objects into k groups. They obey the
recurrence relation (which may be taken as an alternative definition)

{n

k

}

=

{
n− 1

k − 1

}

+ k

{
n− 1

k

}

, for n, k ∈ N

with the initial values
{

0
0

}
= 1 and

{
n

0

}
=
{

0
n

}
= 0 for any integer n > 0.

By the combinatorial interpretation or, indeed, the recursion it is not im-
mediately obvious (but a well-known fact in combinatorics) that the Stirling
numbers of the first and the second kind are in an inversion relation to each
other. Introducing a small generalization, the following holds.Lemma 1. We have S2(a)S1(a) = S1(a)S2(a) = I, where

S2(a) =

({
j − 1

k − 1

}

(−a)j−k

)

k,j≥1

and I = (δk,j)k,j≥1.

P r o o f. Follows immediately from the relation S1(1)S2(1) = S2(1)S1(1) = I
that can be found e.g., in [7, Ch.1.2.6]. �

The proof of the theorem builds from the case l = 1, which we present in this
lemma.Lemma 2. We have

S2(a) · P
(q−a) · S1(a) = Q(a, q − a) =: Q(a) =

(

δi,j − a(j − 1)δi,j−1

)

i,j≥1
.

P r o o f. Note that from the recursive definition of M(a) and from Theorem 1

it is easy to see that P (a) · S1(a) =
([

j
k

]
aj−k

)

k,j≥1
modulo q.

Now the result is easily deduced from

(

(S2(a) · P
(q−a))−1

)−1

= (P (a) · S1(a))
−1 =

(([
j

k

]

aj−k

)

k,j≥1

)−1

19



ROSWITHA HOFER AND GOTTLIEB PIRSIC

=

({
j

k

}

(−a)j−k

)

k≥1,j≥1

modulo q and

({
j

k

}

(−a)j−k

)

k,j≥1

=

({
j − 1

k − 1

}

(−a)j−k− ak

{
j − 1

k

}

(−a)j−1−k

)

k,j≥1

.

�

Proof of Theorem 2.
For any b ∈ {0, . . . , q − 1} we choose l ∈ {0, 1, . . . , q − 1} such that l(q − a) ≡ b
(mod q), so that P (b) = (P (q−a))l. Then Lemma 2 yields

P (b)S1(a) = S1(a)
(
S2(a) · P

(q−a) · S1(a)
)l

= S1(a)Q(a)l.

We denote the ith unit vector of FN
q by ei. From the form of Q(a) in Lemma 2

we know, that Q(a) maps ei to ei − a(i− 1)ei−1. So, by induction

Q(a)l =

(
l∑

n=0

δk,j−n(−a)n
(
l

n

)

(j − 1)n

)

k,j≥1

.

Finally it is easy to check that

l∑

n=0

δk,j−n(−a)n
(
l

n

)

(j − 1)n = (−a)j−k

(
l

j − k

)

(j − 1)j−k

= (−a)j−k

(
j − 1

k − 1

)

(l)j−k.

�Corollary 1. The matrices S1(a), S1(a)Q(a), . . . , S1(a)Q(a)q−1 are generator
matrices of a digital (0, s)-sequence and have shortest possible row lengths in the
sense of Hofer and Larcher.

Furthermore, to construct the first qqv points of the sequence it suffices to
compute the first component by matrix-vector multiplication, the subsequent com-
ponents are generated by repeated application of a permutation of indices, i.e.,

xn = (x(1)
n , x

(1)
πv(n)

, . . . , x
(1)

π
q−1

v (n)
).
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AN EXPLICIT CONSTRUCTION OF FINITE-ROW DIGITAL (0, s)-SEQUENCES

The permutation πv acting on {0, . . . , qqv − 1} here can in fact be reduced to a
permutation π1 acting on {0, . . . , qq − 1} via qq-adic digits, i.e., given a repre-

sentation of k =
∑v−1

r=1 krq
qr, 0 ≤ kr < qqn, we have

πv(k) =
v−1∑

r=1

π1(kr)q
qr.

P r o o f. Theorem 2 and Proposition 1 yield that the matrices generate a digital
(0, s)-sequence. From the defining recurrence (1) it is easy to deduce that

[
n
k

]

is divisible by q for all k, n ∈ N such that n > qk (e.g., by induction on k).
Hence the dth row of S1(a) has length less than or equal to q(d − 1) + 1. This
together with the fact that Q(a) is a band matrix with bandwidth 2 implies the
conditions on the row lengths, in fact we get that the dth row of S1(a)Q(a)l for
l ∈ {0, 1, . . . , q− 1} has length less than or equal to qd− (q− 1− l). Hence these
matrices have shortest possible row lengths in the sense of Hofer and Larcher.

To conclude the proof we note that the form of Q(a) given in the Theorem is
actually a block diagonal matrix, i.e.,

Q(a) =









B 0 0 · · ·
0 B 0 · · ·
... 0

. . . · · ·
...

...
. . .

. . .









with

B =











1 (q − 1)a 0 · · · · · ·
0 1 (q − 2)a 0 · · ·
... 0

. . .
. . .

. . .
...

... 0 1 a
0 · · · · · · 0 1











∈ Fq
q×q,

and hence Q(a) operates on each of the consecutive blocks of length q in the
vector (n0, n1, . . .)

T and the blockwise operation π1 is determined by B. Thus
the assertions on πv follow. �Example 2. For q = 2 the upper left submatrix B =

(
1 1
0 1

)

. Hence π1 :

{0, 1, 2, 3} → {0, 1, 2, 3} equals the transposition (2, 3) and the first four points

of the sequence are (x
(1)
0 , x

(1)
0 ), (x

(1)
1 , x

(1)
1 ), (x

(1)
2 , x

(1)
3 ), (x

(1)
3 , x

(1)
2 ). If we want to

compute the first 22·2 = 16 points we apply π1 to each string of 22 = 4 points
and then π1 to the 4 strings:
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(0, 1, 2, 3) (4, 5, 6, 7) (8, 9, 10, 11) (12, 13, 14, 15)
↓ π1 ↓ π1 ↓ π1 ↓ π1

(0, 1, 3, 2)
︸ ︷︷ ︸

a

(4, 5, 7, 6)
︸ ︷︷ ︸

b

(8, 9, 11, 10)
︸ ︷︷ ︸

c

(12, 13, 15, 14)
︸ ︷︷ ︸

d

↓ π1
a

︷ ︸︸ ︷

(0, 1, 3, 2)

b
︷ ︸︸ ︷

(4, 5, 7, 6)

d
︷ ︸︸ ︷

(12, 13, 15, 14)

c
︷ ︸︸ ︷

(8, 9, 11, 10)

or, in cyclic notation, (3, 4)(6, 7)(8, 12)(9, 13)(10, 15)(11, 14).Remark 1. In principle, by P (i) = (P (1))i, we can also generate the first qqv, v ∈
N points of the Faure sequence by repeated application of a permutation πv :
{0, 1, . . . , qqv − 1} → {0, 1, . . . , qqv − 1}, such that

xn = (x(1)
n , x

(1)
πv(n)

, . . . , x
(1)

π
q−1

v (n)
).

However, the permutation cannot be computed digitwise in base qq representation
and does not have a similarly transparent and quick-to-implement structure. To
illustrate, π2 in base 2 is given by

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 3 2 5 4 6 7 15 14 12 13 10 11 9 8

or in cyclic notation (2, 3)(4, 5)(8, 15)(9, 14)(10, 12)(11, 13).

2.3. The self-similar structure of the generator matrices

The Pascal matrices (i.e., binomial coefficients modulo a prime) have a well-
known and appealing self-similar structure (see Figure 1) that is explained by
Lucas’ Theorem on binomial coefficients.

Figure 1. The Pascal matrices in base 5, upper left 25× 25 submatrices.Proposition 2. Let q be prime and m,n ∈ N0. With m = m1q + m0 and
n = n1q+n0, 0 ≤ m0, n0 < q and the base q representations m =

∑

i≥0 µiq
i, n =
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AN EXPLICIT CONSTRUCTION OF FINITE-ROW DIGITAL (0, s)-SEQUENCES

∑

i≥0 νiq
i we have
(
m

n

)

≡

(
m0

n0

)(
m1

n1

)

≡
∏

i≥0

(
µi

νi

)

(mod q) ‘Lucas’ Theorem’

and

p(b)m,n = p(b)m0,n0
· p(b)m1,n1

=
∏

i≥0

p(b)µi,νi
∈ Fq.

P r o o f. Lucas’ Theorem can be found e.g., as an exercise in [7, Ch.1.2.6]. From
the fact that bq−1 ≡ 1 (mod q) for all b ∈ {1, . . . , q− 1} it is easy to deduce the
formula for the Pascal matrices. For b = 0, δm,n = δm0,n0

δm1,n1
holds trivially.

�

The preceding proposition can be visualized as follows. Consider a partition
of a Pascal matrix into q× q submatrices. Then any submatrix of index (m1, n1)
is a copy of the (0, 0)-submatrix, adjusted by a binomial factor

(
m1

n1

)
modulo q.

By induction, the same holds also for a partition into qi × qi submatrices for
i > 1.

In the following proposition we give a similar reduction formula for Stirling
numbers of the first kind. It is not quite as simple as for binomial coefficients
but still serves to explain the self-similar structure of the finite-row generator
matrices in Theorem 3 (see Figure 2).

Figure 2. The matrices P (i)S1(2) in base 5, upper left 25 × 25 submatrices.Proposition 3. For n,m ≥ 0,

an−m
[ n

m

]

≡an0−m0

[
n0

m0

]

× (−1)n1−m1

{

(−1)
(

n1

m1−1

)
if n0 = q − 1,m0 = 0,

(
n1

m1

)
else

(mod q),
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where

n = n1q + n0, 0 ≤ n0 < q,

m− n1 = m1(q − 1) +m0, 0 ≤ m0 < q − 1.

(Note that for q = 2 the formula also holds, with m1 = m−n1, m0 = 0. See also
Example 3 below. )

P r o o f. We start by observing that for prime q we have

an−m = an0+n1q−m1(q−1)−m0−n1 ≡ an0−m0 (mod q),

so a plays no role in the rest of the proof.

The main tool of the proof is that the ‘rising factorial’ function is a generating
function for

[
n

m

]
in the following sense: with the usual coefficient extraction

operator notation, [xm], we have
[ n

m

]

= [xm](x)(n), where (x)(n) := x(x + 1) · · · (x+ n− 1).

First we note that with n = n0 +
∑

i>0 νiq
i,

(x)n ≡ (x)(n0)(x)(ν1q)(x)(ν2q
2) · · · (mod q).

Furthermore, for any i > 0

(x)(νiq
i) ≡

(
(x)(q)

)νiq
i−1

(mod q),

hence

(x)(n) ≡ (x)(n0)
(
(x)(q)

)n1

(mod q).

Regarding the expression (x)(q) we observe that it is a polynomial of degree q
that vanishes identically on all of Fq. Hence it is uniquely determined as xq − x.

Therefore,
[ n

m

]

≡ [xm](x)(n) ≡ [xm](x)(n0)(xq − x)n1

≡ [xm−n1 ](x)(n0)(xq−1 − 1)n1

≡ [xm1(q−1)+m0 ](x)(n0)(xq−1 − 1)n1 (mod q).

Now since (x)(n0) is a polynomial of degree n0 and (xq−1−1)n1 is a polynomial
in xq−1, no additions of terms of the form xi(q−1)(x)(n0) can occur unless n0 =
q − 1, and in this case would become only relevant for m0 = 0.

We conclude the proof by treating this two cases.
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• n0 6= q − 1 or n0 = q − 1, m0 6= 0:

an−m
[ n

m

]

≡ an0−m0 [xm1(q−1)+m0 ](x)(n0)(xq−1 − 1)n1

≡ an0−m0

[
n0

m0

](
n1

m1

)

(−1)n1−m1 (mod q).

• n0 = q − 1,m0 = 0:

an−m
[ n

m

]

≡ an0−m0 [xm1(q−1)+m0 ](x)(n0)(xq−1 − 1)n1

≡ an0−m0

[n0

0

](n1

m1

)

(−1)n1−m1

+ an0−m0

[
n0

q − 1

](
n1

m1 − 1

)

(−1)n1−(m1−1) (mod q),

but the first term vanishes by
[
q−1
0

]
= 0 and thus the assertion follows. �Example 3. For the special case q = 2 the formula reduces considerably.

Let n = n0 + 2n1, 0 ≤ n0 < 2, then
[ n

m

]

≡

(
n1

m− n1 − n0

)

=

(
⌊n/2⌋

m− ⌊(n+ 1)/2⌋

)

(mod 2).

(This corresponds to Example 3 in [6])

Now we can state how our finite-row generator matrices are built up from q×q
submatrices in a similar manner as the Pascal matrices. The special structure of
Q(a) is important here.Theorem 3. Let the matrix given by S1(a)Q(a)l with a 6= 0, l ∈ {0, 1, . . . , q−1}
be denoted by C(a, l) = (c(a, l)k,j)k,j≥1. The following holds true for all k, j ∈ N

c(a, l)k,j ≡ c(a, l)k0,j0p
(q−1)
k1+1,j1+1 + δ1,k0

c(a, l)q,j0p
(q−1)
k1,j1+1 (mod q),

where

j = j1q + j0, 0 < j0 ≤ q,

k − j1 = k1(q − 1) + k0, 0 < k0 ≤ q − 1.

P r o o f. First we rewrite the formula of Proposition 3 as

an−m
[ n

m

]

≡ an0−m0

[
n0

m0

]

(−1)n1−m1

(
n1

m1

)

+δ0,m0
an0−(q−1)

[
n0

q − 1

]

(−1)n1−(m1−1)

(
n1

m1 − 1

)

(mod q).
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Note that whenever m0 6= 0 or n0 6= q − 1 the second term vanishes since

δ0,m0
= 0 or

[
n0

q−1

]

= 0 and if m0 = 0 and n0 = q − 1 then the first term

vanishes since
[
q−1
0

]
= 0.

From this it is easy to derive the formula above in the case where b = 0.
We just have to take care about the indices and use that (−1)n1−m1

(
n1

m1

)
=

p
(q−1)
m1+1,n1+1:

c(a, 0)k,j ≡ c(a, 0)k0,j0p
(q−1)
k1+1,j1+1 + δ1,k0

c(a, 0)q,j0p
(q−1)
k1,j1+1 (mod q). (2)

We recall the special structure of Q(a) given in the proof of Corollary 1:

Q(a) =









B 0 0 · · ·
0 B 0 · · ·
... 0

. . . · · ·
...

...
. . .

. . .









with

B =











1 (q − 1)a 0 · · · · · ·
0 1 (q − 2)a 0 · · ·
... 0

. . .
. . .

. . .
...

... 0 1 a
0 · · · · · · 0 1











∈ Fq
q×q.

Now we do not think about the effect of Q(a) on the digit vector as in the proof
of Corollary 1 but on the effect on the matrix C that is multiplied. We compute
the columns of C ·Q(a) by applying the special structure of B:
For the first column we just take the first column of C. For the second column
we multiply the first column of C with (q− 1)a and add it to the second column
of C. And so on. For the qth column we multiply the (q − 1)th column of C
with a and add it to the qth column of C. Now for the (q + 1)th column we
just take the (q+1)th column of C. It should be clear how to go on. Altogether
we see that the multiplication of any matrix with Q(a) from the right brings an
operation on the jth column that is uniquely determined by j0 and combines
the columns only local in the range of j ∈ {qj1 + r : 1 ≤ r ≤ q}.

More exactly we get for the entries of C(a, l) = C(a, l−1)Q(a) = C(a, 0)Q(a)l

that

c(a, l)k,j ≡ c(a, l)k,j1q+j0

≡ c(a, l − 1)k,j1q+j0 + (q − j0 + 1)ac(a, l− 1)k,j1q+j0−1
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≡

min{l,j0−1}
∑

n=0

c(a, 0)k,j1q+j0−n(−a)n
(
l

n

)

(j0 − 1)n (mod q).

For the latter compare the proof of Theorem 2 and note that q|(j0−1)n whenever
n ≥ j0. From the restriction on n we get that 1 ≤ j0 − n ≤ j0 ≤ q and we can
use (2) for

c(a, 0)k,j1q+j0−n ≡ c(a, 0)k0,j0−np
(q−1)
k1+1,j1+1 + δ1,k0

c(a, 0)q,j0−np
(q−1)
k1,j1+1 (mod q).

We obtain

c(a, l)k,j ≡ p
(q−1)
k1+1,j1+1

min{l,j0−1}
∑

n=0

c(a, 0)k0,j0−n(−a)n
(
l

n

)

(j0 − 1)n

+ p
(q−1)
k1,j1+1δ1,k0

min{l,j0−1}
∑

n=0

c(a, 0)q,j0−n(−a)n
(
l

n

)

(j0 − 1)n (mod q).

Finally we use

min{l,j0−1}
∑

n=0

c(a, 0)k0,j0−n(−a)n
(
l

n

)

(j0 − 1)n = c(a, l)k0,j0

and
min{l,j0−1}
∑

n=0

c(a, 0)q,j0−n(−a)n
(
l

n

)

(j0 − 1)n = c(a, l)q,j0

and the result follows. �

Note that for j0 = q, k0 = 1 and l = q − 1 we get

c(a, q − 1)1,q ≡

q−1
∑

n=0

c(a, 0)1,q−n(−a)n
(
q − 1

n

)

(q − 1)n

≡ c(a, 0)1,1(q − 1)! ≡ q − 1 (mod q)

and

c(a, q − 1)q,q ≡

q−1
∑

n=0

c(a, 0)q,q−n(−a)n
(
q − 1

n

)

(q − 1)n

≡ c(a, 0)q,q ≡ 1 (mod q).

Hence both terms are not zero in that case and we cannot simplify the formula
as in Proposition 3. This overlapping of the self-similar structure can be checked
in the 4th matrix in Figure 2, see e.g. the 10th entry in the 6th row.
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The assertion of the preceding theorem can be visualized as follows. To con-
struct S1(a) = Q(a)l = C(a, l) for any l ∈ {0, 1, . . . , q− 1} we compute its upper
left (q × q) submatrix. Then we use this submatrix as unit and apply the con-
struction principle of P (q−1) to build up (qi × qi) matrices. Finally the (q × q)
units are shifted down s rows, where s = j1 − k1, and overlapping parts of the
units are added in Fq.

3. Remarks and Open Questions

The next interesting question is of course how to generalize the results in this
paper to Faure sequences over the general finite field Fqw with qw elements where
q ∈ P and w ∈ N. Here for an element b ∈ Fqw the bth Pascal matrix over Fqw is

defined similarly by P (b) := (p(b)k,j)k,j≥1, where p(b)k,j =
(
j−1
k−1

)
bj−k, 00 := 1.

Note that Definition 1 in the finite extension field case necessitates a bijection
between the set of digits {0, 1, . . . , qw − 1} and Fqw with the requirement that 0
maps to 0. (See e.g. [13] for more details.)

It is easy to check that for any b1, b2 ∈ Fqw we have P (b1) ·P (b2) = P (b1+b2)
(compare e.g. proof of Proposition 2 in [6]).

Since Proposition 1 holds also for generator matrices over general finite fields
it is clear that proper scrambling matrices exist that yield finite-row generator
matrices.

One approach to generalize the results in this paper would be to choose
any a ∈ Fqw , a 6= 0 and consider the (0, q)-sequence generated by P (a), P (a +

a), · · · , P (q · a = 0). Then the matrix S(a) := (
[
j−1
k−1

]

aj−k)k,j≥1 yields corre-

sponding results over the finite field. But nevertheless if w > 1 we don’t exhaust
the full dimension qw that should be possible.

This yields the following interesting open problem.Open Problem 1. Find an explicit formula for a scrambling matrix that mod-
ifies the qw Pascal matrices over the finite field with qw elements to proper gen-
erator matrices with shortest possible row lengths of a finite-row digital (0, qw)-
sequence.

Niederreiter [12] introduced the digital (t, s)-sequences over Fqw where the
generator matrices are determined by the coefficients of the formal Laurent series
of certain rational functions over the finite field Fqw . This class of sequences
contains the generalized Faure sequences as special cases.
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AN EXPLICIT CONSTRUCTION OF FINITE-ROW DIGITAL (0, s)-SEQUENCESOpen Problem 2. For every digital (t, s)-sequence state a proper NUT matrix
which modifies the digital (t, s)-sequence to a finite-row (t, s)-sequence.

Since the investigation of the finite-row (t, s)-sequences is motivated in the
context of low-discrepancy Niederreiter-Halton sequences we are also interested
in discrepancy estimates of sequences that are composed by finite-row (t, s)-
sequences. For example we are interested in ...Open Problem 3. ... good lower and upper bound for the discrepancy of the
5-dimensional Niederreiter-Halton sequence where the first two components are
generated by S1(1), S1(1)Q(1) over F2 and the last three components are gener-
ated by S1(1), S1(1)Q(1), S1(1)Q(1)2 over F3.
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