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Abstract We give an exact formula for the L2 discrepancy of two-dimensional
digitally shifted Hammersley point sets in base b. This formula shows that for
certain bases b and certain shifts the L2 discrepancy is of best possible order
with respect to the general lower bound due to Roth. Hence, for the first
time, it is proved that, for a thin, but infinite subsequence of bases b starting
with 5, 19, 71, . . ., a single permutation only can achieve this best possible
order, unlike previous results of White (1975) who needs b permutations and
Faure & Pillichshammer (2008) who need 2 permutations.

1 Introduction and Statement of the Results

For a finite point set P = {x1, . . . ,xN} of N ≥ 1 (not necessarily distinct)
points in the unit-square [0, 1)2 the L2 discrepancy is defined by

L2(P) :=
(∫ 1

0

∫ 1

0

|E(x, y,P)|2 dxdy
)1/2

,

where the discrepancy function is given as E(x, y,P) = A([0, x)× [0, y),P)−
Nxy, where A([0, x)×[0, y),P) denotes the number of indices 1 ≤M ≤ N for
which xM ∈ [0, x)× [0, y). The L2 discrepancy is a quantitative measure for
the irregularity of distribution of P, i.e., the deviation from perfect uniform
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France. e-mail: faure(AT)iml.univ-mrs.fr

Friedrich Pillichshammer
Institut für Finanzmathematik, Universität Linz, Altenbergerstraße 69, A-4040 Linz,
Austria. e-mail: friedrich.pillichshammer(AT)jku.at

1



2 Henri Faure and Friedrich Pillichshammer

distribution modulo one, which has a close relationship with the worst-case
and average-case errors of quasi-Monte Carlo integration of functions from
certain function classes. An introduction to the theory of uniform distribution
modulo one and the discrepancy of sequences can be found in the books
of Kuipers & Niederreiter [11] or of Drmota & Tichy [3]. Concerning the
relationship between L2 discrepancy and quasi-Monte Carlo integration we
further refer to [16, 19, 20] for example.

It was first shown by Roth [15] (see also [11, Chapter 2, Section 2]) that
there is a constant c > 0 with the property that for the L2 discrepancy of
any finite point set P consisting of N points in [0, 1)2 we have

L2(P) ≥ c
√

logN. (1)

In this paper we will consider the L2 discrepancy of so-called digitally
shifted Hammersley point sets in base b with bn points. These point sets form
a sub-class of generalized Hammersley point sets in base b (the Hammersley
point set is also known as Roth net for b = 2), which can be considered as
finite two-dimensional versions of the generalized van der Corput sequences
in base b as introduced by Faure [5].

Throughout the paper let b ≥ 2 be an integer and let Sb be the set of all
permutations of {0, 1, . . . , b− 1}.

Definition 1 (generalized Hammersley point set). Let b ≥ 2 and n ≥ 0
be integers and let Σ = (σ0, . . . , σn−1) ∈ Sn

b . For an integer 1 ≤ N ≤ bn,
write N − 1 =

∑n−1
r=0 ar(N)br in the b-adic system and define SΣb (N) :=∑n−1

r=0
σr(ar(N))
br+1 . Then the generalized two-dimensional Hammersley point set

in base b consisting of bn points associated with Σ is defined by

HΣb,n :=
{(

SΣb (N),
N − 1
bn

)
: 1 ≤ N ≤ bn

}
.

In case of σi = σ for all 0 ≤ i < n, we also write Hσb,n instead of HΣb,n. If σ =
id, the identical permutation, then we obtain the classical two-dimensional
Hammersley point set in base b.

Exact formulas for the L2 discrepancy of the classical two-dimensional
Hammersley point set Hid

b,n in base b have been proved by Vilenkin [17],
Halton & Zaremba [9] and Pillichshammer [13] in base b = 2 and by White
[18] and Faure & Pillichshammer [8] for arbitrary bases. These results show
that the classical Hammersley point set cannot achieve the best possible order
of L2 discrepancy with respect to Roth’s general lower bound (1).

The first who obtained the best possible order of L2 discrepancy for finite
two-dimensional point sets was Davenport [2], with a modification of so-called
(Nα)-sequences (α having a continued fraction expansion with bounded par-
tial quotients), more precisely with the set consisting of the 2M points(
{±Nα}, NM

)
for 1 ≤ N ≤ M where M is a positive integer and {x} de-

notes the fractional part of x.
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Next, observing that {−Nα} = 1−{Nα}, Proinov [14] obtained the same
result with the same set where generalized van der Corput sequences take
the place of (Nα)-sequences and he named this process symmetrization of a
sequence. Later on, the same process was used by Chaix & Faure [1] for infi-
nite van der Corput sequences (improving at the same time the constants of
Proinov) and by Larcher & Pillichshammer [12] for (0,m, 2)-nets and (0, 1)-
sequences in base 2. It is important to note that all these results using the
symmetrization process give the exact order with bounds only for the im-
plied constants whereas in the following, with various cleverly generalized
Hammersley point sets, different authors obtain exact formulas and hence
exact values for the implied constants.

Below we first give a survey of results concerning generalized Hammersley
point sets with best possible order of L2 discrepancy together with some
comparisons between the methods, showing the interest in considering only
one permutation, i.e., a single sequence Hσb,n.

First results were available in base b = 2: Let id be the identity and
id1(k) := k+1 (mod 2) be the digital shift in base 2; then Halton & Zaremba
[9] and later, in a much more general form, Kritzer & Pillichshammer [10]
gave sequences of permutations Σ ∈ {id, id1}n (although they did not use
this terminology), for which the generalized Hammersley point set HΣ2,n in
base 2 achieves the best possible order of L2 discrepancy in the sense of Roth
(1). For more detailed results we refer to [10].

Results for arbitrary bases were first given by White [18] who generalized
the result from [9] in a certain way. He considered sequences Σ of the form

Σ = (id0, id1, . . . , idb−1, id0, id1, . . . , idb−1, . . .) (2)

of length n where idl(k) := k + l (mod b) for 0 ≤ l, k < b (White did not
use this terminology). The permutations idl are called digital shifts in base b;
they are natural generalizations of the digital shift in base 2 used by Halton
& Zaremba and Kritzer & Pillichshammer. For this specific Σ, White gave
an exact formula for the L2 discrepancy of the corresponding generalized
Hammersley point set. Essentially this formula states that

(
L2(HΣb,n)

)2
= n

(b2 − 1)(3b2 + 13)
720b2

+O(1) (3)

whenever Σ is of the form (2).
Setting b = 2 in this formula gives the same sequence as in [9] and the

simplest sequence in [10], that is Σ = (id0, id1, id0, id1, . . .), with the same
constant 5/192. Note that we need only two permutations and therefore the
formula for base 2 starts being valid for integers n ≥ 2, that is, sets of 22 = 4
points at least, which is very few.

The problem for arbitrary b is that we need n ≥ b, i.e., sets of bb points at
least. Even for small bases like b = 10 the property requires sets consisting of
more than 1010 points which is far away from usual numbers of points allowed
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in quasi-Monte Carlo simulation. If we want to use generalized Hammersley
point sets in applications (image-processing, optimization of printers for in-
stance), we must find a better way than White (in fact White used a trick
due to Halton & Warnock, see [18, p. 221]) to improve the L2 discrepancy of
the original Hammersley point sets.

Another approach consists of using the so-called swapping permutation τ
defined by τ(k) = b − k − 1, for 0 ≤ k < b, instead of shifts (the term
swapping is introduced and justified in [6] and [7, Section 2]). Applied to the
L2 discrepancy of Hammersley point sets, this generalization gives formula
(3) with the simplest sequence Σ = (id0, τ, id0, τ, . . .) in arbitrary bases. We
refer to [8] for detailed proofs together with extensions to the Lp discrepancy.
Once again, we need only two permutations but our results are valid for
arbitrary bases whereas Halton & Zaremba and Kritzer & Pillichshammer
deal only with base 2. We also remark that in base 2, shift and swap is
the same permutation, so that [8] fully generalizes the results of [9] (for L2

discrepancy) and [10] from base 2 to base b.
Now, after White who needs b permutations and Faure & Pillichshammer

who need two, the question arises if only one permutation is enough to get
the same property, i.e., the best order of L2 discrepancy.

In this paper, we consider this question for shifts in base b and we deal
with sequences of permutations of the form Σl := (idl, . . . , idl) for arbitrary
fixed integer 0 ≤ l < b, i.e., with our notation after Definition 1, we study
generalized Hammersley point sets Hidl

b,n. We call such sets digitally shifted
Hammersley point sets in base b. We can prove an exact formula for the L2

discrepancy of these sets which permits to answer the question above for the
sub-class of digitally shifted Hammersley point sets. The proof relies on the
approach of [8] and uses the fundamental Lemmas 1 and 2 from this paper.
However here, for the first time, we have to manage with true permutations
while in [8] we dealt with identity only (τ being simply a mirror of it); on
the other hand, we obtained more results in this specific case.

Section 2 contains prerequisites and auxiliary results, and Section 3 con-
tains the proof of the following result:

Theorem 1. For the L2 discrepancy of a digitally shifted Hammersley point
set Hidl

b,n, with integers b ≥ 2, 0 ≤ l < b and n ≥ 1, we have(
L2

(
Hidl
b,n

))2

=
(
n

b

(
b2 − 1

12
− l(b− l)

2

))2

− 1
2bn

n

b

(
b2 − 1

12
− l(b− l)

2

)
+
n

b

(
b2 − 1

12
− l(b− l)

2
+

(b2 − 1)(3b2 + 13)
720b

)
+

3
8

+
1

4bn
− 1

72b2n
.

If we choose l = 0 then Hid0
b,n is the classical Hammersley point set and our

formula recovers [8, Theorem 1] and [18, Eq. (15)].
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From Theorem 1 one can see that for certain values of b and l one can
obtain the optimal order of L2 discrepancy in the sense of Roth (1) with a
single shift. In this case the implied leading constant is the same as in White’s
and Faure & Pillichshammer’s result (3).

Corollary 1. For integers b ≥ 2, 0 ≤ l < b and n ≥ 1 we have(
L2

(
Hidl
b,n

))2

= n
(b2 − 1)(3b2 + 13)

720b2
+

3
8

+
1

4bn
− 1

72b2n
(4)

if and only if b satisfies the Pell-Fermat equation b2−3c2 = −2 with a suitable
integer c and l = 1

2 (b± c).
All solutions of this equation are given by b+ c

√
3 = ±(1 +

√
3)(2 +

√
3)m

with m ∈ N0.

Proof. Of course Eq. (4) holds if and only if b
2−1
12 = l(b−l)

2 and this is equiva-

lent to l = 1
2

(
b±

√
b2+2

3

)
. Since l is an integer this is equivalent to b2+2

3 = c2

for some integer c or equivalently b2− 3c2 = −2. Note that all solutions (b, c)
have to consist of odd b and c only. This is in accordance with the fact that
l = 1

2 (b± c) is an integer.
For z = x + y

√
d and its conjugate z = x− y

√
d we write N(z) = z · z =

x2 − y2d. It is known (see, for example [4]) that the general solution z (if it
exists) of a Pell-Fermat equation N(z) = a can be obtained as the product
of the solution of the special Pell-Fermat equation N(z) = 1, which is given
by z = ±(z0)m, m ∈ N, where z0 > 1 is the minimal solution, with a special
solution of N(z) = a with 0 ≤ z ≤ z0.

In our case we have the minimal solution z0 = 2 +
√

3 and the special
solution 1 +

√
3. Hence, all solutions are given by z = ±(1 +

√
3)(2 +

√
3)m,

m ∈ N0. ut

The first few of the infinitely many pairs (b, l) for which Eq. (4) holds are
(5, 1), (5, 4), (19, 4), (19, 15), (71, 15), (71, 56), (265, 56), (265, 209), (989, 209),
(989, 780), (3691, 780), (3691, 2911), . . . .

Hence, we have proved that for a thin (but infinite) subsequence of bases b
a single shift only is sufficient to obtain the optimal order of L2 discrepancy.
Between the necessity of b shifts with White’s method and the few bases
we have found with a single shift, there are surely many other possibilities.
Finding such alternatives will need more investigations and we plan to pursue
this work in the near future.
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2 Auxiliary Results

In this section we provide the main tools for the proof of Theorem 1. The
analysis of the L2 discrepancy is based on special functions which have been
first introduced by Faure in [5] and which are defined as follows.

For σ ∈ Sb let Zσb = (σ(0)/b, σ(1)/b, . . . , σ(b−1)/b). For h ∈ {0, 1, . . . , b−
1} and x ∈ [(k − 1)/b, k/b), where k ∈ {1, . . . , b}, we define

ϕσb,h(x) =
{
A([0, h/b); k;Zσb )− hx if 0 ≤ h ≤ σ(k − 1),
(b− h)x−A([h/b, 1); k;Zσb ) if σ(k − 1) < h < b,

where here for a sequence X = (xM )M≥1 we denote by A(I; k;X) the number
of indices 1 ≤M ≤ k such that xM ∈ I. Further, the function ϕσb,h is extended
to the reals by periodicity. Note that ϕσb,0 = 0 and ϕσb,h(0) = 0 for any σ ∈ Sb

and any 0 ≤ h < b.
Furthermore, we define ϕσb :=

∑b−1
h=0 ϕ

σ
b,h and φσb :=

∑b−1
h=0(ϕσb,h)2. Note

that ϕσb is continuous, piecewise linear on the intervals [k/b, (k + 1)/b] and
ϕσb (0) = ϕσb (1). For example for σ = id we have

ϕid
b,h(x) =

{
(b− h)x if x ∈ [0, h/b],
h(1− x) if x ∈ [h/b, 1], (5)

from which one obtains (see [8, Lemma 3] for details) that for x ∈
[
k
b ,

k+1
b

]
,

0 ≤ k < b, we have

ϕid
b (x) =

b(b− 2k − 1)
2

(
x− k

b

)
+
k(b− k)

2
(6)

and

φid
b (x) = (1− x)2

k(k + 1)(2k + 1)
6

+ x2 (b− k)(b− k − 1)(2b− 2k − 1)
6

. (7)

From (6) we immediately obtain for y ∈
[
0, 1

b

)
the equation

b−1∑
k=0

ϕid
b

(
k

b
+ y

)
=
b(b2 − 1)

12
. (8)

Sometimes we will use the following property from [1, Propriété 3.4] stating
that

(ϕσb,h)′(k/b+ 0) = (ϕid
b,h)′(σ(k)/b+ 0). (9)

Here and later on by f ′(x + 0) we mean the right-derivative of the function
f at x.

The following lemma gives a relationship between the family of ϕσb,h func-
tions with respect to the permutations id and idl.
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Lemma 1. For any 0 ≤ h, l < b and x ∈ [0, 1] we have

ϕidl
b,h(x) = ϕid

b,h

(
x+

l

b

)
− ϕid

b,h

(
l

b

)
(10)

and in particular,

ϕidl
b (x) = ϕid

b

(
x+

l

b

)
− ϕid

b

(
l

b

)
.

Proof. It is enough to show that the equality holds for x = k/b, k ∈ {0, . . . , b−
1}. Since the functions ϕσb,h are continuous and linear on

[
j
b ,
j+1
b

)
, 0 ≤ j < b,

invoking Eq. (9) we have

ϕidl
b,h

(
k

b

)
=

1
b

k−1∑
j=0

(
ϕidl
b,h

)′(j
b

+ 0
)

=
1
b

k−1∑
j=0

(
ϕid
b,h

)′( idl(j)
b

+ 0
)

=
1
b

k+l−1∑
j=l

(
ϕid
b,h

)′(j
b

+ 0
)

= ϕid
b,h

(
k + l

b

)
− ϕid

b,h

(
l

b

)
as desired. ut

The following lemma provides a formula for the discrepancy function of
generalized Hammersley point sets.

Lemma 2. For integers 1 ≤ λ,N ≤ bn and Σ = (σ0, . . . , σn−1) ∈ Sn
b we

have

E

(
λ

bn
,
N

bn
,HΣb,n

)
=

n∑
j=1

ϕ
σj−1
b,εj

(
N

bj

)
,

where the εj = εj(λ, n,N) can be given explicitly.

A proof of this result together with formulas for εj = εj(λ, n,N) can be
found in [8, Lemma 1].

Remark 1. Let 0 ≤ x, y ≤ 1 be arbitrary. Since all points from HΣb,n have
coordinates of the form α/bn for some α ∈ {0, 1, . . . , bn − 1}, we have

E(x, y,HΣb,n) = E(x(n), y(n),HΣb,n) + bn(x(n)y(n)− xy), (11)

where for 0 ≤ x ≤ 1 we define x(n) := min{α/bn ≥ x : α ∈ {0, . . . , bn}}.

Now we will give a series of lemmas with further, more involved properties
of the functions ϕσb,h, ϕσb and φσb . The first result is a special case of [8, Lemma
2] (see there for a proof).

Lemma 3. For 1 ≤ N ≤ bn and 0 ≤ j1 < j2 < · · · < jk < n we have
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bn∑
λ=1

k∏
i=1

ϕ
σji
b,εji

(
N

bji

)
= bn−k

k∏
i=1

ϕ
σji
b

(
N

bji

)
and

bn∑
λ=1

k∏
i=1

(
ϕ
σji
b,εji

(
N

bji

))2

= bn−k
k∏
i=1

φ
σji
b

(
N

bji

)
.

Lemma 4. For 0 ≤ h < k < n and 0 ≤ l < b we have

bn∑
N=1

ϕidl
b

(
N

bh

)
ϕidl
b

(
N

bk

)
= bn

(
b2 − 1

12
− ϕid

b

(
l

b

))2

.

Proof. Using Lemma 1 we have

bn∑
N=1

ϕidl
b

(
N

bh

)
ϕidl
b

(
N

bk

)

=
bn∑
N=1

ϕid
b

(
N

bh
+
l

b

)
ϕid
b

(
N

bk
+
l

b

)
+ bn

(
ϕid
b

(
l

b

))2

−ϕid
b

(
l

b

) bn∑
N=1

ϕid
b

(
N

bh
+
l

b

)
− ϕid

b

(
l

b

) bn∑
N=1

ϕid
b

(
N

bk
+
l

b

)
. (12)

LetN = N0+N1b+· · ·+Nn−1b
n−1 be the b-adic expansion ofN ∈ {0, . . . , bn−

1}. From the periodicity of ϕid
b and using Eq. (8) we obtain

bn∑
N=1

ϕid
b

(
N

bh
+
l

b

)
=

b−1∑
N0,...,Nn−1=0

ϕid
b

(
N0 + · · ·+Nn−1b

n−1

bh
+
l

b

)

= bn−h
b−1∑

N0,...,Nh−1=0

ϕid
b

(
N0 + · · ·+Nh−1b

h−1

bh
+
l

b

)

= bn−h
bh−1−1∑
N=0

b−1∑
Nh−1=0

ϕid
b

(
N

bh
+
Nh−1 + l

b

)

= bn−h
bh−1−1∑
N=0

b−1∑
z=0

ϕid
b

(
N

bh
+
z

b

)
= bn

b2 − 1
12

. (13)

Similar reasoning as above and noting that h < k gives

bn∑
N=1

ϕid
b

(
N

bh
+
l

b

)
ϕid
b

(
N

bk
+
l

b

)
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= bn−k
bk−1∑
N=0

ϕid
b

(
N

bh
+
l

b

)
ϕid
b

(
N

bk
+
l

b

)

= bn−k
bk−1−1∑
N=0

ϕid
b

(
N

bh
+
l

b

) b−1∑
z=0

ϕid
b

(
N

bk
+
z

b

)

=
b2 − 1

12

bn−1∑
N=0

ϕid
b

(
N

bh
+
l

b

)
= bn

(
b2 − 1

12

)2

. (14)

Now the result follows from inserting (13) and (14) into (12). ut

Lemma 5. For 0 ≤ k < n and 0 ≤ l < b we have

bn∑
N=1

φidl
b

(
N

bk

)
= bn

(
b4 − 1

90b
+
b(b2 − 1)

36b2k

)
+ bnφid

b

(
l

b

)
−b

n−1

12
l(b− l)(1 + b2 + lb− l2).

Proof. We have

φidl
b

(
N

bk

)
=

b−1∑
h=0

(
ϕidl
b,h

(
N

bk

))2

=
b−1∑
h=0

(
ϕid
b,h

(
N

bk
+
l

b

)
− ϕid

b,h

(
l

b

))2

= φid
b

(
N

bk
+
l

b

)
+ φid

b

(
l

b

)
− 2

b−1∑
h=0

ϕid
b,h

(
N

bk
+
l

b

)
ϕid
b,h

(
l

b

)
.

By using the periodicity of φid
b we obtain

bn∑
N=1

φid
b

(
N

bk
+
l

b

)
= bn−k

bk∑
N=1

φid
b

(
N

bk

)
= bn−k

b−1∑
j=0

(j+1)bk−1∑
N=jbk−1+1

φid
b

(
N

bk

)
.

For jbk−1 + 1 ≤ N ≤ (j + 1)bk−1 we have j/b < N/bk ≤ (j + 1)/b and hence
we can use Eq. (7) to obtain

bn∑
N=1

φid
b

(
N

bk
+
l

b

)
= bn−k

b−1∑
j=0

(j+1)bk−1∑
N=jbk−1+1

[(
1− N

bk

)2
j(j + 1)(2j + 1)

6

+
(
N

bk

)2 (b− j)(b− j − 1)(2b− 2j − 1)
6

]

= bn
(
b4 − 1

90b
+
b(b2 − 1)

36b2k

)
.

Furthermore we have



10 Henri Faure and Friedrich Pillichshammer

bn∑
N=1

b−1∑
h=0

ϕid
b,h

(
N

bk
+
l

b

)
ϕid
b,h

(
l

b

)
=

b−1∑
h=0

ϕid
b,h

(
l

b

) bn∑
N=1

ϕid
b,h

(
N

bk
+
l

b

)
.

Using the periodicity of ϕid
b,h and Eq. (5) for the innermost sum we obtain

bn∑
N=1

ϕid
b,h

(
N

bk
+
l

b

)
= bn−k

bk−1∑
N=0

ϕid
b,h

(
N

bk

)

= bn−k

hbk−1∑
N=0

(b− h)
N

bk
+

bk−1∑
N=hbk−1+1

h

(
1− N

bk

)
= bn−1 (b− h)h

2
.

Hence, using again Eq. (5),

bn∑
N=1

b−1∑
h=0

ϕid
b,h

(
N

bk
+
l

b

)
ϕid
b,h

(
l

b

)
=
bn−1

2

b−1∑
h=0

ϕid
b,h

(
l

b

)
(b− h)h

=
bn−1

2

(
l−1∑
h=0

(b− h)h2

(
1− l

b

)
+
b−1∑
h=l

(b− h)2h
l

b

)

=
bn−1

24
l(b− l)(1 + b2 + lb− l2).

The result follows. ut

Lemma 6. For 0 ≤ h < n and 0 ≤ l < b we have

bn∑
N=1

Nϕid
b

(
N

bh
+
l

b

)
= b2n

b2 − 1
24

+
bnl(b− l)

12b
(3b− bh(b− 2l)).

Proof. Splitting up the range of summation we have

bn∑
N=1

Nϕid
b

(
N

bh
+
l

b

)
=
bn−h+1−1∑

k=0

(k+1)bh−1∑
N=kbh−1+1

Nϕid
b

(
N

bh
+
l

b

)
.

For 0 ≤ k < bn−h+1 let k = qb+ r with integers 0 ≤ r < b and 0 ≤ q < bn−h.
Then for kbh−1 + 1 ≤ N ≤ (k + 1)bh−1 we have r/b ≤ N/bh − q ≤ (r + 1)/b.
Hence, if 0 ≤ r < b− l, then 0 ≤ (r+ l)/b ≤ N/bh−q+ l/b ≤ (r+ l+1)/b ≤ 1
and if b − l ≤ r < b, then 0 ≤ (r + l − b)/b ≤ N/bh − q + l/b − 1 ≤
(r + l − b + 1)/b < 1. Using the periodicity of ϕid

b and Eq. (6) we therefore
obtain
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bn∑
N=1

Nϕid
b

(
N

bh
+
l

b

)
=

b−1∑
r=0

bn−h−1∑
q=0

qbh+(r+1)bh−1∑
N=qbh+rbh−1+1

Nϕid
b

(
N

bh
− q +

l

b

)

=
b−l−1∑
r=0

bn−h−1∑
q=0

qbh+(r+1)bh−1∑
N=qbh+rbh−1+1

Nϕid
b

(
N

bh
− q +

l

b

)

+
b−1∑
r=b−l

bn−h−1∑
q=0

qbh+(r+1)bh−1∑
N=qbh+rbh−1+1

Nϕid
b

(
N

bh
− q +

l

b
− 1
)

=
b−l−1∑
r=0

bn−h−1∑
q=0

qbh+(r+1)bh−1∑
N=qbh+rbh−1+1

N

(
b(b− 2(r + l)− 1)

2

(
N

bh
− q − r

b

)

+
(r + l)(b− r − l)

2

)

+
b−1∑
r=b−l

bn−h−1∑
q=0

qbh+(r+1)bh−1∑
N=qbh+rbh−1+1

N

(
b(b− 2(r + l − b)− 1)

2

(
N

bh
− q − r

b

)

+
(r + l − b)(2b− r − l)

2

)
= b2n

b2 − 1
24

+
bnl(b− l)

12b
(3b− bh(b− 2l)).

This is the desired result. ut

3 The Proof of Theorem 1

First we show a discrete version of Theorem 1. The following result is a
generalization of [8, Lemma 6]. The original is obtained when putting l = 0
below.

Lemma 7. For 0 ≤ l < b we have

1
b2n

bn∑
λ,N=1

E

(
λ

bn
,
N

bn
,Hidl

b,n

)
=
n

b

(
b2 − 1

12
− l(b− l)

2

)
(15)

and

1
b2n

bn∑
λ,N=1

(
E

(
λ

bn
,
N

bn
,Hidl

b,n

))2

(16)

=
(
n

b

(
b2 − 1

12
− l(b− l)

2

))2

+ n
(b2 − 1)(3b2 + 13)

720b2
+

1
36

(
1− 1

b2n

)
.
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Proof. We just give the (much more involved) proof of Eq. (16). Using Lem-
mas 2, 3, 4 and 5 we have

1
b2n

bn∑
λ,N=1

(
E

(
λ

bn
,
N

bn
,Hidl

b,n

))2

=
1
b2n

bn∑
λ,N=1

n∑
i,j=1

ϕidl
b,εi

(
N

bi

)
ϕidl
b,εj

(
N

bj

)

=
1
b2n

n∑
i=1

bn∑
N=1

bn∑
λ=1

(
ϕidl
b,εi

(
N

bi

))2

+
1
b2n

n∑
i,j=1
i6=j

bn∑
N=1

bn∑
λ=1

ϕidl
b,εi

(
N

bi

)
ϕidl
b,εj

(
N

bj

)

=
1
b2n

n∑
i=1

bn∑
N=1

bn−1φidl
b

(
N

bi

)
+

1
b2n

n∑
i,j=1
i6=j

bn∑
N=1

bn−2ϕidl
b

(
N

bi

)
ϕidl
b

(
N

bj

)

=
1
b

n∑
i=1

((
b4 − 1

90b
+
b(b2 − 1)

36b2i

)
+ φid

b

(
l

b

)
− l(b− l)(1 + b2 + lb− l2)

12b

)

+
n2 − n
b2

(
b2 − 1

12
− ϕid

b

(
l

b

))2

=
(
n

b

(
b2 − 1

12
− ϕid

b

(
l

b

)))2

− n

b2

(
b2 − 1

12
− ϕid

b

(
l

b

))2

+n
b4 − 1
90b2

+
1
36

(
1− 1

b2n

)
+
n

b

(
φid
b

(
l

b

)
− l(b− l)(1 + b2 + lb− l2)

12b

)
=
(
n

b

(
b2 − 1

12
− l(b− l)

2

))2

+ n
(b2 − 1)(3b2 + 13)

720b2
+

1
36

(
1− 1

b2n

)
,

where for the last equality we used that ϕid
b (l/b) = l(b− l)/2 according to Eq.

(6) and φid
b (l/b) = (1−l/b)2l(l+1)(2l+1)/6+(b−l)(b−l−1)(2b−2l−1)l2/(6b2)

according to Eq. (7). ut

Now we give the proof of Theorem 1.

Proof. Using Eq. (11) we obtain(
L2

(
Hidl
b,n

))2

=
∫ 1

0

∫ 1

0

(
E
(
x(n), y(n),Hidl

b,n

)
+ bn(x(n)y(n)− xy)

)2

dx dy

=
1
b2n

bn∑
λ,N=1

(
E

(
λ

bn
,
N

bn
,Hidl

b,n

))2

+2bn
bn∑

λ,N=1

∫ λ
bn

λ−1
bn

∫ N
bn

N−1
bn

E

(
λ

bn
,
N

bn
,Hidl

b,n

)(
λ

bn
N

bn
− xy

)
dxdy

+b2n
bn∑

λ,N=1

∫ λ
bn

λ−1
bn

∫ N
bn

N−1
bn

(
λ

bn
N

bn
− xy

)2

dxdy

=: S1 + S2 + S3.
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The term S1 has been evaluated in Lemma 7 and straightforward algebra
shows that S3 = (1 + 18bn + 25b2n)/(72b2n). So it remains to deal with S2.

Evaluating the integral appearing in S2 we obtain

S2 =
1
b3n

bn∑
λ,N=1

(λ+N)E
(
λ

bn
,
N

bn
,Hidl

b,n

)
− 1

2b3n

bn∑
λ,N=1

E

(
λ

bn
,
N

bn
,Hidl

b,n

)
=: S4 − S5.

The term S5 can be obtained from Lemma 7, Eq. (15). For S4 we have

S4 =
1
b3n

bn∑
λ,N=1

λE

(
λ

bn
,
N

bn
,Hidl

b,n

)
+

1
b3n

bn∑
λ,N=1

NE

(
λ

bn
,
N

bn
,Hidl

b,n

)
=:

1
b3n

(S4,1 + S4,2).

With Lemma 2, Lemma 3, Lemma 1 and Lemma 6 we obtain

S4,2 = bn−1
n∑
i=1

bn∑
N=1

N

(
ϕid
b

(
N

bi
+
l

b

)
− ϕid

b

(
l

b

))

= b2n−1
n∑
i=1

(
bn
b2 − 1

24
+ l(b− l)

(
3b− bi+1 + 2lbi

12b
− bn + 1

4

))

= b3n
b2 − 1

24b
n− b2n

12b2

n∑
i=1

(b− l)l
(
bi(b− 2l) + 3bn+1

)
= b3n

b2 − 1
24b

n− b2n

12b
(b− l)l

(
(b− 2l)

bn − 1
b− 1

+ 3bnn
)
.

We turn to S4,1. We have

Hidl
b,n =

{(
idl(a0)
b

+ · · ·+ idl(an−1)
bn

,
an−1

b
+ · · ·+ a0

bn

)
: 0 ≤ ai < b

}
=
{(

x0

b
+ · · ·+ xn−1

bn−1
,

id−1
l (xn−1)

b
+ · · ·+ id−1

l (x0)
bn

)
: 0 ≤ xi < b

}
.

Let g : [0, 1]2 → [0, 1]2 be defined by g(x, y) = (y, x). For l = 0 we
have id−1

0 = id0 and for 0 < l < b we have id−1
l = idb−l. Hence we have

Hidl
b,n = g

(
Hidb−l
b,n

)
for 0 < l < b andHid0

b,n = g
(
Hid0
b,n

)
. Therefore, for 0 < l < b

we obtain

S4,1 =
bn∑

λ,N=1

λE

(
λ

bn
,
N

bn
,Hidl

b,n

)
=

bn∑
λ,N=1

λE

(
N

bn
,
λ

bn
,Hidb−l

b,n

)
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= b3n
b2 − 1

24b
n− b2n

12b
(b− l)l

(
(2l − b)b

n − 1
b− 1

+ 3bnn
)

where we used the formula for S4,2 in the last equation. The same formula
holds true for l = 0.

Hence we have

S4 =
n

b

(
b2 − 1

12
− l(b− l)

2

)
.

Now we obtain(
L2

(
Hidl
b,n

))2

=
(
n

b

(
b2 − 1

12
− l(b− l)

2

))2

+ n
(b2 − 1)(3b2 + 13)

720b2

+
1
36

(
1− 1

b2n

)
+
n

b

(
b2 − 1

12
− l(b− l)

2

)
− n

2bn+1

(
b2 − 1

12
− l(b− l)

2

)
+

1 + 18bn + 25b2n

72b2n

which yields the desired result. ut
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