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Abstract

The L2 discrepancy is a quantitative measure for the irregularity of distribution
of a finite point set. In this paper we consider the L2 discrepancy of so-called gener-
alized Hammersley point sets which can be obtained from the classical Hammersley
point sets by introducing some permutations on the base b digits. While for the
classical Hammersley point set it is not possible to achieve the optimal order of L2

discrepancy with respect to a general lower bound due to Roth this disadvantage can
be overcome with the generalized version thereof. For special permutations we ob-
tain an exact formula for the L2 discrepancy from which we obtain two-dimensional
finite point sets with the lowest value of L2 discrepancy known so far.
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1 Introduction

For a point set P = {x1, . . . , xN} of N ≥ 1 points in the two-dimensional unit-square
[0, 1)2 the L2 discrepancy is defined by

L2(P) :=

(∫ 1

0

∫ 1

0

|E(x, y,P)|2 dx dy

)1/2

,

where the so-called discrepancy function is given as E(x, y,P) = A([0, x) × [0, y),P) −
Nxy, where A([0, x) × [0, y),P) denotes the number of indices 1 ≤ M ≤ N for which
xM ∈ [0, x)× [0, y). The L2 discrepancy is a quantitative measure for the irregularity of
distribution of P , i.e., the deviation from perfect uniform distribution.

It was first shown by Roth [8] that for the L2 discrepancy of any finite point set P
consisting of N points in [0, 1)2 we have

L2(P) ≥ c
√

log N (1)

∗This work is supported by the Austrian Science Foundation (FWF), Project S9609, that is part of
the Austrian National Research Network “Analytic Combinatorics and Probabilistic Number Theory”.
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with a constant c > 0 independent of P and N . According to [6, Chapter 2, Proof of
Lemma 2.5] one can choose c = 1/(28

√
log 2) = 0, 0046918 . . ..

In this paper we will consider the L2 discrepancy of so-called generalized Hammersley
point sets in base b with bn points. These point sets, generalizations of the Hammersley
point set in base b (which is also known as Roth net for b = 2), can be considered as
finite two-dimensional versions of the generalized van der Corput sequences in base b as
introduced by Faure [1].

Throughout the paper let b ≥ 2 be an integer and let Sb be the set of all permutations
of {0, 1, . . . , b− 1}.
Definition 1 (generalized Hammersley point set) Let b ≥ 2 and n ≥ 0 be integers
and let Σ = (σ0, . . . , σn−1) ∈ Sn

b . For an integer 1 ≤ N ≤ bn, write N−1 =
∑n−1

r=0 ar(N)br

in the b-adic system and define SΣ
b (N) :=

∑n−1
r=0

σr(ar(N))
br+1 . Then the generalized two-

dimensional Hammersley point set in base b consisting of bn points associated to Σ is
defined by

HΣ
b,n :=

{(
SΣ

b (N),
N − 1

bn

)
: 1 ≤ N ≤ bn

}
.

In case of σi = σ for all 0 ≤ i < n, we write also Hσ
b,n instead of HΣ

b,n. If in the above
definition σi = id for all i ∈ {0, . . . , n−1}, then we obtain the classical Hammersley point
set in base b which we simply denote by Hb,n.

Let τ ∈ Sb be given by τ(k) = b − 1 − k. Faure and Pillichshammer [3] investigated
the (more general) Lp discrepancy of the generalized two-dimensional Hammersley point
set in base b with Σ ∈ {id, τ}n. Especially, for the L2 discrepancy they showed that,
whenever l is the number of components of Σ which are equal to id, then
(
L2(HΣ

b,n)
)2

=
(

b2 − 1

12b

)2

((n− 2l)2 − n) +
b2 − 1

12b

(
1− 1

2bn

)
(2l − n) + n

b4 − 1

90b2
+

3

8
+

1

4bn
− 1

72b2n
.

This result generalizes older results due to Vilenkin [9], Halton and Zaremba [4], Pil-
lichshammer [7] and Kritzer and Pillichshammer [5] in base b = 2 and White [10] in
arbitrary bases b ≥ 2.

Note that the L2 discrepancy of HΣ
b,n with Σ ∈ {id, τ}n only depends on n, b and

the number of permutations in Σ which are equal to id (and not on their distribution).
Setting l = n we get the formula for the L2 discrepancy of the classical Hammersley point
set.

The above result shows that generalized Hammersley point sets can achieve the best
possible order of L2 discrepancy in the sense of Roth’s lower bound (1). More detailed
we have

lim
n→∞

min
Σ∈{id,τ}n

L2(HΣ
b,n)√

log bn
=

1

b

√
(b2 − 1)(3b2 + 13)

720 log b
. (2)

This is not the case for the classical Hammersley point set Hb,n where

lim
n→∞

L2(Hb,n)

log bn
=

b2 − 1

12b log b
.

In this paper we intend to generalize the result mentioned above. Thereby we aim to
minimize the constant in the leading term in the formula for the L2 discrepancy, i.e., the
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quantity limn→∞ L2(HΣ
b,n)/

√
log bn. More detailed, for σ ∈ Sb we define σ := τ ◦ σ and

consider sequences of permutations Σ ∈ {σ, σ}n. We will show that for arbitrary σ ∈ Sb

one still can achieve the optimal order of L2 discrepancy in the sense of (1). However, if
we want to study the constant in the leading term, then we need some restrictions on σ,
but only for technical reasons.

Let A(τ) := {σ ∈ Sb : σ ◦ τ = τ ◦ σ}. For permutations σ ∈ A(τ) and Σ ∈ {σ, σ}n

we provide an explicit formula for the L2 discrepancy of HΣ
b,n. This also yields an explicit

formula for the quantity
lim

n→∞
min

σ∈A(τ)
Σ∈{σ,σ}n

L2(HΣ
b,n)/

√
log bn .

With this formula we can then search for the permutations in A(τ) which yield the best
result (see Section 5).

The results are presented in Section 2. In Section 3 we show some auxiliary results
and the proofs are finally presented in Section 4.

We close this introduction with some definitions and notations that are used through-
out this paper.

Basic Notations. Throughout the paper let b ≥ 2 and n ≥ 1 be integers. Let Sb be
the set of all permutations of {0, 1, . . . , b − 1}, let τ ∈ Sb be given by τ(k) = b − 1 − k
and define A(τ) := {σ ∈ Sb : σ ◦ τ = τ ◦ σ}. The identity in Sb is always denoted by
id. In all examples and concrete results we will write down the permutations in the usual

cycle notation, i.e. for σ =

(
0 1 2 3 4 5 6 7
0 4 2 6 1 5 3 7

)
we will write σ = (4 1)(6 3).

The analysis of the L2 discrepancy is based on special functions which have been
first introduced by Faure in [1] and which are defined as follows. For σ ∈ Sb let Zσ

b =
(σ(0)/b, σ(1)/b, . . . , σ(b − 1)/b). For h ∈ {0, 1, . . . , b − 1} and x ∈ [

k−1
b

, k
b

)
where k ∈

{1, . . . , b} we define

ϕσ
b,h(x) :=

{
A([0, h/b); k;Zσ

b )− hx if 0 ≤ h ≤ σ(k − 1),
(b− h)x− A([h/b, 1); k;Zσ

b ) if σ(k − 1) < h < b,

where here for a sequence X = (xM)M≥1 we denote by A(I; k; X) the number of indices
1 ≤ M ≤ k such that xM ∈ I. Further, the function ϕσ

b,h is extended to the reals by
periodicity. Note that ϕσ

b,0 = 0 for any σ and that ϕσ
b,h(0) = 0 for any σ ∈ Sb and any

h ∈ {0, . . . , b− 1}.
Let ϕ

σ,(r)
b :=

∑b−1
h=0

(
ϕσ

b,h

)r
where for r = 1 we omit the superscript, i.e., ϕ

σ,(1)
b =:

ϕσ
b . Note that ϕσ

b is continuous, piecewise linear on the intervals [k/b, (k + 1)/b] and

ϕσ
b (0) = ϕσ

b (1). The function ϕ
σ,(2)
b is continuous, piecewise quadratic on the intervals

[k/b, (k + 1)/b] and ϕ
σ,(2)
b (0) = ϕ

σ,(2)
b (1). For an example see Fig. 1.

2 The L2 discrepancy of HΣ
b,n

We start with a general result for the L2 discrepancy of generalized Hammersley point
sets.
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Figure 1: The functions ϕσ
b,h, 0 ≤ h < b and ϕσ

b (left plot) and ϕ
σ,(2)
b (right plot) for b = 6

and σ = (4, 1).

Theorem 1 Let σ ∈ Sb and let σ := τ ◦ σ. Let Σ ∈ {σ, σ}n and let l denote the number
of components of Σ which are equal to σ. Then we have

(
L2(HΣ

b,n)
)2

= (Φσ
b )2((n− 2l)2 − n) + O(n),

where Φσ
b := 1

b

∫ 1

0
ϕσ

b (x) dx and where the constant in the O notation only depends on b.

The proof of this result will be given in Section 4.
Theorem 1 shows that one can always obtain L2(HΣ

b,n) = O(
√

n) which is the best
possible with respect to Roth’s lower bound (1). Either one chooses a permutation σ ∈ Sb

for which Φσ
b = 0 or, for arbitrary σ, one chooses l such that the term (n− 2l)2 = O(n).

For permutations σ from the class A(τ) we can even give an exact formula for the
L2 discrepancy of generalized two-dimensional Hammersley point sets. This result is a
generalization of [3, Theorem 4] which can be obtained by choosing σ = id.

Theorem 2 Let σ ∈ A(τ) and let σ := τ ◦σ. Let Σ ∈ {σ, σ}n and let l denote the number
of components of Σ which are equal to σ. Then we have

(
L2(HΣ

b,n)
)2

=

(Φσ
b )2((n− 2l)2 − n) + Φσ

b

(
1− 1

2bn

)
(2l − n) + nΦ

σ,(2)
b +

3

8
+

1

4bn
− 1

72b2n
,

where Φσ
b := 1

b

∫ 1

0
ϕσ

b (x) dx and Φ
σ,(2)
b := 1

b

∫ 1

0
ϕ

σ,(2)
b (x) dx.

The proof of this result will be given in Section 4.

Remark 1 Note that the L2 discrepancy of HΣ
b,n with Σ ∈ {σ, σ}n, σ ∈ A(τ), only

depends on n, b, σ and the number l of permutations in Σ which are equal to σ. It does
not depend on the distribution of σ and σ in Σ.

From Theorem 2 we find that among all sequences of permutations Σ ∈ {σ, σ}n,
σ ∈ A(τ), the one where all components are equal to σ gives the worst result for the L2

discrepancy.
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Corollary 1 For any Σ ∈ {σ, σ}n, σ ∈ A(τ) we have L2(HΣ
b,n) ≤ L2(Hσ

b,n).

Again one has two possibilities to obtain the best possible order of L2 discrepancy
in the sense of Roth’s lower bound (1). Either one chooses a permutation σ for which
Φσ

b = 0 (in which case the formula from Theorem 2 is independent of l) or, for arbitrary
σ ∈ A(τ), one chooses l such that (n− 2l)2 = O(n).

Corollary 2 Let σ ∈ A(τ) and let σ := τ ◦ σ. We have

min
Σ∈{σ,σ}n

(
L2(HΣ

b,n)
)2

= n
(
Φ

σ,(2)
b − (Φσ

b )2
)

+ O(1).

Especially

lim
n→∞

min
σ∈A(τ)

Σ∈{σ,σ}n

L2(HΣ
b,n)√

log bn
= min

σ∈A(τ)

√
Φ

σ,(2)
b − (Φσ

b )2

log b
.

Proof. The result follows from Theorem 2 together with the fact that the function x 7→
(Φσ

b )2((n−2x)2−n)+Φσ
b

(
1− 1

2bn

)
(2x−n) attains it’s minimum for x = n

2
− 1

4Φσ
b

(
1− 1

2bn

)
.

2

Remark 2 Concerning the case Φσ
b = 0 we can give explicit constructions for permuta-

tions in bases b ≡ 0 (mod 4), b ≡ 1 (mod 4) and b ≡ 3 (mod 4), b 6∈ {3, 7, 11}. In bases
b = 3, 7 and b ≡ 2 (mod 4) there do not exist any permutations σ ∈ Sb with Φσ

b = 0, for
b = 11 we will give an example in Table 2.

We may choose σ ∈ A(τ) such that for b ≡ 0 (mod 4) and b ≡ 1 (mod 4) we let

σ(k) =

{
k + 1 for even k
b− k for odd k

for 0 ≤ k <

⌊
b

2

⌋
,

and for b = 4c + 3 with c ≥ 3 we let

σ(k) =





2c− k + 1 for 1 ≤ k ≤ c− 2
4c− k + 1 for c− 1 ≤ k ≤ c + 1
2c + k + 1 for c + 2 ≤ k ≤ 2c− 2
6c− k for 2c− 1 ≤ k ≤ 2c .

Note that σ is completely determined since σ ∈ A(τ), i.e. the other values are given by

symmetry through σ(b − 1 − k) = b − 1 − σ(k). However, the numerical values of Φ
σ,(2)
b

are not optimal in these cases. We remark that we gave for fixed b only one example for a
permutation σ with Φσ

b = 0. Numerical experiments suggest that for any b 6≡ 2 (mod 4),
b 6∈ {3, 7} there exist many permutations with Φσ

b = 0. We have tabulated those with the
minimal L2 discrepancy for bases b ≤ 17 (see Section 5, Table 2).

We can also show that the L2 discrepancy of the two-dimensional generalized Ham-
mersley point set HΣ

b,n with Σ ∈ {σ, σ}n and σ ∈ A(τ) satisfies a central limit theorem.

In particular, the following result states that the probability for L2

(HΣ
b,n

) ≤ c
√

n with
randomly chosen Σ ∈ {σ, σ}n, can be made arbitrarily close to 1 by choosing the constant
c large enough.
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Corollary 3 Let σ ∈ A(τ) and let σ := τ ◦ σ. Then for any real y ≥ 0 we have

lim
n→∞

#

{
Σ ∈ {σ, σ}n : L2(HΣ

b,n) ≤
√

Φ
σ,(2)
b − (Φσ

b )2(1− y2)
√

n

}

2n
= 2φ(y)− 1,

where φ(y) = 1
2π

∫ y

−∞ e−
t2

2 dt denotes the normal distribution function.

Proof. We denote the right hand side of the formula in Theorem 2 by db(n, l). Then we
have

#
{
Σ ∈ {σ, τ}n : L2(HΣ

b,n) ≤ x
√

n
}

2n
=

1

2n

n∑
l=0√

db(n,l)≤x
√

n

(
n

l

)
.

We have
√

db(n, l) ≤ x
√

n if and only if a−n (x) ≤ l ≤ a+
n (x), where

a±n (x) :=
n

2
−

(
1− 1

2bn

)
1

4Φσ
b

±

√
4n((Φσ

b )2 − Φ
σ,(2)
b + x2) + O(1)

4Φσ
b

.

Therefore
#

{
Σ ∈ {σ, σ}n : L2(HΣ

b,n) ≤ x
√

n
}

2n
=

1

2n

∑

a−n (x)≤l≤a+
n (x)

(
n

l

)
.

For x ≥
√

Φ
σ,(2)
b − (Φσ

b )2 we have

lim
n→∞

a±n (x)− n
2√

n
4

= ±

√
(Φσ

b )2 − Φ
σ,(2)
b + x2

Φσ
b

and the result follows from the central limit theorem together with the substitution x =√
Φ

σ,(2)
b − (Φσ

b )2(1− y2). 2

3 Auxiliary results

In this section we prepare the basic tools which are used for the proof of Theorem 1 and
Theorem 2. Some of the following results are interesting on their own.

Basic properties of ϕσ
b . We begin with some basic properties of the functions ϕσ

b,h

resp. ϕσ
b . It has been shown in [2, Propriété 3.4] that

(ϕσ
b,h)

′(k/b + 0) = (ϕid
b,h)

′(σ(k)/b + 0) (3)

and from [2, Propriété 3.5] it is known that

ϕσ
b (k/b) =

1

b

k−1∑
j=0

(ϕσ
b )′ (j/b + 0). (4)

For σ = id we have

ϕid
b,h(x) =

{
(b− h)x if x ∈ [0, h/b],
h(1− x) if x ∈ [h/b, 1].

(5)
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A formula for the discrepancy function. The following lemma provides a formula
for the discrepancy function of generalized Hammersley point sets. This formula has been
used already in [3].

Lemma 1 For integers 1 ≤ λ, N ≤ bn we have

E

(
λ

bn
,
N

bn
,HΣ

b,n

)
=

n∑
j=1

ϕ
σj−1

b,εj

(
N

bj

)
,

where the εj = εj(λ, n, N) can be given explicitly.

As the exact definition of the εj’s is not so important here and as this definition is of
a very technical nature we omit it here. A proof of the above result together with explicit
expressions for the εj’s can be found in [3, Lemma 1].

Remark 3 Let 0 ≤ x, y ≤ 1 be arbitrary. Since all points from HΣ
b,n have coordinates of

the form α/bn for some α ∈ {0, 1, . . . , bn − 1}, we have

E(x, y,HΣ
b,n) = E(x(n), y(n),HΣ

b,n) + bn(x(n)y(n)− xy),

where for 0 ≤ x ≤ 1 we define x(n) := min{α/bn ≥ x : α ∈ {0, . . . , bn}}.

More involved properties of ϕσ
b . We give a series of lemmas which provide important

properties of the functions ϕσ
b,h resp. ϕσ

b . These results finally lead to the proof of Theorem
1 and Theorem 2.

A proof for the subsequent lemma can be found in [3, Lemma 2].

Lemma 2 For 1 ≤ N ≤ bn, 0 ≤ j1 < j2 < . . . < jk < n and r1, . . . , rk ∈ N we have

bn∑

λ=1

(
ϕ

σj1
b,εj1

(
N

bj1

))r1

· · ·
(

ϕ
σjk
b,εjk

(
N

bjk

))rk

= bn−kϕ
σj1

,(r1)

b

(
N

bj1

)
· · ·ϕσjk

,(rk)

b

(
N

bjk

)
,

where ϕ
σ,(r)
b :=

∑b−1
h=0(ϕ

σ
b,h)

r.

Lemma 3 Let σ ∈ Sb and let σ = τ ◦ σ. For any h ∈ {0, . . . , b − 1} we have ϕσ
b,h =

−ϕσ
b,b−h. Furthermore, we have ϕ

σ,(r)
b = (−1)rϕ

σ,(r)
b .

Proof. With Eq. (3) together with the fact that ϕτ
b,h = −ϕid

b,b−h, as shown in [3, Lemma
4], we obtain

(ϕσ
b,h)

′(k/b) = (ϕid
b,h)

′(σ(k)/b) = (ϕid
b,h)

′(τ(σ(k))/b)

= (ϕτ
b,h)

′(σ(k)/b) = −(ϕid
b,b−h)

′(σ(k)/b) = −(ϕσ
b,b−h)

′(k/b).

Since for any permutation σ the function ϕσ
b,h is linear on any interval [k/b, (k +1)/b] and

since ϕσ
b,h(0) = 0 the first result follows. The second result follows easily from the first

one. 2
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Lemma 4 Let σ ∈ Sb. For 1 ≤ i, j ≤ n, i 6= j we have

bn∑
N=1

ϕσ
b

(
N

bj

)
= bn

∫ 1

0

ϕσ
b (x) dx, (6)

and
bn∑

N=1

ϕσ
b

(
N

bi

)
ϕσ

b

(
N

bj

)
= bn

(∫ 1

0

ϕσ
b (x) dx

)2

, (7)

and
bn∑

N=1

ϕ
σ,(2)
b

(
N

bj

)
= bn

(∫ 1

0

ϕ
σ,(2)
b (x) dx +

b(b2 − 1)

36b2j

)
. (8)

Proof. We start with the proof of Eq. (6). Using the periodicity of ϕσ
b we have

bn∑
N=1

ϕσ
b

(
N

bj

)
=

bn−1∑
N=0

ϕσ
b

(
N

bj

)
= bn−j

bj−1∑
N=0

ϕσ
b

(
N

bj

)
. (9)

Since ϕσ
b is linear on the intervals [k/b, (k + 1)/b] we obtain from the trapezoidal rule for

0 ≤ N < bj, ∫ N+1

bj

N

bj

ϕσ
b (x) dx =

ϕσ
b

(
N
bj

)
+ ϕσ

b

(
N+1

bj

)

2bj
.

Hence

∫ 1

0

ϕσ
b (x) dx =

bj−1∑
N=0

∫ N+1

bj

N

bj

ϕσ
b (x) dx =

bj−1∑
N=0

ϕσ
b

(
N
bj

)
+ ϕσ

b

(
N+1

bj

)

2bj
=

1

bj

bj−1∑
N=0

ϕσ
b

(
N

bj

)
, (10)

since ϕσ
b (0) = ϕσ

b (1) = 0. Inserting (10) into (9) yields Eq. (6).
We turn to the proof of Eq. (7). Let i =: i1 and j =: i2. We may assume that i1 < i2.

For 0 ≤ N < bn let N = N0 + N1b + · · · + Nn−1b
n−1 be it’s b-adic representation. Then

we have

bn∑
N=1

2∏

l=1

ϕσ
b

(
N

bil

)
=

bn−1∑
N=0

2∏

l=1

ϕσ
b

(
N

bil

)

=
b−1∑

N0,...,Nn−1=0

2∏

l=1

ϕσ
b

(
N0 + N1b + · · ·+ Nn−1b

n−1

bil

)

= bn−i2

b−1∑
N0,...,Ni2−2=0

ϕσ
b

(
N0 + · · ·+ Ni1−1b

i1−1

bi1

)

×
b−1∑

k=0

ϕσ
b

(
k

b
+

N0 + · · ·+ Ni2−2b
i2−2

bi2

)
.
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Let t :=
N0+···+Ni2−2bi2−2

bi2
∈ [0, 1/b). From the linearity of ϕσ

b (x) for x ∈ [k/b, (k + 1)/b] it

follows that ϕσ
b

(
k
b

+ t
)

= ϕσ
b

(
k
b

)
+ tb

(
ϕσ

b

(
k+1

b

)− ϕσ
b

(
k
b

))
. Hence

b−1∑

k=0

ϕσ
b

(
k

b
+ t

)
=

b−1∑

k=0

ϕσ
b

(
k

b

)
+ bt

b−1∑

k=0

(
ϕσ

b

(
k + 1

b

)
− ϕσ

b

(
k

b

))

=
b−1∑

k=0

ϕσ
b

(
k

b

)
+ bt(ϕσ

b (1)− ϕσ
b (0)) = b

∫ 1

0

ϕσ
b (x) dx,

where we used Eq. (10) with j = 1 and the periodicity of ϕσ
b for the last equality.

Therefore we obtain

bn∑
N=1

2∏

l=1

ϕσ
b

(
N

bil

)
= bn−i2+1

(∫ 1

0

ϕσ
b (x) dx

) b−1∑
N0,...,Ni2−2=0

ϕσ
b

(
N0 + · · ·+ Ni1−1b

i1−1

bi1

)

=

(∫ 1

0

ϕσ
b (x) dx

) bn−1∑
N=0

ϕσ
b

(
N

bi1

)
= bn

(∫ 1

0

ϕσ
b (x) dx

)2

,

where we used Eq. (6) for the last equality. This gives Eq. (7).

Finally, we prove Eq. (8). First let j ≥ 2. The function ϕ
σ,(2)
b (x) for x ∈ [k/b, (k+1)/b]

is a quadratic polynomial akx
2 + bkx + ck. Hence from Simpson’s rule we obtain

∫ N+2

bj

N

bj

ϕ
σ,(2)
b (x) dx =

1

3bj

(
ϕ

σ,(2)
b

(
N

bj

)
+ 4ϕ

σ,(2)
b

(
N + 1

bj

)
+ ϕ

σ,(2)
b

(
N + 2

bj

))
,

whenever N
bj ,

N+1
bj , N+2

bj ∈ [
k
b
, k+1

b

]
. Hence for 0 ≤ k < b we obtain

(k+1)bj−1−2∑

N=kbj−1

1

3bj

(
ϕ

σ,(2)
b

(
N

bj

)
+ 4ϕ

σ,(2)
b

(
N + 1

bj

)
+ ϕ

σ,(2)
b

(
N + 2

bj

))

=

(k+1)bj−1−2∑

N=kbj−1

{∫ N+1

bj

N

bj

+

∫ N+2

bj

N+1

bj

}
ϕ

σ,(2)
b (x) dx

=

∫ k+1
b
− 1

bj

k
b

ϕ
σ,(2)
b (x) dx +

∫ k+1
b

k
b
+ 1

bj

ϕ
σ,(2)
b (x) dx

= 2

∫ k+1
b

k
b

ϕ
σ,(2)
b (x)−

∫ k
b
+ 1

bj

k
b

ϕ
σ,(2)
b (x) dx−

∫ k+1
b

k+1
b
− 1

bj

ϕ
σ,(2)
b (x) dx.

Summation over all k = 0, . . . , b− 1 yields

bj−1∑
N=0

1

3bj

(
ϕ

σ,(2)
b

(
N

bj

)
+ 4ϕ

σ,(2)
b

(
N + 1

bj

)
+ ϕ

σ,(2)
b

(
N + 2

bj

))

= 2

∫ 1

0

ϕ
σ,(2)
b (x) dx−

b−1∑

k=0

{∫ k
b
+ 1

bj

k
b

+

∫ k+1
b

k+1
b
− 1

bj

}
ϕ

σ,(2)
b (x) dx

+
b−1∑

k=0

1

3bj

(
ϕ

σ,(2)
b

(
k + 1

b
− 1

bj

)
+ 4ϕ

σ,(2)
b

(
k + 1

b

)
+ ϕ

σ,(2)
b

(
k + 1

b
+

1

bj

))
.

9



Now, using again the periodicity of ϕ
σ,(2)
b , we have

bj−1∑
N=0

(
ϕ

σ,(2)
b

(
N

bj

)
+ 4ϕ

σ,(2)
b

(
N + 1

bj

)
+ ϕ

σ,(2)
b

(
N + 2

bj

))

=
bj−1∑
N=0

ϕ
σ,(2)
b

(
N

bj

)
+ 4

bj∑
N=1

ϕ
σ,(2)
b

(
N

bj

)
+

bj+1∑
N=2

ϕ
σ,(2)
b

(
N

bj

)
= 6

bj−1∑
N=0

ϕ
σ,(2)
b

(
N

bj

)
.

Thus,

bj−1∑
N=0

ϕ
σ,(2)
b

(
N

bj

)

= bj

∫ 1

0

ϕ
σ,(2)
b (x) dx− bj

2

b−1∑

k=0

{∫ k
b
+ 1

bj

k
b

+

∫ k+1
b

k+1
b
− 1

bj

}
ϕ

σ,(2)
b (x) dx

+
1

6

b∑

k=1

(
ϕ

σ,(2)
b

(
k

b
− 1

bj

)
+ 4ϕ

σ,(2)
b

(
k

b

)
+ ϕ

σ,(2)
b

(
k

b
+

1

bj

))

= bj

∫ 1

0

ϕ
σ,(2)
b (x) dx

+
bj

2

b∑

k=1

(
ϕ

σ,(2)
b

(
k
b
− 1

bj

)
+ 4ϕ

σ,(2)
b

(
k
b

)
+ ϕ

σ,(2)
b

(
k
b

+ 1
bj

)

3bj
−

∫ k
b
+ 1

bj

k
b
− 1

bj

ϕ
σ,(2)
b (x) dx

)

=: bj

(∫ 1

0

ϕ
σ,(2)
b (x) dx +

A(j, k, σ)

2

)
,

and, using the periodicity of ϕ
σ,(2)
b , we get

bn∑
N=1

ϕ
σ,(2)
b

(
N

bj

)
= bn−j

bj∑
N=0

ϕ
σ,(2)
b

(
N

bj

)
= bn

(∫ 1

0

ϕ
σ,(2)
b (x) dx +

A(j, k, σ)

2

)

for all j ≥ 2. For j = 1 this equation can be checked directly.
It remains to evaluate

A(j, k, σ) =
b∑

k=1

(
ϕ

σ,(2)
b

(
k
b
− 1

bj

)
+ 4ϕ

σ,(2)
b

(
k
b

)
+ ϕ

σ,(2)
b

(
k
b

+ 1
bj

)

3bj
−

∫ k
b
+ 1

bj

k
b
− 1

bj

ϕ
σ,(2)
b (x) dx

)
.

For 1 ≤ k ≤ b let hk(x) = αkx
2 + βkx + γk with hk

(
k
b
− 1

bj

)
= ϕ

σ,(2)
b

(
k
b
− 1

bj

)
, hk

(
k
b

)
=

ϕ
σ,(2)
b

(
k
b

)
and hk

(
k
b

+ 1
bj

)
= ϕ

σ,(2)
b

(
k
b

+ 1
bj

)
. Then by Simpson’s rule we have

∫ k
b
+ 1

bj

k
b
− 1

bj

hk(x) dx =
ϕ

σ,(2)
b

(
k
b
− 1

bj

)
+ 4ϕ

σ,(2)
b

(
k
b

)
+ ϕ

σ,(2)
b

(
k
b

+ 1
bj

)

3bj
.

By tedious but straightforward algebra it can be shown that

∫ k
b
+ 1

bj

k
b
− 1

bj

hk(x) dx−
∫ k

b
+ 1

bj

k
b
− 1

bj

ϕ
σ,(2)
b (x) dx =

1

6b2j

((
ϕ

σ,(2)
b

)′ (k

b
− 0

)
−

(
ϕ

σ,(2)
b

)′ (k

b
+ 0

))
.

10



By definition we have ϕ
σ,(2)
b =

∑b−1
h=0(ϕ

σ
b,h)

2 and hence

(
ϕ

σ,(2)
b

)′ (k

b
− 0

)
−

(
ϕ

σ,(2)
b

)′ (k

b
+ 0

)

= 2
b−1∑

h=0

ϕσ
b,h

(
k

b

)((
ϕσ

b,h

)′ (k

b
− 0

)
− (

ϕσ
b,h

)′ (k

b
+ 0

))

= 2
b−1∑

h=0

ϕσ
b,h

(
k

b

)((
ϕσ

b,h

)′ (k − 1

b
+ 0

)
− (

ϕσ
b,h

)′ (k

b
+ 0

))
.

For short we define fh,k :=
(
ϕσ

b,h

)′ (k
b

+ 0
)
. Hence we have

A(j, k, σ) =
1

3b2j

b−1∑

h=0

b∑

k=1

ϕσ
b,h

(
k

b

)
(fh,k−1 − fh,k). (11)

Since ϕσ
b,h is linear on every interval [k/b, (k+1)/b] we have ϕσ

b,h(k/b) =
∫ k/b

0

(
ϕσ

b,h

)′
(x) dx =

1
b

∑k−1
l=0 fh,l and especially

∑b−1
l=0 fh,l = 0. Hence for every fixed h we obtain

b∑

k=1

ϕσ
b,h

(
k

b

)
(fh,k−1 − fh,k) =

1

b

b−1∑

l=0

fh,l

b∑

k=l+1

(fh,k−1 − fh,k) =
1

b

b−1∑

l=0

f 2
h,l. (12)

Inserting (12) into (11) and using Eq. (3) gives

A(j, k, σ) =
1

3b2j+1

b−1∑

h=0

b−1∑

l=0

((
ϕσ

b,h

)′ ( l

b
+ 0

))2

=
1

3b2j+1

b−1∑

h=0

b−1∑

l=0

((
ϕid

b,h

)′ (σ(l)

b
+ 0

))2

=
1

3b2j+1

b−1∑

h=0

b−1∑

l=0

((
ϕid

b,h

)′ ( l

b
+ 0

))2

= A(j, k, id).

This means that A(j, k, σ) does not depend on the choice of the permutation σ. Now we
may use known results for the case σ = id. It has been shown in [3, Lemma 5] that

bn∑
N=1

ϕ
id,(2)
b

(
N

bj

)
= bn

(∫ 1

0

ϕ
id,(2)
b (x) dx +

b(b2 − 1)

36b2j

)

(we remark that
∫ 1

0
ϕ

id,(2)
b (x) dx = b4−1

90b
which follows from [3, Lemma 3]). Hence

A(j, k, σ)

2
=

A(j, k, id)

2
=

b(b2 − 1)

36b2j

and this finishes the proof. 2

Lemma 5 For any σ ∈ Sb we have

∫ 1

0

ϕσ
b (x) dx =

1

b

b−1∑

k=0

σ(k)k −
(

b− 1

2

)2

.

In particular
∫ 1

0
ϕσ

b (x) dx =
∫ 1

0
ϕσ−1

b (x) dx.

11



Proof. Using integration by parts and (3) we have

∫ 1

0

ϕσ
b (x) dx = xϕσ

b (x)
∣∣∣
1

0
−

∫ 1

0

x(ϕσ
b )′(x) dx = −

b−1∑

k=0

∫ k+1
b

k
b

x(ϕσ
b )′

(
k

b
+ 0

)
dx

= −
b−1∑

k=0

(ϕid
b )′

(
σ(k)

b
+ 0

)
2k + 1

2b2
.

From Eq. (5) we obtain

(
ϕid

b,h

)′
(x + 0) =

{
b− h if x ∈ [0, h/b],
−h if x ∈ [h/b, 1],

and therefore for any 0 ≤ l < b we have

(
ϕid

b

)′ ( l

b
+ 0

)
=

b−1∑

h=0

(ϕid
b,h)

′
(

l

b
+ 0

)

=
l∑

h=0

(−h) +
b−1∑

h=l+1

(b− h) =
b(b− 1− 2l)

2
. (13)

Therefore we have

∫ 1

0

ϕσ
b (x) dx = −

b−1∑

k=0

(b− 1− 2σ(k))(2k + 1)

4b
=

1

b

b−1∑

k=0

σ(k)k −
(

b− 1

2

)2

.

2

Lemma 6 We have σ ∈ A(τ) if and only if for all x ∈ [0, 1] we have ϕσ
b (x) = ϕσ

b (1− x).

Proof. Since ϕσ
b is continuous, piecewise linear and ϕσ

b (0) = ϕσ
b (1) = 0, we have ϕσ

b (x) =
ϕσ

b (1− x) if and only if (ϕσ
b )′(x) = −(ϕσ

b )′(1− x) for all x ∈ [0, 1]. Now if σ ∈ A(τ), i.e.,
σ(k) + σ(b− k − 1) = b− 1, we have with Eq. (13),

(ϕσ
b )′

(
k

b
+ 0

)
=

b(b− 1)

2
− bσ(k) =

b(b− 1)

2
− b(b− 1− σ(b− k − 1))

= −
(

b(b− 1)

2
− bσ(b− k − 1)

)
= −(ϕσ

b )′
(

1− k + 1

b
+ 0

)
.

This gives the desired property on the interval
[

k
b
, k+1

b

]
for (ϕσ

b )′ and vice versa. 2

4 The proof of Theorem 1 and Theorem 2

First we give a discrete version of Theorem Theorem 2.

Lemma 7 Let σ ∈ Sb and let σ := τ ◦σ. Let Σ ∈ {σ, σ}n and let l to denote the number
of components of Σ which are equal to σ. Then we have

1

b2n

bn∑

λ,N=1

E

(
λ

bn
,
N

bn
,HΣ

b,n

)
= (2l − n)Φσ

b (14)

12



and

1

b2n

bn∑

λ,N=1

(
E

(
λ

bn
,
N

bn
,HΣ

b,n

))2

= nΦ
σ,(2)
b + ((n− 2l)2 − n)(Φσ

b )2 +
1

36

(
1− 1

b2n

)
. (15)

Here Φσ
b := 1

b

∫ 1

0
ϕσ

b (x) dx and Φ
σ,(2)
b := 1

b

∫ 1

0
ϕ

σ,(2)
b (x) dx.

Proof. Let Σ = (σ0, . . . , σn−1) ∈ {σ, σ}n and define for 1 ≤ i ≤ n,

si :=

{
1 if σi−1 = σ,
0 if σi−1 = σ.

For Eq. (14) we use Lemma 1, Lemma 2, Lemma 3 with the definition of the si and
Eq. (6) from Lemma 4 (in that order) to obtain

1

b2n

bn∑

λ,N=1

E

(
λ

bn
,
N

bn
,HΣ

b,n

)
=

1

b2n

n∑
j=1

bn∑
N=1

bn∑

λ=1

ϕ
σj−1

b,εj

(
N

bj

)

=
1

bn+1

n∑
j=1

bn∑
N=1

ϕ
σj−1

b

(
N

bj

)

=
1

bn+1

n∑
j=1

(−1)sj

bn∑
N=1

ϕσ
b

(
N

bj

)

= Φσ
b

n∑
j=1

(−1)sj = (2l − n)Φσ
b .

Now we prove Eq. (15). Using Lemma 1 we have

1

b2n

bn∑

λ,N=1

(
E

(
λ

bn
,
N

bn
,HΣ

b,n

))2

=
1

b2n

bn∑

λ,N=1

n∑
i,j=1

ϕ
σi−1

b,εi

(
N

bi

)
ϕ

σj−1

b,εj

(
N

bj

)

=
1

b2n

n∑
i=1

bn∑
N=1

bn∑

λ=1

(
ϕ

σi−1

b,εi

(
N

bi

))2

+
1

b2n

n∑
i,j=1
i6=j

bn∑
N=1

bn∑

λ=1

ϕ
σi−1

b,εi

(
N

bi

)
ϕ

σj−1

b,εj

(
N

bj

)
.

By Lemma 2 we have

bn∑

λ=1

(
ϕ

σi−1

b,εi

(
N

bi

))2

= bn−1ϕ
σi−1,(2)
b

(
N

bi

)

and for i 6= j,

bn∑

λ=1

ϕ
σi−1

b,εi

(
N

bi

)
ϕ

σj−1

b,εj

(
N

bj

)
= bn−2ϕ

σi−1

b

(
N

bi

)
ϕ

σj−1

b

(
N

bj

)
.
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Therefore we obtain

1

b2n

bn∑

λ,N=1

(
E

(
λ

bn
,
N

bn
,HΣ

b,n

))2

=
1

b2n

n∑
i=1

bn∑
N=1

bn−1ϕ
σi−1,(2)
b

(
N

bi

)

+
1

b2n

n∑
i,j=1
i6=j

bn∑
N=1

bn−2ϕ
σi−1

b

(
N

bi

)
ϕ

σj−1

b

(
N

bj

)
.

From Lemma 3 we find that ϕ
σ,(2)
b = ϕ

σ,(2)
b and ϕσ

b = −ϕσ
b . Now we obtain

1

b2n

bn∑

λ,N=1

(
E

(
λ

bn
,
N

bn
,HΣ

b,n

))2

=
1

b2n

n∑
i=1

bn∑
N=1

bn−1ϕ
σ,(2)
b

(
N

bi

)

+
1

b2n

n∑
i,j=1
i6=j

(−1)si+sj

bn∑
N=1

bn−2ϕσ
b

(
N

bi

)
ϕσ

b

(
N

bj

)
.

Using Eq. (8) from Lemma 4 we obtain

n∑
i=1

bn∑
N=1

bn−1ϕ
σ,(2)
b

(
N

bi

)
= bn−1

n∑
i=1

bn

(∫ 1

0

ϕ
σ,(2)
b (x) dx +

b(b2 − 1)

36b2j

)

= b2nnΦ
σ,(2)
b + b2n

n∑
i=1

b2 − 1

36b2j
= b2nnΦ

σ,(2)
b +

b2n

36

(
1− 1

b2n

)
,

and, by Eq. (7) from Lemma 4 for i 6= j,

bn∑
N=1

ϕσ
b

(
N

bi

)
ϕσ

b

(
N

bj

)
= bn

(∫ 1

0

ϕσ
b (x) dx

)2

= bn+2(Φσ
b )2.

Hence

1

b2n

bn∑

λ,N=1

(
E

(
λ

bn
,
N

bn
,HΣ

b,n

))2

= nΦ
σ,(2)
b +

1

36

(
1− 1

b2n

)
+

n∑
i,j=1
i6=j

(−1)si+sj(Φσ
b )2.

Finally we note that
n∑

i,j=1
i6=j

(−1)si+sj = (
∑n

i=1(−1)si)
2 − n = (n− 2l)2 − n, from which the

result follows. 2

Now, we give the proof of Theorem 2. For the proof of Theorem 1 we add some
remarks subsequent this proof.
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Proof. We have

(L2(HΣ
b,n))2 =

∫ 1

0

∫ 1

0

(E(x, y,HΣ
b,n))2 dx dy

=

∫ 1

0

∫ 1

0

(
E(x(n), y(n),HΣ

b,n) + bn(x(n)y(n)− xy)
)2

dx dy

=
1

b2n

bn∑

λ,N=1

(
E

(
λ

bn
,
N

bn
,HΣ

b,n

))2

+2bn

bn∑

λ,N=1

∫ λ
bn

λ−1
bn

∫ N
bn

N−1
bn

E

(
λ

bn
,
N

bn
,HΣ

b,n

)(
λ

bn

N

bn
− xy

)
dx dy

+b2n

bn∑

λ,N=1

∫ λ
bn

λ−1
bn

∫ N
bn

N−1
bn

(
λ

bn

N

bn
− xy

)2

dx dy

=: Σ1 + Σ2 + Σ3.

From Eq. (15) of Lemma 7 we find that

Σ1 = nΦ
σ,(2)
b + ((n− 2l)2 − n)(Φσ

b )2 +
1

36

(
1− 1

b2n

)

and straightforward algebra shows that Σ3 = (1 + 18bn + 25b2n)/(72b2n). So it remains to
deal with Σ2. We have

Σ2 =
2

b3n

bn∑

λ,N=1

E

(
λ

bn
,
N

bn
,HΣ

b,n

)
λN

− 1

2b3n

bn∑

λ,N=1

E

(
λ

bn
,
N

bn
,HΣ

b,n

)
(2λ− 1)(2N − 1)

=
1

b3n

bn∑

λ,N=1

(λ + N)E

(
λ

bn
,
N

bn
,HΣ

b,n

)
− 1

2b3n

bn∑

λ,N=1

E

(
λ

bn
,
N

bn
,HΣ

b,n

)

=: Σ4 − Σ5.

From Eq. (14) of Lemma 7 we obtain Σ5 = (2l − n) Φσ
b /(2b

n) and for Σ4 we have

Σ4 =
1

b3n

bn∑

λ,N=1

λE

(
λ

bn
,
N

bn
,HΣ

b,n

)
+

1

b3n

bn∑

λ,N=1

NE

(
λ

bn
,
N

bn
,HΣ

b,n

)
=:

1

b3n
(Σ4,1 + Σ4,2).

Again let Σ = (σ0, . . . , σn−1) ∈ {σ, σ}n and, for 1 ≤ i ≤ n,

si :=

{
1 if σi−1 = σ
0 if σi−1 = σ.

Then we have

Σ4,2 =
n∑

i=1

bn∑
N=1

N

bn∑

λ=1

ϕ
σi−1

b,εi

(
N

bi

)
= bn−1

n∑
i=1

(−1)si

bn∑
N=1

Nϕσ
b

(
N

bi

)
,
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where we used Lemma 2. We have

bn∑
N=1

Nϕσ
b

(
N

bj

)
=

ϕσ
b

(
1
bj

)
+ ϕσ

b

(
2
bj

)
+ · · · + ϕσ

b

(
bn−2

bj

)
+ ϕσ

b

(
bn−1

bj

)
+ ϕσ

b

(
bn

bj

)
+ ϕσ

b

(
2
bj

)
+ · · · + ϕσ

b

(
bn−2

bj

)
+ ϕσ

b

(
bn−1

bj

)
+ ϕσ

b

(
bn

bj

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ ϕσ
b

(
bn−2

bj

)
+ ϕσ

b

(
bn−1

bj

)
+ ϕσ

b

(
bn

bj

)
+ ϕσ

b

(
bn−1

bj

)
+ ϕσ

b

(
bn

bj

)
+ ϕσ

b

(
bn

bj

)
.

Since ϕσ
b is 1-periodic and since σ ∈ A(τ) and hence, by Lemma 6, ϕσ

b (x) = ϕσ
b (1− x) for

x ∈ [0, 1], it follows that

bn∑
N=1

Nϕσ
b

(
N

bj

)
=

bn

2

bn∑
N=1

ϕσ
b

(
N

bj

)
=

b2n

2

∫ 1

0

ϕσ
b (x) dx =

b2n+1

2
Φσ

b .

This leads to

Σ4,2 = bn−1

n∑
i=1

(−1)si
b2n+1

2
Φσ

b =
b3n

2
Φσ

b

n∑
i=1

(−1)si =
b3n

2
(2l − n)Φσ

b .

It remains to compute Σ4,1. We have

HΣ
b,n

=

{(
σ0(a0)

b
+ · · ·+ σn−1(an−1)

bn
,
an−1

b
+ · · ·+ a0

bn

)
: a0, . . . , an−1 ∈ {0, . . . , b− 1}

}

=

{(
x0

b
+ · · ·+ xn−1

bn−1
,
σ−1

n−1(xn−1)

b
+ · · ·+ σ−1

0 (x0)

bn

)
: x0, . . . , xn−1 ∈ {0, . . . , b− 1}

}
,

with (σ0, . . . , σn−1) ∈ {σ, σ}n. Note that for σ ∈ A(τ) we also have σ−1 ∈ A(τ). Let
g : [0, 1]2 → [0, 1]2 be defined by g(x, y) = (y, x) and for Σ = (σ0, . . . , σn−1) define
Σ∗ = (σ−1

n−1, . . . , σ
−1
0 ) ∈ {σ−1, σ−1}n. Then we have found that HΣ

b,n = g
(HΣ∗

b,n

)
and

therefore we obtain

Σ4,1 =
bn∑

λ,N=1

λE

(
λ

bn
,
N

bn
,HΣ

b,n

)
=

bn∑

λ,N=1

λE

(
λ

bn
,
N

bn
, g

(HΣ∗
b,n

))

=
bn∑

λ,N=1

λE

(
N

bn
,

λ

bn
,HΣ∗

b,n

)
=

b3n

2
(2l − n)Φσ−1

b ,

where for the last equality we used the formula for Σ4,2 since the number of components
of Σ which are equal to σ is the same as the number of components of Σ∗ which are equal
to σ−1. By Lemma 5 we have Φσ−1

b = Φσ
b and hence Σ4,1 = b3n

2
(2l − n)Φσ

b . Together we
obtain Σ4 = (2l − n)Φσ

b .

Now we obtain the desired formula from
(
L2(HΣ

b,n)
)2

= Σ1 + Σ4 − Σ5 + Σ3. The
evaluation of this sum is a matter of straight forward calculations and hence we omit the
details. 2
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For the Proof of Theorem 1 we just remark that the only place in the proof of Theorem
2 where we used that σ ∈ A(τ) was in the exact evaluation of Σ4. However, it is easy
to see that for arbitrary permutations σ ∈ Sb we always have Σ4 = O(n) and hence the
result of Theorem 1 follows as well from the proof above.

5 Numerical Results

In view of Corollary 2 we search for permutations σ ∈ A(τ) giving the minimal L2

discrepancy for a fixed base b. In fact, we want to minimize the expression Φ
σ,(2)
b − (Φσ

b )2.

To this aim we use an alternative formula for Φ
σ,(2)
b that can be derived similarly as the

formula for Φσ
b given in Lemma 5.

Lemma 8 For any σ ∈ Sb we have

Φ
σ,(2)
b =

1− 6b2 + 9b3 − 4b4

18b2
+

b−1∑

k1,k2=0

max{σ−1(k1), σ
−1(k2)}

b3

(
b max{k1, k2} − k2

1 + k1 + k2
2 + k2

2

)
.

If in addition σ ∈ A(τ) then

Φ
σ,(2)
b =

1

2b3

(
2bS3(σ)− S2(σ)− (2b− 1)S1(σ)− b(6− 11b + 6b2 + 3b3 − 12b4 + 8b5)

18

)
,

where

S1(σ) =
b−1∑

k=0

kσ(k), S2(σ) =
b−1∑

k=0

k2σ(k)2,

S3(σ) =
b−1∑

k1,k2=0

max{k1, k2}max{σ(k1)σ(k2)}.

From the second formula we have that σ and σ−1 can be interchanged. Therefore for
σ ∈ A(τ) we can replace σ−1 by σ in the first formula for Φ

σ,(2)
b .

Using the alternative formulas from Lemma 5 and 8 we have performed a full search
over all permutations σ ∈ A(τ) for bases 4 ≤ b ≤ 23. Note that we improved the
best results known until now in all of these bases which were obtained for the identical
permutation (see (2) — the best value 0.03757 appeared in base 2). In particular the
minimal value occurs in base 22 (see Table 1).

Additionally we have performed a full search over all permutations σ ∈ A(τ) where
Φσ

b = 0 for bases b ≤ 17, b 6∈ {2, 3, 6, 7, 10, 14}, and tabulated those with the minimal L2

discrepancy (see Table 2 ).
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b
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b
Φ

σ,(2)
b

log b
num. value σ
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96 log(4)
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375 log(5)
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8 5
64 log(8)
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b = 0 (see Remark 2).
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[2] H. Chaix, and H. Faure: Discrépance et diaphonie en dimension un. Acta Arith. 63:
103–141, 1993.

[3] H. Faure and F. Pillichshammer: Lp discrepancy of generalized two-dimensional
Hammersley point sets. To appear in Monatsh. Math., 2008.

[4] J.H. Halton, and S.K. Zaremba: The extreme and the L2 discrepancies of some plane
sets. Monatsh. Math. 73: 316–328, 1969.

[5] P. Kritzer, and F. Pillichshammer: An exact formula for the L2 discrepancy of the
shifted Hammersley point set. Uniform Distribution Theory 1: 1–13, 2006.

[6] L. Kuipers, and H. Niederreiter: Uniform Distribution of Sequences. John Wiley,
New York, 1974.

[7] F. Pillichshammer: On the Lp-discrepancy of the Hammersley point set. Monatsh.
Math. 136: 67–79, 2002.

[8] K.F. Roth: On irregularities of distribution. Mathematika 1: 73–79, 1954.

[9] I.V. Vilenkin: Plane nets of Integration. Ž. Vyčisl. Mat. i Mat. Fiz. 7: 189–196, 1967.
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