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Abstract

Polynomial lattice point sets (PLPSs) (of rank 1) are special constructions of
finite point sets which may have outstanding equidistribution properties. Such point
sets are usually required as nodes in quasi-Monte Carlo rules. Any PLPS is a special
instance of a (t,m, s)-net in base b as introduced by Niederreiter.

In this paper we generalize PLPSs of rank 1 to what we call then PLPSs of rank r
and analyze their equidistribution properties in terms of the quality parameter t and
the (weighted) star discrepancy. We show the existence of PLPSs of “good” quality
with respect to these quality measures. In case of the (weighted) star discrepancy
such PLPSs can be constructed component-by-component wise. All results are for
PLPSs in prime power base b. Therefore, we also generalize results for PLPSs of
rank 1 that were only known for prime bases so far.

1 Introduction

Quasi-Monte Carlo rules for multivariate-integration are equal weight quadrature rules
which approximate the integral of a function over the unit-cube by the average of function
evaluations over a well-chosen deterministic point set. On first sight this approach looks
simple but the crux of this method is the choice of sample points. From the well-known
Koksma-Hlawka inequality it is known that point sets chosen from the unit-cube having
low star-discrepancy yield small integration errors, at least for functions with bounded
variation in the sense of Hardy and Krause (see [1, 2, 5, 12]). For a point set P =
{x0, . . . ,xN−1} consisting of N points in [0, 1)s, the star-discrepancy is defined by

D∗N(P) = sup
J

∣∣∣∣∣ 1

N

N−1∑
k=0

χJ(xk)− λs(J)

∣∣∣∣∣ ,
where the supremum is extended over all subintervals J of [0, 1)s of the form

∏s
i=1[0, αi),

χJ denotes the characteristic function of J , and λs(J) is the volume of J .
Currently the best constructions of finite point sets with low star-discrepancy are

based on the concept of (t,m, s)-nets in base b as introduced by Niederreiter [10] (see also
[1] or [12, Chapter 4] for a survey of this theory).
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Theory”. The first author is also supported by the Austrian Science Foundation (FWF), Project P21943-
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Definition 1 ((t,m, s)-nets). Let b ≥ 2, s ≥ 1 and 0 ≤ t ≤ m be integers. A point set P
consisting of bm points in [0, 1)s forms a (t,m, s)-net in base b, if every subinterval of the
form J =

∏s
i=1[aib

−di , (ai+1)b−di) of [0, 1)s, with integers di ≥ 0 and integers 0 ≤ ai < bdi

for 1 ≤ i ≤ s and of volume bt−m, contains exactly bt points of P .
A (t,m, s)-net in base b with t ≥ 1 is called a strict (t,m, s)-net in base b if it is

not a (t− 1,m, s)-net in base b. Furthermore, a (0,m, s)-net in base b is called strict by
definition.

Note that for any point set of bm points there always exists a t ∈ {0, . . . ,m} such that
it is a (t,m, s)-net in base b, e.g., we can always choose t = m. On the other hand, a net
with optimal quality parameter t = 0 can only exist if s ≤ b+ 1. With regard to this fact,
t is often called the quality parameter of the net. Smaller values of t imply lower values
for the star-discrepancy for nets. This is reflected in Niederreiter’s [10] bound

D∗N(P) = Os,b

(
bt

(logN)s−1

N

)
(1)

on the star-discrepancy of any (t,m, s)-net in base b, where N = bm. For explicit bounds
on the star-discrepancy of (t,m, s)-nets we refer to [1, 12].

Concrete constructions of (t,m, s)-nets are based on the digital construction scheme
as introduced by Niederreiter [10] which we recall in the following. To avoid too many
technical notions we restrict ourselves to digital nets defined over the finite field Fb of
prime power order b. For a more general definition (over arbitrary finite, commutative
rings) see for example [6, 7, 12].

From now on let b be a prime power and let Fb be the finite field of b elements. For
a positive integer r let Zr = {0, . . . , r − 1}. Let ϕ : Zb → Fb be a fixed bijection with
ϕ(0) = 0. For k = κ0 + κ1b+ · · ·+ κm−1b

m−1 with κ0, . . . , κm−1 ∈ Zb we define

k := (ϕ(κ0), . . . , ϕ(κm−1))
>. (2)

Here x> means the transpose of the vector x. (Later, the symbol > is used not only
for row vectors but also for any matrix. Hence in general, A> means the transpose of
a matrix A.) Furthermore, we often associate the integer k with the polynomial k(x) =
ϕ(κ0) + ϕ(κ1)x+ · · ·+ ϕ(κm−1)x

m−1 ∈ Fb[x] and vice versa.

Definition 2 (digital (t,m, s)-nets). Let s ≥ 1 and m ≥ 1 be integers. Let C1, . . . , Cs
be m×m matrices over Fb. Now we construct bm points in [0, 1)s: for 1 ≤ i ≤ s and for
k ∈ Zbm multiply the matrix Ci by the vector k, i.e.,

Cik =: (yi,1(k), . . . , yi,m(k))> ∈ Fmb ,

and set

xk,i :=
ϕ−1(yi,1(k))

b
+ · · ·+ ϕ−1(yi,m(k))

bm
.

If for some integer t with 0 ≤ t ≤ m the point set consisting of the points

xk = (xk,1, . . . , xk,s)
> for k ∈ Zbm ,

is a (t,m, s)-net in base b, then it is called a digital (t,m, s)-net over Fb, or, in brief, a
digital net (over Fb). The Ci are called its generator matrices.
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The quality parameter t of a digital net over Fb depends only on the choice of generating
matrices C1, . . . , Cs: let ρ = ρ(C1, . . . , Cs) be the largest integer such that for any choice
of d1, . . . , ds ∈ N0, with d1 + · · ·+ ds = ρ, the following holds:

the first d1 row vectors of C1 together with

the first d2 row vectors of C2 together with

...

the first ds row vectors of Cs,

(these are together ρ vectors in Fmb ) are linearly independent over the finite field Fb. We
call ρ the linear independence parameter of the matrices C1, . . . , Cs.

The point set constructed by the digital method with the m×m matrices C1, . . . , Cs
over a finite field Fb is then a strict (m − ρ,m, s)-net in base b, where ρ = ρ(C1, . . . , Cs)
is the linear independence parameter; see [12, Theorem 4.28] or [1, Theorem 4.52].

In [11] Niederreiter introduced a special family of digital (t,m, s)-nets over Fb. Those
nets are obtained from rational functions over finite fields. Since the construction of those
point sets has some similarities with the construction of ordinary lattice point sets, at
least for prime bases b, they are nowadays known under the name “polynomial lattice
point sets (PLPSs)” or, using a more general terminology, “polynomial lattice point sets
of rank 1”. PLPSs are very poplar node sets for quasi-Monte Carlo rules. Since their
introduction a lot of theory concerning distribution properties and efficiency for quasi-
Monte Carlo has been developed by a multitude of authors. For a recent overview we
refer to [1, Chapter 10] or to [14].

In this paper we introduce a generalization of Niederreiter’s construction which we
call “PLPSs of rank r”. The aim is then to develop some theory on PLPSs of rank r
which generalizes the existing theory for the rank 1 case. From these results we deduce
existence results and even constructions of point sets with good distribution properties
with respect to the quality parameter t or the (weighted) star-discrepancy. Thereby we
also generalize many known results from the rank 1 case in prime base b to the case of
prime power bases.

The paper is organized as follows: in Section 2 we introduce PLPSs of rank r over Fb
where b is a prime power and we characterize the dual net of such nets. For prime bases b
we show how this construction can be introduced independent from the theory of digital
nets. In Section 3 we introduce a figure of merit for PLPSs of rank r and show how this is
related to the quality parameter t. Based on this figure of merit we show the existence of
PLPSs of rank r with reasonable low t-value. In Section 4 we analyze the (weighted) star
discrepancy of PLPSs of rank r and we give a component-by-component construction of
PLPSs with reasonable low (weighted) star discrepancy.

More notation. For a prime power b let Fb((x−1)) be the field of formal Laurent series
over Fb. Elements of Fb((x−1)) are formal Laurent series of the form L =

∑∞
l=w tlx

−l,
where w is an arbitrary integer and all tl ∈ Fb. Note that Fb((x−1)) contains the field of
rational functions over Fb as a subfield. Further let Fb[x] be the set of all polynomials
over Fb. The discrete exponential valuation ν on Fb((x−1)) is defined by ν(L) = −w if
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L 6= 0 and w is the least index with tw 6= 0. For L = 0 we set ν(0) = −∞. Observe that
we have ν(p) = deg(p) for all nonzero polynomials p ∈ Fb[x].

For a polynomial f ∈ Fb[x] we will sometimes write f(x) to indicate that it is a
polynomial and similar for Laurent series L ∈ Fb((x−1)).

For a prime power b and m ∈ N we denote by Gb,m the subset of Fb[x] consisting of
all polynomials g with degree smaller than m, i.e.

Gb,m := {g ∈ Fb[x] : deg(g) < m},

where we use the convention deg(0) = −1. Furthermore we define G∗b,m = Gb,m \ {0}.
Obviously we have |Gb,m| = bm and |G∗b,m| = bm − 1.

2 Definition of PLPSs of rank r

In this section we introduce PLPSs of rank r and characterize their dual nets.

Definition 3. Let b be a prime power and let 1 ≤ r ≤ s be integers. For 1 ≤ i ≤ r let
qi = (qi,1, . . . , qi,s) ∈ Fb[x]s, fi ∈ Fb[x] with mi = deg(fi) and assume that

qi,j
fi

=
∞∑

k=wi,j

u
(i)
k,jx

−k ∈ Fb((x−1)).

Let m = m1 + · · ·+mr. For 1 ≤ j ≤ s define Cj ∈ Fm×mb by

Cj =


u
(1)
1,j u

(1)
2,j . . . u

(1)
m1,j

. . . u
(r)
1,j u

(r)
2,j . . . u

(r)
mr,j

u
(1)
2,j u

(1)
3,j . . . u

(1)
m1+1,j . . . u

(r)
2,j u

(r)
3,j . . . u

(r)
mr+1,j

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u
(1)
m,j u

(1)
m+1,j . . . u

(1)
m+m1−1,j . . . u

(r)
m,j u

(r)
m+1,j . . . u

(r)
m+mr−1,j

 ,

i.e., Cj = (Cj[k, `])
m
k,`=1 and Cj[k, `] = u

(i)
k+`−(m1+···+mi−1+1),j whenever m1+· · ·+mi−1+1 ≤

` ≤ m1 + · · ·+mi for 1 ≤ i ≤ r and 1 ≤ k ≤ m.
Then, C1, . . . , Cs are the generating matrices of a digital (t,m, s)-net over Fb. The

digital net obtained from the polynomials fi and qi = (qi,1, . . . , qi,s) ∈ Fb[x]s for 1 ≤
i ≤ r, without explicitly specifying the involved bijection ϕ : Zb → Fb, is denoted by
P((qi, fi)

r
i=1). We call P((qi, fi)

r
i=1) a PLPS of rank r (or short again PLPS) and a

quasi-Monte Carlo rule using it is called a polynomial lattice rule (of rank r).

Remark 4. 1. If we set r = 1 in the above definition then we obtain Niederreiter’s
definition of PLPSs from [11].

2. More general PLPSs of rank r, so-called polynomial integration lattices, can and
have been introduced independently of net theory. See [8] for b = 2 and [9] for
arbitrary base b. In [9, Section 5] it is shown how this notion can be interpreted as
digital net at least for prime bases b.

For prime bases b there is an equivalent but more concise definition of PLPSs of rank
r which makes the connection to ordinary lattice point sets obvious.
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Let us for a moment assume that b is a prime. In this case we can identify Zb and Fb
and choose the involved bijection ϕ to be the identity. For m ∈ N let vm be the map from
Zb((x−1)) to the interval [0, 1) defined by

vm

(
∞∑
l=w

tlx
−l

)
=

m∑
l=max(1,w)

tlb
−l.

Proposition 5. Let b be a prime. Then we have that

P((qi, fi)
r
i=1) = vm

({
h1q1
f1

+ · · ·+ hrqr
fr

: hi ∈ Zb[x]/(fi) for all 1 ≤ i ≤ r

})
.

Proof: Assume that P((qi, fi)
r
i=1) = {x0, . . . ,xbm−1}. Let hi = h

(i)
0 + h

(i)
1 x + · · · +

h
(i)
mi−1x

mi−1 for 1 ≤ i ≤ r, then for 1 ≤ j ≤ s we have

vm

(
r∑
i=1

hi(x)qi,j(x)

fi(x)

)
= vm

 r∑
i=1

 ∞∑
l=wi,j

u
(i)
l,jx
−l

(mi−1∑
k=0

h
(i)
k x

k

)
= vm

 r∑
i=1

∞∑
l=wi,j

mi−1∑
k=0

u
(i)
l,jh

(i)
k x
−(l−k)


= vm

 r∑
i=1

∞∑
t=wi,j−mi+1

1

xt

mi−1∑
k=0

u
(i)
t+k,jh

(i)
k


= vm

 ∞∑
t=mini(wi,j−mi+1)

1

xt

r∑
i=1

mi−1∑
k=0

u
(i)
t+k,jh

(i)
k


=

m∑
t=1

b−t
r∑
i=1

mi−1∑
k=0

u
(i)
t+k,jh

(i)
k ,

where
∑r

i=1

∑mi−1
k=0 u

(i)
t+k,jh

(i)
k is evaluated in Zb. We have

mi−1∑
k=0

u
(i)
t+k,jh

(i)
k = (u

(i)
t,j , . . . u

(i)
t+mi−1,j) · hi,

where hi = (h
(i)
0 , . . . h

(i)
mi−1)

> ∈ Zmi
b . From this we get

vm

(
h1(x)q1(x)

f1(x)
+ · · ·+ hr(x)qr(x)

fr(x)

)
= xh,

with h = h
(1)
0 + · · ·+ h

(1)
m1−1b

m1−1 + · · ·+ h
(r)
0 bm1+···mr−1 + · · ·+ h

(r)
mr−1b

m1+···+mr−1 in b-adic
representation. 2

Now we return to the general case. From now on let b be a prime power again. The
following lemma for the case r = 1 was shown by Niederreiter in [11, Proof of Lemma 2].
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Lemma 6. Let b be a prime power and let C1, . . . , Cs be the generating matrices of a
PLPS P((qi, fi)

r
i=1) as given in Definition 3. Then for k = (k1, . . . , ks) ∈ Zsbm we have

that
C>1 k1 + · · ·C>s ks = 0 (3)

where 0 is the zero vector in Fmb and ki as in (2), if and only if

k(x) · qi(x) ≡ 0 (mod fi(x)) for all 1 ≤ i ≤ r,

where in the last expression k(x) = (k1(x), . . . , ks(x)) is the vector of polynomials associ-
ated with k = (k1, . . . , ks).

Proof: For 1 ≤ j ≤ s and 1 ≤ i ≤ r assume that
qi,j
fi

=
∑∞

l=wi,j
u
(i)
l,jx
−l ∈ Fb((x−1)). For

kj = κ0,j + κ1,jb+ · · ·+ κm−1,jb
m−1 we then have

kj(x)qi,j(x)

fi(x)
=

(
m−1∑
h=0

ϕ(κh,j)x
h

) ∞∑
l=wi,j

u
(i)
l,jx
−l


=

m−1∑
h=0

ϕ(κh,j)
∞∑

l=wi,j

u
(i)
l,jx

h−l

=
m−1∑
h=0

ϕ(κh,j)
∞∑

l=wi,j−h

u
(i)
l+h,jx

−l

and hence, for l ∈ N, the coefficient of x−l in
kj(x)qi,j(x)

fi(x)
is
∑m−1

h=0 ϕ(κh,j)u
(i)
l+h,j. Summing

up, we obtain that for l ∈ N the coefficient of x−l in k(x)·qi(x)
fi(x)

is given by

s∑
j=1

m−1∑
h=0

ϕ(κh,j)u
(i)
l+h,j.

However condition (3) is equivalent to

s∑
j=1

m−1∑
h=0

ϕ(κh,j)u
(i)
l+h,j = 0 ∈ Fb

for all 1 ≤ i ≤ r and all 1 ≤ l ≤ mi. Therefore we obtain for any 1 ≤ i ≤ r

k(x) · qi(x)

fi(x)
= gi(x) + Li(x)

for some gi(x) ∈ Fb[x] and Li(x) ∈ Fb((x−1)) of the form
∑∞

k=mi+1 αkx
−k, i.e. for the

discrete exponential valuation of Li(x) we have ν(Li) < −mi. Equivalently, we have

k(x) · qi(x)− gi(x)fi(x) = Li(x)fi(x).

On the left hand side, we have a polynomial over Fb, whereas on the right hand side
we have a Laurent series Li(x)fi(x) with ν(Li(x)fi(x)) < 0 since deg(fi(x)) = mi. This
is only possible if Li(x)fi(x) = 0 which means that k(x) · qi(x) − gi(x)fi(x) = 0 or
equivalently k(x) · qi(x) ≡ 0 (mod fi(x)). 2

Now Lemma 6 motivates the following definition:
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Definition 7. The dual net of a PLPS P((qi, fi)
r
i=1) with fi ∈ Fb[x], deg(fi) = mi and

qi ∈ Fb[x]s is given by

D((qi, fi)
r
i=1) := {k ∈ Gs

b,m : k · qi ≡ 0 (mod fi) for all 1 ≤ i ≤ r}.

Furthermore, let D((qi, fi)
r
i=1)

′ := D((qi, fi)
r
i=1) \ {0}.

3 The quality parameter of PLPSs

For the determination of the quality parameter of PLPSs it is convenient to introduce the
following figure of merit:

Definition 8. The figure of merit ρ((qi, fi)
r
i=1) is defined as

ρ((qi, fi)
r
i=1) := s− 1 + min

s∑
j=1

deg(hj),

where the minimum is extended over all (h1, . . . , hs) ∈ D((qi, fi)
r
i=1)

′.

Theorem 9. The PLPS P((qi, fi)
r
i=1) is a strict (t,m, s)-net over Fb with t = m −

ρ((qi, fi)
r
i=1).

Proof: It suffices to show that we have ρ(C1, . . . , Cs) = ρ((qi, fi)
r
i=1), where ρ(C1, . . . , Cs)

is the linear independence parameter. Let ϕ : {0, . . . , b − 1} → Fb with ϕ(0) = 0 be the
bijection used in the construction of the digital net P((qi, fi)

r
i=1).

According to the definition of ρ(C1, . . . , Cs) there are d1, . . . , ds ∈ N0 with d1+· · ·+ds =
ρ(C1, . . . , Cs) + 1 such that the system consisting of the union of the first dj row vectors

c
(j)
1 , . . . c

(j)
dj

of the matrix Cj, where j = 1, . . . , s, is linearly dependent over Fb. That is,
there exist κj,h ∈ Zb for 0 ≤ h < dj, 1 ≤ j ≤ s, not all zero, such that

s∑
j=1

dj−1∑
h=0

ϕ(κj,h)c
(j)
h+1 = 0 ∈ Fmb .

Putting κj,h = 0 for dj ≤ h ≤ m− 1, 1 ≤ j ≤ s, and kj = κj,0 + κj,1b + · · · + κj,m−1b
m−1

and correspondingly kj = (ϕ(κj,0), . . . , ϕ(κj,m−1))
> ∈ (Fmb )> for 1 ≤ j ≤ s we obtain

C>1 k1 + · · ·+ C>s ks = 0.

By Lemma 6 this is equivalent to k · qi ≡ 0 (mod fi), 1 ≤ i ≤ r, for k = (k1, . . . , ks) ∈
Fb[x]s \ {0}, where kj(x) = ϕ(κj,0) + ϕ(κj,1)x+ · · ·+ ϕ(κj,m−1)x

m−1 ∈ Fb[x]. Hence from
the definition of ρ((qi, fi)

r
i=1) we obtain

ρ((qi, fi)
r
i=1) = s− 1 + min

s∑
j=1

deg(hj) ≤ s− 1 +
s∑
j=1

deg(kj)

≤ s− 1 +
s∑
j=1

(dj − 1) = ρ(C1, . . . , Cs).
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On the other hand, from the definition of ρ((qi, fi)
r
i=1) we find that there exists a

nonzero k = (k1, . . . , ks) ∈ Gs
b,m for all 1 ≤ j ≤ s and k · qi ≡ 0 (mod fi) such that

ρ((qi, fi)
r
i=1) = s−1+

∑s
j=1 deg(kj). Again from Lemma 6 we obtain C>1 k1+· · ·+C>s ks =

0, where the vector kj over Fb is determined by the coefficients of the polynomials kj for
1 ≤ j ≤ s. For 1 ≤ j ≤ s let dj = deg(kj) + 1. Then the system consisting of the union of
the first dj row vectors of Cj, where j = 1, . . . , s, is linearly dependent over Fb and hence

ρ(C1, . . . , Cs) ≤ −1 +
s∑
j=1

dj = −1 +
s∑
j=1

(deg(kj) + 1) = s− 1 +
s∑
j=1

deg(kj)

= s− 1 + min
s∑
j=1

deg(hj) = ρ((qi, fi)
r
i=1).

2

Remark 10. Let qi = (qi,1, . . . , qi,s) ∈ Fb[x]s with gcd(qi,1, fi) = 1. Then the condition
k ·qi = k1qi,1 + · · ·+ksqi,s ≡ 0 (mod fi) in Definition 8 of the figure of merit ρ((qi, fi)

r
i=1)

is equivalent to k1 +k2q
∗
i,1qi,2 + · · ·+ksq

∗
i,1qi,s ≡ 0 (mod fi), where q∗i,1 ∈ Fb[x] is such that

q∗i,1qi,1 ≡ 1 (mod fi) (q∗i,1 always exists as long as gcd(qi,1, fi) = 1). Therefore the figure
of merit is the same for qi and for (1, q∗i,1qi,2, . . . , q

∗
i,1qi,s) and hence it suffices to consider

the figure of merit for vectors qi of the form qi = (1, qi,2, . . . , qi,s) ∈ Fb[x]s only.
We will also consider vectors qi of the special form qi = (1, qi, q

2
i , . . . , q

s−1
i ) (mod fi).

Such vectors are called Korobov vectors.

Lemma 11. For a prime power b, s ∈ N, ρ ∈ Z, the number of (h1, . . . , hs) ∈ Fb[x]s with
(h1, . . . , hs) 6= (0, . . . , 0) and

∑s
j=1 deg(hj) ≤ ρ equals

∆b(s, ρ) :=
s−1∑
d=0

(
s

d

)
(b− 1)s−d

ρ+d∑
γ=0

(
s− d+ γ − 1

γ

)
bγ.

Proof: The result follows from [1, Lemma 10.14]. 2

Theorem 12. Let b be a prime power, let ρ ∈ Z, r,m, s ∈ N, s ≥ 2, r ≤ s and let
fi ∈ Fb[x], 1 ≤ i ≤ r, be irreducible and mutually relatively prime with deg(fi) = mi,
m1 + · · ·+mr = m.

1. If ∑
u({1,...,r}

∆b

(
s, ρ−

∑
i∈u

mi

)∏
i∈u

bmi < bm,

then there exist qi = (1, qi,2, . . . , qi,s) ∈ Gs
b,mi

, 1 ≤ i ≤ r, with ρ((qi, fi)
r
i=1) ≥

s + ρ. Therefore the point set P((qi, fi)
r
i=1) is a digital (t,m, s)-net over Fb with

t ≤ m− s− ρ.

2. If ∑
u({1,...,r}

∆b

(
s, ρ−

∑
i∈u

mi

)
(s− 1)r−|u|

∏
i∈u

bmi < bm,
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then there exist qi ∈ Gb,mi
such that qi = (1, qi, q

2
i , . . . , q

s−1
i ) (mod fi), 1 ≤ i ≤ r,

satisfy ρ((qi, fi)
r
i=1) ≥ s + ρ. Therefore the point set P((qi, fi)

r
i=1) is a digital

(t,m, s)-net over Fb with t ≤ m− s− ρ.

Proof: 1. Since t ∈ {0, . . . ,m} we can assume that −s ≤ ρ ≤ m− s. Let

M(s, ρ) :=

{
(h1, . . . , hs) ∈ Fb[x]s : (h1, . . . , hs) 6= (0, . . . , 0),

s∑
j=1

deg(hj) ≤ ρ

}
.

For given (h1, . . . , hs) ∈ M(s, ρ) we consider the number of solutions (q1, . . . , qr), qi =
(1, qi,2, . . . , qi,s) ∈ Gs

b,mi
, of the congruence system

h1 + h2qi,2 + · · ·+ hsqi,s ≡ 0 (mod fi), 1 ≤ i ≤ r.

Therefore we split the set M(s, ρ) as follows:

M(s, ρ) =
⋃

u({1,...,r}

{(h1, . . . , hs) ∈M(s, ρ) : h1 ≡ h2 ≡ · · · ≡ hs ≡ 0 (mod fi) iff i ∈ u}

=:
⋃

u({1,...,r}

M(s, ρ, u).

(If u = {1, . . . , r}, then for each 1 ≤ j ≤ s we have hj ≡ 0 (mod f1 · · · fr). Since not all
hj’s are equal to zero it follows then that

∑s
j=1 deg(hj) ≥ m− s+ 1. As we assumed that

ρ ≤ m − s we find that the case u = {1, . . . , r} can be neglected.) Since f1, . . . , fr are
mutually relative prime each (h1, . . . , hs) ∈ M(s, ρ, u) is of the form (a1, . . . , as)

∏
i∈u fi

and hence

|M(s, ρ, u)|

≤

∣∣∣∣∣
{

(a1, . . . , as) ∈ Fb[x]s : (a1, . . . , as) 6= (0, . . . , 0),
s∑
j=1

(
deg(aj) + χ(aj 6=0)

∑
i∈u

mi

)
≤ ρ

}∣∣∣∣∣
≤

∣∣∣∣∣
{

(a1, . . . , as) ∈ Fb[x]s : (a1, . . . , as) 6= (0, . . . , 0),
s∑
j=1

deg(aj) ≤ ρ−
∑
i∈u

mi

}∣∣∣∣∣
= ∆b

(
s, ρ−

∑
i∈u

mi

)
.

For each (h1, . . . , hs) ∈M(s, ρ, u) the system

h1 + h2qi,2 + · · ·+ hsqi,s ≡ 0 (mod fi), 1 ≤ i ≤ r,

has at most
∏

i∈u b
mi(s−1)

∏
i/∈u b

mi(s−2) = bm(s−2)∏
i∈u b

mi solutions (q1, . . . , qr). Therefore
to all nonzero (h1, . . . , hs) ∈ Fb[x]s with

∑s
j=1 deg(hj) ≤ ρ there are assigned at most

bm(s−2)
∑

u({1,...,r}

∆b

(
s, ρ−

∑
i∈u

mi

)∏
i∈u

bmi

9



different solutions (q1, . . . , qr), qi = (1, qi,2, . . . , qi,s) ∈ Gs
b,mi

, satisfying the above congru-

ence system. Now the total number of (q1, . . . , qr) under consideration equals
∏r

i=1 b
mi(s−1) =

bm(s−1). Thus, if

bm(s−2)
∑

u({1,...,r}

∆b

(
s, ρ−

∑
i∈u

mi

)∏
i∈u

bmi < bm(s−1),

that is, if ∑
u({1,...,r}

∆b

(
s, ρ−

∑
i∈u

mi

)∏
i∈u

bmi < bm,

then there exists at least one (q1, . . . , qr), qi = (1, qi,2, . . . , qi,s) ∈ Gs
b,mi

such that for all
nonzero (h1, . . . , hs) ∈ Fb[x]s with

∑s
j=1 deg(hj) ≤ ρ we have

h1 + h2qi,2 + · · ·+ hsqi,s 6≡ 0 (mod fi)

for at least one 1 ≤ i ≤ r. For this (q1, . . . , qr) we have then ρ((qi, fi)
r
i=1) ≥ s+ ρ. Hence

the point set P((qi, fi)
r
i=1) is a digital (t,m, s)-net over Fb with t ≤ m− s− ρ.

2. We proceed as above, but we note that for (h1, . . . , hs) ∈M(s, ρ, u) the system

h1 + h2qi + · · ·+ hsq
s−1
i ≡ 0 (mod fi), 1 ≤ i ≤ r,

has at most
∏

i∈u b
mi
∏

i/∈u(s− 1) = (s− 1)r−|u|
∏

i∈u b
mi solutions. 2

Lemma 13. For a prime power b, s ∈ N, m ∈ N0, ρ ∈ Z we have that

∆b(s, ρ−m)bm ≤ ∆b(s, ρ).

Proof: The case m = 0 is trivially fulfilled. It is enough to show that

∆b(s, ρ− (m+ 1))b ≤ ∆b(s, ρ−m).

This however follows easily from the definition of ∆b. 2

The following corollary recovers [1, Corollary 10.15] which is obtained for the choice
r = 1.

Corollary 14. Let b be a prime power and let s,m, r ∈ N, s ≥ 2, r ≤ s and let fi ∈
Fb[x], 1 ≤ i ≤ r, be irreducible and mutually relatively prime with deg(fi) = mi, m1 +
· · ·+mr = m, and m sufficiently large.

1. There exist qi = (1, qi,2, . . . , qi,s) ∈ Gs
b,mi

, 1 ≤ i ≤ r, with

ρ((qi, fi)
r
i=1) ≥

⌊
m− (s− 1)(logbm− 1) + logb

(s− 1)!

(b− 1)s−1(2r − 1)

⌋
.

2. There exist qi ∈ Gb,mi
, such that qi = (1, qi, q

2
i , . . . , q

s−1
i ) (mod fi), 1 ≤ i ≤ r,

satisfy

ρ((qi, fi)
r
i=1) ≥

⌊
m− (s− 1)(logbm− 1) + logb

(s− 1)!

(b− 1)s−1(sr − 1)

⌋
.

10



Proof:

1. For ρ ≥ 1 we have with Lemma 13 that∑
u({1,...,r}

∆b

(
s, ρ−

∑
i∈u

mi

)∏
i∈u

bmi ≤ (2r − 1)∆b(s, ρ)

≤ (2r − 1)
s−1∑
d=0

(
s

d

)
(b− 1)s−d

(
ρ+ s− 1

s− d− 1

)
bρ+d+1

b− 1

≤ (2r − 1)bρ+1

s−1∑
d=0

(
s

d

)
(b− 1)s−d−1

(ρ+ s− 1)s−d−1

(s− d− 1)!
bd

= (2r − 1)
ρs−1

(s− 1)!
bρ+1(b− 1)s−1

(
1 +Os

(
1

ρ

))
,

where Os indicates that the implied constant depends only on s. Now let

ρ =

⌊
m− (s− 1) logbm+ logb

(s− 1)!

(b− 1)s−1(2r − 1)
− 1

⌋
,

which is in N for sufficiently large m. Then∑
u({1,...,r}

∆b

(
s, ρ−

∑
i∈u

mi

)∏
i∈u

bmi

≤ (2r − 1)

(
m− (s− 1) logbm+ logb

(s− 1)!

(b− 1)s−1(2r − 1)

)s−1
bm(s− 1)!

ms−1(b− 1)s−1(2r − 1)

× (b− 1)s−1

(s− 1)!

(
1 +Os

(
1

m

))
= bm

(
1− (s− 1)

logbm

m
+

1

m
logb

(s− 1)!

(b− 1)s−1(2r − 1)

)s−1(
1 +Os

(
1

m

))
< bm

for sufficiently large m and the result follows from the first part of Theorem 12.

2. From Lemma 13 we get that∑
u({1,...,r}

∆b

(
s, ρ−

∑
i∈u

mi

)
(s− 1)r−|u|

∏
i∈u

bmi ≤ ∆b(s, ρ)
∑

u({1,...,r}

(s− 1)r−|u|

= ∆b(s, ρ)(sr − 1).

The second assertion is now deduced in almost the same way from the second part
of Theorem 12, one has simply to replace the term (2r − 1) by (sr − 1).

2

If we combine Corollary 14 with Theorem 12 and with Niederreiter’s discrepancy
bound for (t,m, s)-nets stated in (1) we obtain the existence of PLPSs P((qi, fi)

r
i=1)

whose star-discrepancy is of order

D∗bm(P((qi, fi)
r
i=1)) = Os,b(m

2s−2b−m).

This result can be improved with a more direct analysis of the star-discrepancy of PLPSs
which is the topic of the following section.

11



4 The star-discrepancy of PLPSs

In this section we deal with the classical star-discrepancy as well as the weighted star-
discrepancy of PLPSs P((qi, fi)

r
i=1). Before we state any results we recall the definition

of the weighted star-discrepancy.
The weighted star-discrepancy was introduced by Sloan and Woźniakowski [18] with

the aim to provide a “weighted“ version of the Koksma-Hlawka inequality which takes
imbalances in the importance of the projections of integrands into account. For more
information we refer to [1, 13, 18]. We consider weights of product form which are inde-
pendent of the dimension s. Let γ = (γi)i≥1 be a sequence of nonnegative real numbers
and let [s] := {1, . . . , s}. Then for ∅ 6= u ⊆ [s] the weight γu is given by γu =

∏
i∈u γi.

For ∅ 6= u ⊆ [s], let |u| denote the cardinality of u, and for a vector z ∈ [0, 1]s or
a subset J ⊆ [0, 1]s let z(u) or J(u) denote the projection onto [0, 1]|u| consisting of the
components whose indices are contained in u. Hence z(u) ∈ [0, 1]|u| and J(u) ⊆ [0, 1]|u|.

Definition 15. For a point set P of N points x0, . . . ,xN−1 in [0, 1)s and given weights
γ = (γi)i≥1, the weighted star-discrepancy is defined by

D∗N,γ(P) = sup
J

max
∅6=u⊆[s]

γu

∣∣∣∣∣ 1

N

N−1∑
k=0

χJ(u)(xk(u))− λ|u|(J(u))

∣∣∣∣∣ ,
where the supremum is extended over all subintervals J of [0, 1)s of the form

∏s
i=1[0, αi).

We will give now an upper bound on the (weighted) star-discrepancy of a PLPS

P((qi, fi)
r
i=1). The quantities Rb and R̃b,γ defined in the following are useful to obtain

such a bound as they capture the essential part of the (weighted) star-discrepancy.
For fi ∈ Fb[x], deg(fi) = mi,m1 + · · ·+mr = m, and qi ∈ Fb[x]s, 1 ≤ i ≤ r, define

Rb((qi, fi)
r
i=1) :=

∑
h∈D((qi,fi)ri=1)

′

rb(h),

where for h = (h1, . . . hs) we write rb(h) := rb(h1) · · · rb(hs) and for h ∈ Gb,m,

rb(h) :=

{
1 if h = 0,
C
ba+1 if h = κ0 + κ1x+ · · ·+ κax

a, κa 6= 0,

with C := 1 + max
1≤x<b

max
1≤y<b

∣∣∣∑y−1
a=0

∏`
i=1 exp

(
2πi (πi◦ψ◦ϕ)(x)(πi◦ψ◦ϕ)(a)

p

)∣∣∣, where ϕ : Zb → Fb is

a fixed bijection, ψ is the isomorphism of additive groups ψ : Fb → Z`p if b = p`, and define
η := ψ ◦ϕ. For 1 ≤ i ≤ ` we denote by πi the projection πi : Z`p → Zp, πi(x1, . . . , x`) = xi.
(Note that C = C(b) ≤ b.)

Zb
ϕ //

η ��

Fb
ψ
��

Z`p
πi // Zp

Furthermore we define

R̃b,γ((qi, fi)
r
i=1) :=

∑
h∈D((qi,fi)ri=1)

′

rb(h,γ),

12



where for h = (h1, . . . , hs) we write rb(h,γ) := rb(h1, γ1) · · · rb(hs, γs) and for h ∈ Gb,m

and γ ≥ 0,

rb(h, γ) :=

{
1 + γ if h = 0,

γrb(h) if h 6= 0,

where rb(h) as above.

In Appendix A (see Proposition 28) it is shown that Rb((qi, fi)
r
i=1) and R̃b,γ((qi, fi)

r
i=1)

can be computed in O(bms) operations.
Now we are ready to give an upper bound on the (weighted) star-discrepancy in terms

of Rb and R̃b,γ , respectively.

Proposition 16. Let b be a prime power and let γ = (γi)i≥1 a sequence of weights. For
the (weighted) star-discrepancy of the PLPS P((qi, fi)

r
i=1) we have

1. D∗bm(P((qi, fi)
r
i=1)) ≤ 1−

(
1− 1

bm

)s
+ 2Rb((qi, fi)

r
i=1) ≤

s

bm
+ 2Rb((qi, fi)

r
i=1),

2. D∗bm,γ(P((qi, fi)
r
i=1)) ≤

∑
∅6=u⊆[s]

γu

(
1−

(
1− 1

bm

)|u|)
+ 2R̃b,γ((qi, fi)

r
i=1).

Proof:

1. This estimate follows from [3, Theorem 1] in combination with [16, Lemma 2.5] and
Lemma 6.

2. This estimate follows from

D∗N,γ(P) ≤ max
∅6=u⊆[s]

γuD
∗
N(P(u)) ≤

∑
∅6=u⊆[s]

γuD
∗
N(P(u)),

where P(u) in [0, 1)|u| consists of the points xn(u) whenever P((qi, fi)
r
i=1) consists

of xn for 0 ≤ n < bm and the fact that

R̃b,γ((qi, fi)
r
i=1) =

∑
∅6=u⊆[s]

γuRb((qi(u), fi)
r
i=1). (4)

The proof of (4) follows exactly along the lines of the proof of [1, Lemma 5.42].

2

Remark 17. Note that
∑
∅6=u⊆[s] γu

(
1−

(
1− 1

bm

)|u|)
= Oγ,s(b

−m). If
∑

j≥1 γj <∞, then∑
∅6=u⊆[s] γu

(
1−

(
1− 1

bm

)|u|) ≤ max(1,Γ)b−m exp(
∑

j≥1 γj), where Γ :=
∑

j≥1 γj/(1+γj).

See [1, Lemma 5.41].

The following lemma will be useful for our subsequent investigations. The proof of
this result is straight forward (cf. [1, Lemma 10.22]).
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Lemma 18. For any prime power b and γ = (γi)i≥i a sequence of weights, we have∑
h∈Gs

b,m

rb(h) =

(
1 +

mC(b− 1)

b

)s
and ∑

h∈Gs
b,m

rb(h,γ) =
s∏
i=1

(
1 + γi

(
1 +

mC(b− 1)

b

))
.

Existence results. We show that for given f1, . . . , fr, there always exists at least one
vector (q1, . . . , qr) such that P((qi, fi)

r
i=1) has appropriate (weighted) star-discrepancy.

The bound on the average in the subsequent theorem serves as a benchmark for construc-
tions of PLPSs with low (weighted) star-discrepancy.

Theorem 19. Let b be a prime power, γ = (γi)i≥1 a sequence of weights, s,m, r ∈ N,
r ≤ s, and let fi ∈ Fb[x], 1 ≤ i ≤ r, be irreducible and mutually relatively prime with
deg(fi) = mi, m1 + · · ·+mr = m. Then we have

1∏r
i=1 |G∗b,mi

|s
∑

qi∈(G∗b,mi
)s

1≤i≤r

Rb((qi, fi)
r
i=1) ≤

2r − 1∏r
i=1(b

mi − 1)

((
1 +

mC(b− 1)

b

)s
− 1

)

and

1∏r
i=1 |G∗b,mi

|s
∑

qi∈(G∗b,mi
)s

1≤i≤r

R̃b,γ((qi, fi)
r
i=1)

≤ 2r − 1∏r
i=1(b

mi − 1)

[
s∏
j=1

(
1 + γj

(
1 +

mC(b− 1)

b

))
−

s∏
j=1

(1 + γj)

]
.

Proof: First observe that |G∗b,mi
| = bmi − 1. We have

1∏r
i=1 |G∗b,mi

|s
∑

qi∈(G∗b,mi
)s

1≤i≤r

Rb((qi, fi)
r
i=1)

=
1∏r

i=1(b
mi − 1)s

∑
qi∈(G∗b,mi

)s

1≤i≤r

∑
h∈D((qi,fi)ri=1)

′

rb(h)

=
1∏r

i=1(b
mi − 1)s

∑
h∈Gs

b,m\{0}

rb(h)
∑

qi∈(G∗b,mi
)s

h∈D((qi,fi)
r
i=1

)

1,

where we used the definition of Rb((qi, fi)
r
i=1) and changed the order of summation.

The last summation is extended over all qi ∈ (G∗b,mi
)s for 1 ≤ i ≤ r, for which h ∈

D((qi, fi)
r
i=1)

′. Hence for a fixed h ∈ Gs
b,m \ {0} we have∑

qi∈(G∗b,mi
)s

h∈D((qi,fi)
r
i=1

)

1 = |{(q1, . . . , qr) : qi ∈ (G∗b,mi
)s, h · qi ≡ 0 (mod fi)}|
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=
r∏
i=1

|
{
q ∈ (G∗b,mi

)s : h · q ≡ 0 (mod fi)
}
|.

Now for a given h = (h1, . . . , hs) ∈ Gs
b,m\{0} the number of solutions qi = (qi,1, . . . , qi,s) ∈

(G∗b,mi
)s of

h1qi,1 + h2qi,2 + · · ·+ hsqi,s ≡ 0 (mod fi)

equals (note that fj is assumed to be irreducible)
0 if hj 6≡ 0 (mod fi) for exactly one j and hk ≡ 0 (mod fi)∀k 6= j,

(bmi − 1)s if h1 ≡ h2 ≡ · · · ≡ hs ≡ 0 (mod fi),

≤ (bmi − 1)s−1 else.

Now we have

1∏r
i=1 |G∗b,mi

|s
∑

qi∈(G∗b,mi
)s

1≤i≤r

Rb((qi, fi)
r
i=1)

=
1∏r

i=1(b
mi − 1)s

∑
h∈Gs

b,m\{0}

rb(h)
r∏
i=1

|
{
q ∈ (G∗b,mi

)s : h · q ≡ 0 (mod fi)
}
|

≤ 1∏r
i=1(b

mi − 1)s

∑
u({1,...,r}

∑
h∈Gs

b,m\{0}
h≡0 (mod fi)∀i∈u
h 6≡0 (mod fi)∀i/∈u

rb(h)
∏
i∈u

(bmi − 1)s
∏
i/∈u

(bmi − 1)s−1

=
1∏r

i=1(b
mi − 1)

∑
u({1,...,r}

∑
h∈Gs

b,m\{0}
h≡0 (mod fi)∀i∈u
h 6≡0 (mod fi)∀i/∈u

rb(h)
∏
i∈u

(bmi − 1)

≤ 1∏r
i=1(b

mi − 1)

∑
u({1,...,r}

∏
i∈u

(bmi − 1)
∑

h∈Gs
b,m\{0}

h≡0 (mod fi)∀i∈u

rb(h),

(note that u 6= {1, . . . , r} since h 6= 0). Now we compute∑
h∈Gs

b,m\{0}
h≡0 (mod fi)∀i∈u

rb(h) =
∑
v([s]

∏
j∈v

rb(0)
∏
j /∈v

∑
hj∈Gb,m\{0}

hj≡0 (mod fi)∀i∈u

rb(hj)

≤
∑
v([s]

∏
j /∈v

∑
g∈Gb,m\{0}

rb

(
g
∏
i∈u

fi

)

=
∑
v([s]

∏
j /∈v

1∏
i∈u b

mi

mC(b− 1)

b

≤ 1∏
i∈u b

mi

∑
v([s]

∏
j /∈v

mC(b− 1)

b

=
1∏

i∈u b
mi

((
1 +

mC(b− 1)

b

)s
− 1

)
,

15



where we have used Lemma 18.
Altogether we have now

1∏r
i=1 |G∗b,mi

|s
∑

qi∈(G∗b,mi
)s

1≤i≤r

Rb((qi, fi)
r
i=1)

≤ 1∏r
i=1(b

mi − 1)

∑
u({1,...,r}

((
1 +

mC(b− 1)

b

)s
− 1

)∏
i∈u

bmi − 1

bmi

≤ 2r − 1∏r
i=1(b

mi − 1)

((
1 +

mC(b− 1)

b

)s
− 1

)
.

This proves the unweighted result. The average of R̃b,γ((qi, fi)
r
i=1) can be estimated in a

similar way. 2

Remark 20. In the case where r = 1 the obtained result is comparable with [1, Theo-
rem 10.21] and [1, Theorem 10.24] for prime bases b.

As a consequence of Theorem 19, we obtain the following existence results.

Corollary 21. Let b be a prime power, γ = (γi)i≥1 a sequence of weights, let s,m, r ∈ N,
r ≤ s, and let fi ∈ Fb[x], 1 ≤ i ≤ r, be irreducible and mutually relatively prime with
deg(fi) = mi, m1+ · · ·+mr = m. Then for 0 ≤ α < 1 there are more than α

∏r
i=1 |G∗b,mi

|s
vectors of polynomials (q1, . . . , qr) ∈

∏r
i=1(G

∗
b,mi

)s such that

D∗bm(P((qi, fi)
r
i=1)) ≤

s

bm
+

1

1− α
2 · (2r − 1)∏r
i=1(b

mi − 1)

(
1 +

mC(b− 1)

b

)s
and

D∗bm(P((qi, fi)
r
i=1)) ≤

∑
∅6=u⊆[s]

γu

(
1−

(
1− 1

bm

)|u|)

+
1

1− α
2 · (2r − 1)∏r
i=1(b

mi − 1)

s∏
j=1

(
1 + γj

(
1 +

mC(b− 1)

b

))
.

Proof: The result follows from Proposition 16 and Theorem 19 by using standard argu-
ments (as used, for example, in [1, Proof of Corollary 10.23]). 2

A Higher rank - Component by component construction. Now that we know
that for given irreducible and mutually relatively prime polynomials fi ∈ Fb[x], 1 ≤ i ≤ r,
there exists a sufficiently large number of good vectors (q1, . . . , qr) which yield PLPSs
with reasonable low (weighted) star-discrepancy, we want to find such vectors by computer
search. Unfortunately, a full search is not possible (except maybe for small values of m, s),
since we have to check bms vectors of polynomials. We will use a component-by-component
construction, an idea that was introduced by Korobov [4] for ordinary latice rules and
that was later re-invented by Sloan and Reztsov [17]. The same idea applies to higher
rank PLPSs (see [1, Algorithm 10.26] for the case r = 1).
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Algorithm 22. Given a prime power b, s,m, r ∈ N, r ≤ s, and polynomials fi ∈ Fb[x],
1 ≤ i ≤ r, with deg(fi) = mi, m1 + · · ·+mr = m (and a sequence γ = (γi)i≥1 of weights).

1. Choose qi,1 = 1 for all 1 ≤ i ≤ r.

2. For d > 1, assume we have already constructed qi,1, . . . , qi,d−1 ∈ G∗b,mi
for all i ∈

{1, . . . , r}. Then find qi,d ∈ G∗b,mi
for 1 ≤ i ≤ r, which minimizes the quantity

Rb(((qi,1, . . . , qi,d−1, qi,d), fi)
r
i=1) (or R̃b,γ(((qi,1, . . . , qi,d−1, qi,d), fi)

r
i=1) in the weighted

case) as a function of (q1,d, . . . , qr,d).

Remark 23. The quantities Rb((qi, fi)
r
i=1) and R̃b,γ((qi, fi)

r
i=1) can be computed in

O(bms) operations (see Proposition 28). Hence the cost of Algorithm 22 is of O(b2ms2)
operations.

In the following theorem, we show that Algorithm 22 is guaranteed to find good vectors
qi, 1 ≤ i ≤ r, where the polynomials fi, 1 ≤ i ≤ r are irreducible and mutually relatively
prime.

Theorem 24. Let b be a prime power, γ = (γi)i≥1 a sequence of weights, let s,m, r ∈ N,
r ≤ s, let fi ∈ Fb[x], 1 ≤ i ≤ r, be irreducible and mutually relatively prime with
deg(fi) = mi, m1 + · · ·+mr = m. Suppose qi = (qi,1, . . . , qi,s) ∈ (G∗b,mi

)s for 1 ≤ i ≤ r is
constructed according to Algorithm 22. Then for all 1 ≤ d ≤ s we have

Rb(((qi,1, . . . , qi,d), fi)
r
i=1) ≤

2r − 1∏r
i=1(b

mi − 1)

(
1 +

mC(b− 1)

b

)d
and

R̃b,γ(((qi,1, . . . , qi,d), fi)
r
i=1) ≤

2r − 1∏r
i=1(b

mi − 1)

d∏
j=1

(
1 + γj

(
1 +

mC(b− 1)

b

))
.

Corresponding bounds on the (weighted) star discrepancy can be obtained from Propo-
sition 16.

Proof: We only prove the first part. To prove the second part, simply replace rb(h) and

Rb by rb(h,γ) and R̃b,γ respectively.
Since the fi, 1 ≤ i ≤ r, are irreducible and mutually relatively prime it follows that

Rb((1, fi)
r
i=1) = 0 and the result follows for d = 1.

Suppose now that for some 1 ≤ d < s we have already constructed qi = (qi,1, . . . , qi,d) ∈
(G∗b,mi

)d for 1 ≤ i ≤ r and

Rb((qi, fi)
r
i=1) ≤

2r − 1∏r
i=1(b

mi − 1)

(
1 +

mC(b− 1)

b

)d
.

Now we consider (qi, qi,d+1) := (qi,1, . . . , qi,d, qi,d+1). We have

Rb(((qi, qi,d+1), fi)
r
i=1) =

∑
(h,hd+1)∈D(((qi,qi,d+1),fi)

r
i=1)

′

rb(h)rb(hd+1)

17



=
∑

h∈D((qi,fi)ri=1)
′

rb(h) + θ(q1,d+1, . . . , qr,d+1)

= Rb((qi, fi)
r
i=1) + θ(q1,d+1, . . . , qr,d+1),

where we have separated out the hd+1 = 0 terms, and

θ(q1,d+1, . . . , qr,d+1) :=
∑

hd+1∈G∗b,m

rb(hd+1)
∑

h∈Gd
b,m

(h,hd+1)∈D(((qi,qi,d+1),fi)
r
i=1)

′

rb(h).

Here the last summation is over all h ∈ Gd
b,m for which (h, hd+1) ∈ D(((qi, qi,d+1), fi)

r
i=1)

′.
Since (q1,d+1, . . . , qr,d+1) is a minimizer of Rb(((qi, qi,d+1), fi)

r
i=1) and since the only depen-

dence on qi,d+1 for 1 ≤ i ≤ r is in θ it follows that (q1,d+1, . . . , qr,d+1) is also a minimizer
of θ and hence we obtain

θ(q1,d+1, . . . , qr,d+1)

≤ 1∏r
i=1(b

mi − 1)

∑
zi∈G∗b,mi
1≤i≤r

θ(z1, . . . , zr)

=
1∏r

i=1(b
mi − 1)

∑
zi∈G∗b,mi
1≤i≤r

∑
hd+1∈G∗b,m

rb(hd+1)
∑

h∈Gd
b,m

(h,hd+1)∈D(((qi,zi),fi)ri=1)
′

rb(h)

=
1∏r

i=1(b
mi − 1)

∑
hd+1∈G∗b,m

rb(hd+1)
∑

h∈Gd
b,m

rb(h)
∑

zi∈G∗b,mi
(h,hd+1)∈D(((qi,zi),fi)ri=1)

′

1.

The condition (h, hd+1) ∈ D(((qi, zi), fi)
r
i=1)

′ is equivalent to the equation system

zihd+1 ≡ −h · qi (mod fi) for all 1 ≤ i ≤ r.

For fixed i, we consider now several cases to determine the number of solutions zi of
zihd+1 ≡ −h · qi (mod fi):

1. If hd+1 ≡ 0 (mod fi) and −h · qi ≡ 0 (mod fi), then there are bmi − 1 solutions.

2. If hd+1 ≡ 0 (mod fi) and −h · qi 6≡ 0 (mod fi), then we have no solution.

3. hd+1 6≡ 0 (mod fi) and −h · qi ≡ 0 (mod fi), then there is no solution zi ∈ G∗b,mi
,

since fi is irreducible.

4. If hd+1 6≡ 0 (mod fi) and −h · qi 6≡ 0 (mod fi), then we have exactly one solution.

Altogether we obtain

θ(q1,d+1, . . . , qr,d+1)

≤ 1∏r
i=1(b

mi − 1)

∑
u({1,...,r}

∑
hd+1∈G∗b,m

hd+1≡0 (mod fi)∀i∈u
hd+1 6≡0 (mod fi)∀i/∈u

rb(hd+1)
∑

h∈Gd
b,m

h·qi≡0 (mod fi) ∀i∈u
h·qi 6≡0 (mod fi) ∀i/∈u

rb(h)
∏
i∈u

(bmi − 1)
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≤ 1∏r
i=1(b

mi − 1)

∑
u({1,...,r}

∏
i∈u

(bmi − 1)
∑

hd+1∈G∗b,m
hd+1≡0 (mod fi) ∀i∈u

rb(hd+1)
∑

h∈Gd
b,m

rb(h)

=
1∏r

i=1(b
mi − 1)

(
1 +

mC(b− 1)

b

)d ∑
u({1,...,r}

∏
i∈u

(bmi − 1)
∑

hd+1∈G∗b,m
hd+1=g

∏
i∈u fi

rb(hd+1)

≤ 1∏r
i=1(b

mi − 1)

(
1 +

mC(b− 1)

b

)d ∑
u({1,...,r}

∏
i∈u

bmi − 1

bmi

∑
g∈G∗b,m

rb(g)

≤ 2r − 1∏r
i=1(b

mi − 1)

(
1 +

mC(b− 1)

b

)d ∑
g∈G∗b,m

rb(g),

where we have used Lemma 18. Now we obtain

Rb(((qi, qi,d+1), fi)
r
i=1)

≤ Rb((qi, fi)
r
i=1) +

2r − 1∏r
i=1(b

mi − 1)

(
1 +

mC(b− 1)

b

)d ∑
g∈G∗b,m

rb(g)

≤ 2r − 1∏r
i=1(b

mi − 1)

(
1 +

mC(b− 1)

b

)d ∑
g∈Gb,m

rb(g)

=
2r − 1∏r

i=1(b
mi − 1)

(
1 +

mC(b− 1)

b

)d+1

,

where we have used Lemma 18 again. The result follows by induction. 2

The following result can be proven in the same way as [1, Corollary 5.45]. It shows that
the bound on the weighted star discrepancy can be made independent of the dimension s
under certain assumptions on the weights γ.

Corollary 25. Let b be a prime power, γ = (γi)i≥1 a sequence of weights, let s,m, r ∈ N,
r ≤ s, let fi ∈ Fb[x], 1 ≤ i ≤ r, be irreducible and mutually relatively prime with
deg(fi) = mi, m1 + · · ·+mr = m. Suppose qi = (qi,1, . . . , qi,s) ∈ (G∗b,mi

)s for 1 ≤ i ≤ r is

constructed according to Algorithm 22 using R̃b,γ.
If
∑∞

i=1 γi <∞, then for any δ > 0 there exists a constant cγ,δ > 0, independent of s
and m, such that the weighted star discrepancy of P((qi, fi)

r
i=1) satisfies

D∗bm,γ(P((qi, fi)
r
i=1) ≤

cγ,δ
bm(1−δ) . (5)

In particular, the bound on the weighted star discrepancy is independent of the dimen-
sion s.

Appendix A: Calculation of Rb and R̃b,γ

In this section we show that the quantities Rb and R̃b,γ can be computed efficiently. We
will need the definition of Walsh functions over the finite field Fb.

19



Definition 26 (Walsh functions). Let b = p` with a prime p and a positive integer `, let
k ∈ N0 with base b representation k = κ0 + κ1b + · · · + κm−1b

m−1, where κl ∈ Zb and let
x ∈ [0, 1) with base b representation x = x1

b
+ x2

b2
+ · · · . Then the k-th Walsh function

over the finite field Fb with respect to the bijection ϕ is defined by

Fb,ϕ
wal

k
(x) :=

m−1∏
l=0

∏̀
i=1

exp

(
2πi

(πi ◦ η)(κl)(πi ◦ η)(xl)

p

)
,

where πi and η are as before (page 12). For convenience we will in the following omit the
subscript and simply write walk if there is no ambiguity.

Multivariate Walsh functions are defined by multiplication of the univariate compo-
nents, i.e., for x = (x1, . . . , xs) ∈ [0, 1)s,k = (k1, . . . , ks) ∈ Ns

0, where s > 1, we set

walk(x) =
s∏
j=1

walkj(xj).

If we consider Walsh functions Fb,ϕ
wal

k
in conjunction with digital nets over Fb and

implied bijection ϕ (cf. Definition 2), then b and ϕ, respectively, are always considered to
be the same.

From [16, Lemma 2.5] and Lemma 6 we immediately derive the following lemma that
gives an important indicator function.

Lemma 27. Let b be a prime power and let C1, . . . , Cs be the generating matrices of a
PLPS P((qi, fi)

r
i=1) = {x0, . . . ,xbm−1}. Then for any vector k ∈ {0, . . . , bm−1}s we have

1

bm

bm−1∑
h=0

walk(xh) =

{
1 if k ∈ D((qi, fi)

r
i=1),

0 else.

Now we have

Rb((qi, fi)
r
i=1) =

∑
h∈D((qi,fi)ri=1)

′

rb(h)

= −1 +
∑

k∈{0,...,bm−1}s
rb(k)

1

bm

bm−1∑
n=0

walk(xn)

= −1 +
1

bm

bm−1∑
n=0

s∏
j=1

(
bm−1∑
k=0

rb(k) walk(xn,j)

)

= −1 +
1

bm

bm−1∑
n=0

s∏
j=1

φb,m(xn,j), (6)

where we identify a polynomial k(x) = κ0 +κ1x+ · · ·+κm−1x
m−1 ∈ Gb,m with the integer

k = ϕ−1(κ0) + ϕ−1(κ1)b+ · · ·+ ϕ−1(κm−1)b
m−1 and where we used the definition

φb,m(x) :=
bm−1∑
h=0

rb(h) walh(x).
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Now from the proof of [15, Proposition 3] we get

φb,m(x) = 1 +
bm−1∑
h=1

rb(h) walh(x) = 1 +
C

b
((b− 1)(m0(x)− 1)− 1), (7)

with C as in the definition of rb and for x ∈ b−mZbm \ {0}, m0(x) := max{l ≤ m : x <
b−(l−1)} = d− logb xe and m0(0) := m+ b

b−1 . Note that it is enough to consider x ∈ b−mZbm
only.

Using (4) we have

R̃b,γ((qi, fi)
r
i=1) =

∑
∅6=u⊆[s]

γuRb((qi(u), fi)
r
i=1)

= −
∑
∅6=u⊆[s]

γu +
1

bm

bm−1∑
n=0

∑
∅6=u⊆[s]

γu
∏
j∈u

φb,m(xn,j)

= −
s∏
j=1

(1 + γj) +
1

bm

bm−1∑
n=0

s∏
j=1

(1 + γjφb,m(xn,j)). (8)

We summarize:

Proposition 28. Let b be a prime power, γ = (γi)i≥1 a sequence of weights and let
s,m, r ∈ N, r ≤ s, and let fi ∈ Fb[x], 1 ≤ i ≤ r, deg(fi) = mi, m1 + · · · + mr = m,
and qi ∈ Gs

b,m, 1 ≤ i ≤ r. Using (6), (7) and (8) one can compute Rb((qi, fi)
r
i=1) and

R̃b,γ((qi, fi)
r
i=1) in O(bms) operations.
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