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Abstract

We introduce a generalized weighted digit-block-counting function on the non-
negative integers, which is a generalization of many digit-depending functions as,
for example, the well known sum-of-digits function. A formula for the first moment
of the sum-of-digits function has been given by Delange in 1972. In the first part
of this paper we provide a compact formula for the first moment of the generalized
weighted digit-block-counting function and show that a (weak) Delange type for-
mula holds if the sequence of weights converges. The question, whether the converse
is true as well, can only be answered partially at the moment.

In the second part of this paper we study distribution properties of generalized
weighted digit-block-counting sequences and their d-dimensional analogues. We give
an if and only if condition under which such sequences are uniformly distributed
modulo one.

Keywords: Digit-block-counting function, sum-of-digits function, first moment,
uniform distribution modulo one.
MSC 2000: 11A63, 11K06, 11K65.

1 Introduction

Let γ = (γs)s≥0 be a sequence in R. Let t ≥ 1 and q ≥ 2 be integers and Γ = {0, 1, . . . , q−
1}t. Further let g : Γ → R be a function.

For k ∈ N0 with base q representation k = krq
r + · · · + k1q + k0, where kr 6= 0, we

define the generalized weighted digit-block-counting function

sq(k,γ) :=
r∑

s=0

γsg(ks, . . . , ks+t−1), (1)

where here ki = 0 for all i > r. (This definition is a weighted version of the definition
given by Cateland in [1].)
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In the first part of this paper (Section 2) we investigate the average growth-behavior of
the generalized weighted digit-block-counting function. For n ∈ N with n ≥ 2 we consider
the first moment defined as

Sq(n,γ) :=
n−1∑

k=1

sq(k,γ).

The definition of the function in (1) covers many well-known and extensively studied
sequences as, for example:

1. If t = 1 and g : Γ → R is given by g(a) = a for all a ∈ Γ, then sq(·,γ) is the weighted
sum-of-digits function. For the unweighted case, i.e., γ = 1 = (1)s≥0, Delange [2]
showed the following formula.

Theorem 1 (Delange) We have

Sq(n, 1) =
q − 1

2
n logq(n) + nFDel(logq(n)),

where FDel(x) is a continuous, one-periodic, nowhere differentiable function.

See also [4, 12, 14] and the references therein. A similar formula for the more general
weighted case was proved in [7] and recently in [10] for q = 2.

2. If t ≥ 1, q ≥ 2 and the function g : Γ → R is given by g(a) = 1 for fixed
a = (a1, . . . , at) ∈ Γ and zero otherwise, then sq(k,γ) counts (weighted) occurrences
of the block (a1, . . . , at) in the base q representation of k. In this case we will refer
to sq(k,γ) as the weighted single-block-occurrence function. For the unweighted case
a formula for the first moment was given by Kirschenhofer [6], see also [4].

3. If t = 2, q = 2, and the function g : Γ → R is given by g(0, 0) = g(1, 1) = 0 and
g(1, 0) = g(0, 1) = 1, then sq(k,γ) counts the (weighted) number of 1’s in the Gray
code representation of k. In this case we will refer to sq(k,γ) as the weighted Gray
code sum. Here a formula for the first moment for the unweighted case was given
by Flajolet & Ramshaw [5], see also [4].

It is the aim of the first part of this paper to calculate the first moment of the gener-
alized weighted digit-block-counting function (1), see Subsection 2.1. Further we show in
Subsection 2.2 that a formula like that in Theorem 1 holds if the sequence γ of weights
converges. In this case we will say, the formula for the first moment is (weak) Delange
type (see Subsection 2.3 for an exact definition). Of course our formula also contains the
formulas from Kirschenhofer [6] and Flajolet & Ramshaw [5] as special cases. In many
cases we can also prove the converse, i.e., if the first moment is (weak) Delange type, then
the sequence of weights has to converge (see Subsection 2.3). However, a general answer
to this question has to remain open for the moment.

In the second part of this paper (Section 3) we will study distribution properties
of generalized weighted digit-block-counting sequences. Especially we will answer the
question under which conditions the generalized weighted digit-block-counting sequence
(sq(k,γ))k=0,1,... is uniformly distributed modulo one.
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We recall that a sequence (xn)n≥0 in Rd is said to be uniformly distributed modulo one
if for all intervals [a, b) ⊆ [0, 1)d we have

lim
N→∞

#{n : 0 ≤ n < N, {xn} ∈ [a, b)}

N
= λd([a, b)),

where λd denotes the d-dimensional Lebesgue measure. Here for a vector x the fractional
part {·} is applied componentwise. An excellent introduction to this topic can be found
in the book of Kuipers & Niederreiter [8] or in the book of Drmota & Tichy [3].

Even more generally we will ask under which conditions the following quite general d-
dimensional generalized weighted digit-block-counting sequences are uniformly distributed
modulo one:

For given dimension d we choose d functions g(i) : Γ → R for all i ∈ {1, . . . , d} where
we assume g(i)(0) = 0 for all i. Further we choose d sequences of weights

γ(i) := (γ
(i)
0 , γ

(i)
1 , . . .) for all i ∈ {1, . . . , d}

and denote by s
(i)
q (k,γ(i)) the generalized weighted digit-block-counting function gener-

ated by g(i) and γ(i).
Now we are interested in the distribution behavior modulo one of the sequence

(sq(k,γ))k=0,1,... := (s(1)
q (k,γ(1)), . . . , s(d)

q (k,γ(d)))k=0,1,... (2)

in the d-dimensional unit cube.
The question, under which conditions the sequence (2) is uniformly distributed modulo

one, was fully answered for t = 1 and g(i) the identity function for all i ∈ {1, . . . , d} by
Pillichshammer [11]. For arbitrary t, but d = 1 and constant weights γ it was answered
by Larcher & Tichy [9].

In Section 3 of this paper we give an if and only if condition under which the sequence
(2) in its full generality is uniformly distributed modulo one.

Throughout the paper let the integers q ≥ 2 and t ≥ 1 be fixed. Therefore also
the set Γ is fixed. We define Γ∗ := Γ \ {0}, where 0 = (0, . . . , 0) ∈ Γ. If we write
in the following a ∈ Γ, then always a = (a1, . . . , at). Analogously, x = (x1, . . . , xt),
j = (j1, . . . , jt) and so on. For a real number x, we denote by {x} the fractional part of
x, by ⌊x⌋ the integer part of x and by ‖x‖ the distance of x to the nearest integer, i.e.,
‖x‖ = min{x − ⌊x⌋, 1 − (x − ⌊x⌋)}. By logq(x) we will denote the base q logarithm of
x. For vectors x ∈ Rd the functions ⌊·⌋ and {·} are applied componentwise. Further for
x,y ∈ Rd we denote by x · y the usual inner product in Rd. We will write N for the set
of positive integers and N0 for the set of nonnegative integers.

2 The first moment of the generalized weighted digit-

block-counting function

2.1 A formula for the first moment of the generalized weighted
digit-block-counting function

Here we compute the first moment of the generalized weighted digit-block-counting func-
tion as defined in (1).
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Theorem 2 Let γ = (γs)s≥0 be a sequence in R. For any positive integer n = n0 +n1q+
n2q

2 + · · · we have

Sq(n,γ) =
n

qt

∑

a∈Γ

g(a)

r(n)∑

s=0

γs − g(0)

r(n)∑

s=0

γsq
s

+
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ∗

e−
2πi

q

Pt
l=1 jlal

r(n)∑

s=0

γs

×e
2πi

q

Pt

l=l+1
jlns+l−1ql+s−1

(
e

2πi

q
j
l
n

l+s−1 − 1

e
2πi

q
j
l − 1

+ e
2πi

q
j
l
n

l+s−1

{
n

ql+s−1

})
,

where r(n) := ⌊logq(n)⌋ and l := min{l ∈ {1, ..., t} : jl 6= 0}.

A more concise version of the above formula will be given in Subsection 2.2. Before
we give the proof of this result let us consider some examples.

Example 1 For t = 1 and the function g : Γ → R the identity function we get the first
moment of the weighted sum-of-digits function in base q. It follows easily from Theorem
2 together with the formula

1

q

q−1∑

z=0

ze−
2πi

q
jz =

1

e−
2πi

q
j − 1

,

that in this case for n ≥ 2 we have

Sq(n,γ) =
n(q − 1)

2

r(n)∑

s=0

γs +

q−1∑

j=1

1

e−
2πi

q
j − 1

r(n)∑

s=0

γsq
s

(
e

2πi

q
jns − 1

e
2πi

q
j − 1

+ e
2πi

q
jns

{
n

qs

})
.

For q = 2 this formula reduces to

S2(n,γ) =
n

2

r(n)∑

s=0

γs −
n

2

r(n)∑

s=0

γs
2s+1

n

∥∥∥
n

2s+1

∥∥∥

where in the last formula r(n) = ⌊log2(n)⌋. This formula was proved in [10, Theorem 2].
See also [7].

Example 2 For t = 2, q = 2 and the function g : Γ → R given by g(0, 0) = g(1, 1) = 0
and g(0, 1) = g(1, 0) = 1 we have

S2(n,γ) =
n

2

r(n)∑

s=0

γs −
n

2

r(n)∑

s=0

γs(−1)ns+1
2s+1

n

∥∥∥
n

2s+1

∥∥∥

for n ≥ 2, where here r(n) = ⌊log2(n)⌋ and nr(n)+1 = 0.

For the proof of Theorem 2 we need several lemmas.
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Lemma 1 For y ∈ Γ we have

g(y) =
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ

e
2πi

q

Pt
l=1 jl(yl−al).

Proof. This follows easily from the fact that for an integer q ≥ 2 we have

1

q

q−1∑

j=0

e
2πi

q
jz =

{
0 if z 6≡ 0 (mod q),
1 if z ≡ 0 (mod q).

2

Lemma 2 Let the nonnegative integer U have q-adic expansion U = U0+· · ·+Um−1q
m−1.

For any nonnegative integer n ≤ U−1 let n = n0+ · · ·+nm−1q
m−1 be the q-adic expansion

of n. For 0 ≤ p ≤ m − 1 let U(p) := U0 + · · · + Upq
p. Let b0, b1, . . . , bm−1 be arbitrary

elements of Zq, not all zero. Then

U−1∑

n=0

e
2πi

q
(b0n0+···+bm−1nm−1) = e

2πi

q
(bw+1Uw+1+···+bm−1Um−1)qw

(
e

2πi

q
bwUw − 1

e
2πi

q
bw − 1

+ e
2πi

q
bwUw

{
U

qw

})
,

where w is minimal such that bw 6= 0.

Proof. The result easily follows from splitting up the sum.

U−1∑

n=0

e
2πi

q
(b0n0+···+bm−1nm−1)

=

qw+1(Uw+1+···+Um−1q
m−w−2)−1∑

n=0

e
2πi

q
nwbwe

2πi

q
(bw+1nw+1+···+bm−1nm−1)

+

U(w)−1∑

n=0

e
2πi

q
nwbwe

2πi

q
(bw+1Uw+1+···+bm−1Um−1)

= 0 + e
2πi

q
(bw+1Uw+1+···+bm−1Um−1)

U(w)−1∑

n=0

e
2πi

q
nwbw .

We study the last sum. We have

U(w)−1∑

n=0

e
2πi

q
nwbw

=

qw−1∑

n=0

e
2πi

q
0bw +

2qw−1∑

n=qw

e
2πi

q
bw + · · ·+

Uwq
w−1∑

n=(Uw−1)qw

e
2πi

q
(Uw−1)bw +

U(w)−1∑

n=Uwqw

e
2πi

q
Uwbw

= qw
Uw−1∑

k=0

(
e

2πi

q
bw
)k

+ (U(w) − Uwq
w)e

2πi

q
Uwbw

= qw

(
e

2πi

q
bwUw − 1

e
2πi

q
bw − 1

+

(
U(w)

qw
− Uw

)
e

2πi

q
Uwbw

)

= qw

(
e

2πi

q
bwUw − 1

e
2πi

q
bw − 1

+ e
2πi

q
bwUw

{
U

qw

})
.
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The result follows. 2

Remark 1 For q = 2 the formula from Lemma 2 can be further simplified with

qw

(
e

2πi

q
bwUw − 1

e
2πi

q
bw − 1

+ e
2πi

q
bwUw

{
U

qw

})
= 2w+1

∥∥∥∥
U

2w+1

∥∥∥∥ .

Now we give the proof of Theorem 2.

Proof. With the definition of the first moment we have

Sq(n,γ) =

n−1∑

k=1

sq(k, γ) =

r(n)−1∑

r=0

qr+1−1∑

k=qr

sq(k, γ) +

n−1∑

k=qr(n)

sq(k, γ) =: Σ1 + Σ2.

First we consider the sum Σ1. We have

Σ1 =

r(n)−1∑

r=0

qr+1−1∑

k=qr

sq(k,γ) =

r(n)−1∑

r=0

qr+1−1∑

k=qr

r∑

s=0

γsg(ks, . . . , ks+t−1).

Now we use Lemma 1 to replace g(ks, . . . , ks+t−1) and get after changing the order of
summation,

Σ1 =
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ

e−
2πi

q

Pt
l=1 jlal

r(n)−1∑

r=0

r∑

s=0

γs

qr+1−1∑

k=qr

e
2πi

q

Pt
l=1 jlks+l−1.

Now we take a closer look at the innermost sum in the above expression. Let

Σ1,1 :=

qr+1−1∑

k=qr

e
2πi

q

Pt
l=1 jlks+l−1

depending on (j1, . . . , jt) and s. We consider the following cases:

(a) If j1 = · · · = jt = 0, then we get Σ1,1 = qr(q− 1) and furthermore e−
2πi

q

Pt
l=1 jlal = 1.

(b) If there exists at least one l ∈ {1, . . . , t} such that jl 6= 0, then we define l :=
min{l ∈ {1, . . . , t} : jl 6= 0}. We consider three cases for s:

(i) If s+ l − 1 < r, then we have

Σ1,1 =

q−1∑

k0,...,kr−1=0

q−1∑

kr=1

e
2πi

q (jlks+l−1+···+jmin{t,r−s+1}kmin{s+t−1,r}) = 0.

(ii) If s+ l − 1 = r, then we have

Σ1,1 =

qr+1−1∑

k=qr

e
2πi

q
j
l
kr = −qr.
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(iii) If s+ l − 1 > r, then we have

Σ1,1 =

qr+1−1∑

k=qr

1 = qr(q − 1).

Altogether we find that

Σ1 =
q − 1

qt

∑

a∈Γ

g(a)

r(n)−1∑

r=0

qr
r∑

s=0

γs +
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ∗

e−
2πi

q

Pt
l=1 jlal

×

r(n)−1∑

r=0


−qr

r−l+1∑

s=max{r−l+1,0}

γs + (q − 1)qr
r∑

s=max{r−l+2,0}

γs


 .

We have the following identities:

r(n)−1∑

r=0

qr
r∑

s=0

γs =

r(n)−1∑

s=0

γs

r(n)−1∑

r=s

qr =
qr(n)

q − 1

r(n)−1∑

s=0

γs −
1

q − 1

r(n)−1∑

s=0

γsq
s,

and
r(n)−1∑

r=0

qr
r−l+1∑

s=max{r−l+1,0}

γs =

r(n)−1∑

r=l−1

qrγr−l+1 =

r(n)−l∑

s=0

γsq
s+l−1.

For the last term we have

r(n)−1∑

r=0

(q − 1)qr
r∑

s=max{r−l+2,0}

γs = (q − 1)

r(n)−1∑

s=0

γs

min{s+l−2,r(n)−1}∑

r=s

qr

=

r(n)−1∑

s=0

γsq
min{s+l−1,r(n)} −

r(n)−1∑

s=0

γsq
s.

Now we can express Σ1 as

Σ1 =
qr(n)

qt

∑

a∈Γ

g(a)

r(n)∑

s=0

γs −
1

qt

∑

a∈Γ

g(a)

r(n)∑

s=0

γsq
s

−
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ∗

e−
2πi

q

Pt
l=1 jlal

r(n)−l∑

s=0

γsq
s+l−1

+
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ∗

e−
2πi

q

Pt
l=1 jlal

r(n)∑

s=0

γsq
min{s+l−1,r(n)}

−
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ∗

e−
2πi

q

Pt
l=1 jlal

r(n)∑

s=0

γsq
s.
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The second and the last sum together give

−
1

qt

∑

a∈Γ

g(a)

r(n)∑

s=0

γsq
s −

1

qt

∑

a∈Γ

g(a)
∑

j∈Γ∗

e−
2πi

q

Pt
l=1 jlal

r(n)∑

s=0

γsq
s

= −

r(n)∑

s=0

γsq
s 1

qt

∑

a∈Γ

g(a)
∑

j∈Γ

e−
2πi

q

Pt
l=1 jlal ,

and from Lemma 1 we know that

g(0) =
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ

e−
2πi

q

Pt
l=1 jlal .

Therefore we obtain

Σ1 =
qr(n)

qt

∑

a∈Γ

g(a)

r(n)∑

s=0

γs − g(0)

r(n)∑

s=0

γsq
s

−
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ∗

e−
2πi

q

Pt
l=1 jlal

r(n)−l∑

s=0

γsq
s+l−1

+
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ∗

e−
2πi

q

Pt
l=1 jlal

r(n)∑

s=0

γsq
min{s+l−1,r(n)}.

If we finally split the last sum,

r(n)∑

s=0

γsq
min{s+l−1,r(n)} =

r(n)−l∑

s=0

γsq
s+l−1 +

r(n)∑

s=r(n)−l+1

γsq
r(n),

then we end at

Σ1 =
qr(n)

qt

∑

a∈Γ

g(a)

r(n)∑

s=0

γs − g(0)

r(n)∑

s=0

γsq
s

+
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ∗

e−
2πi

q

Pt
l=1 jlal

r(n)∑

s=r(n)−l+1

γsq
r(n).

Now we turn to the sum Σ2. Again we use Lemma 1 to replace g(ks, . . . , ks+t−1) and
get

Σ2 =
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ

e−
2πi

q

Pt
l=1 jlal

r(n)∑

s=0

γs

n−1∑

k=qr(n)

e
2πi

q

Pt
l=1 jlks+l−1.

To compute Σ2,1 :=
∑n−1

k=qr(n) e
2πi

q

Pt
l=1 jlks+l−1 depending on j1, . . . , jt and s we have to

consider the following cases:

(a) If j1 = · · · = jt = 0, then we have Σ2,1 = n−qr(n) and furthermore e−
2πi

q

Pt
l=1 jlal = 1.
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(b) If there exists jl 6= 0, then let again l := min{l ∈ {1, ..., t} : jl 6= 0}. We consider
three cases for s.

(i) If s < r(n) − l + 1, then s + l − 1 6= r(n) and we get after replacing the
summation index k by k′ = k − qr(n) and using Lemma 2,

Σ2,1 = e
2πi

q

Pt

l=l+1
jlns+l−1ql+s−1

(
e

2πi

q
j
l
n

l+s−1 − 1

e
2πi

q
j
l − 1

+ e
2πi

q
j
l
n

l+s−1

{
n

ql+s−1

})
.

(ii) If s = r(n) − l + 1, then s+ l − 1 = r(n) and we get again with Lemma 2,

Σ2,1 = e
2πi

q
j
l

n−qr(n)−1∑

k=0

e
2πi

q

Pt
l=1 jlks+l−1

= e
2πi

q
j
le

2πi

q

Pt

l=l+1
jlns+l−1ql+s−1

(
e

2πi

q
j
l
(n

l+s−1−1) − 1

e
2πi

q
j
l − 1

+ e
2πi

q
j
l
(n

l+s−1−1)

{
n

ql+s−1

})

= ql+s−1

(
e

2πi

q
j
l
n

l+s−1 − 1

e
2πi

q
j
l − 1

+ e
2πi

q
j
l
n

l+s−1

{
n

ql+s−1

})
− qs+l−1,

as e
2πi

q

Pt

l=l+1
jlns+l−1 = 1.

(iii) If s > r(n) − l + 1, then we have ks+l−1 = 0 for l ≥ l. Thus we get

Σ2,1 = n− qr(n).

Altogether we find

Σ2 =
n− qr(n)

qt

∑

a∈Γ

g(a)

r(n)∑

s=0

γs

+
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ∗

e−
2πi

q

Pt
l=1 jlal

r(n)−l+1∑

s=0

γs

×e
2πi

q

Pt

l=l+1
jlns+l−1ql+s−1

(
e

2πi

q
j
l
n

l+s−1 − 1

e
2πi

q
j
l − 1

+ e
2πi

q
j
l
n

l+s−1

{
n

ql+s−1

})

−
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ∗

e−
2πi

q

Pt
l=1 jlalγr(n)−l+1q

r(n)

+
n− qr(n)

qt

∑

a∈Γ

g(a)
∑

j∈Γ∗

e−
2πi

q

Pt
l=1 jlal

r(n)∑

s=r(n)−l+2

γs.

We can split the last sum in terms with factor n and factor qr(n). The terms with
factor n go with the second sum and the terms with factor qr(n) go with the third sum.
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Hence

Σ2 =
n− qr(n)

qt

∑

a∈Γ

g(a)

r(n)∑

s=0

γs

+
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ∗

e−
2πi

q

Pt
l=1 jlal

r(n)∑

s=0

γs

×e
2πi

q

Pt

l=l+1
jlns+l−1ql+s−1

(
e

2πi

q
j
l
n

l+s−1 − 1

e
2πi

q
j
l − 1

+ e
2πi

q
j
l
n

l+s−1

{
n

ql+s−1

})

−
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ∗

e−
2πi

q

Pt
l=1 jlal

r(n)∑

s=r(n)−l+1

γsq
r(n).

The result follows by adding Σ1 and Σ2. 2

2.2 Delange type results

In this section we show for the generalized weighted digit-block-counting function a (weak)
Delange type result in the case of convergent weights γ. (For an exact definition of what
we mean by (weak) Delange type see Section 2.3.) Thereby we once again prove the
formula of Delange [2] for the first moment of the sum-of-digits function, the formula
of Flajolet & Ramshaw [5] for the first moment of the Gray code sum and the formula
of Kirschenhofer [6] for the first moment of the single-block-occurrence function. Fur-
thermore, this generalizes a result of Larcher & Pillichshammer [10] for the weighted
sum-of-digits function in base 2.

For a further investigation of the formula from Theorem 2 we introduce the notation

fq(a1, . . . , al, xt−l+1, . . . , xt) :=

q−1∑

a1,...,al=0

g(a1, . . . , al, xt−l+1, . . . , xt)

where l ∈ {1, . . . , t} and xt−l+1, . . . , xt are arbitrary integers from {0, . . . , q − 1}. Espe-
cially, fq(a1, . . . , at) =

∑
a∈Γ g(a) and fq(x1, . . . , xt) = g(x1, . . . , xt).

In the formula from Theorem 2 appeared the term

Σ :=
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ∗

e−
2πi

q

Pt
l=1 jlal

r(n)∑

s=0

γs

×e
2πi

q

Pt

l=l+1
jlns+l−1ql+s−1

(
e

2πi

q
j
l
n

l+s−1 − 1

e
2πi

q
j
l − 1

+ e
2πi

q
j
l
n

l+s−1

{
n

ql+s−1

})
,

which we analyze now. To this end we split the sum Σ into two parts Σ3 and Σ4. We

10



have

Σ3 :=
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ∗

e−
2πi

q

Pt
l=1 jlal

r(n)∑

s=0

γs

×e
2πi

q

Pt

l=l+1
jlns+l−1ql+s−1e

2πi

q
j
l
n

l+s−1

{
n

ql+s−1

}

=
1

qt

r(n)∑

s=0

γs

t∑

l=1

∑

a∈Γ

g(a)

q−1∑

j
l
=1

q−1∑

j
l+1,...,jt=0

e−
2πi

q

Pt

l=l
jlal

×e
2πi

q

Pt

l=l+1
jlns+l−1ql+s−1e

2πi

q
j
l
n

l+s−1

{
n

ql+s−1

}

=
1

qt

r(n)∑

s=0

γs

t∑

l=1

ql+s−1

{
n

ql+s−1

}∑

a∈Γ

g(a)

×

q−1∑

j
l
=1

e
2πi

q
j
l
(n

l+s−1−al
)

q−1∑

j
l+1,...,jt=0

e
2πi

q

Pt

l=l+1
jl(ns+l−1−al).

We have
q−1∑

j
l
=1

e
2πi

q
j
l
(n

l+s−1−al
) =

{
q − 1 if ns+l−1 = al,
−1 otherwise,

and

q−1∑

j
l+1,...,jt=0

e
2πi

q

Pt

l=l+1
jl(ns+l−1−al) =

{
qt−l if ns+l−1 = al for all l ∈ {l + 1, . . . , t},
0 otherwise.

So we get

Σ3 =
n

qt

r(n)∑

s=0

γs
qt+s

n

t∑

l=1

{
n

ql+s−1

}

×

(
fq(a1, . . . , al−1, ns+l−1, . . . , ns+t−1) −

1

q
fq(a1, . . . , al, ns+l, . . . , ns+t−1)

)
.
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Further we have

Σ4 :=
1

qt

∑

a∈Γ

g(a)
∑

j∈Γ∗

e−
2πi

q

Pt
l=1 jlal

r(n)∑

s=0

γs

×e
2πi

q

Pt

l=l+1
jlns+l−1ql+s−1

(
e

2πi

q
j
l
n

l+s−1 − 1

e
2πi

q
j
l − 1

)

=
1

qt

r(n)∑

s=0

γs

t∑

l=1

ql+s−1
∑

a∈Γ

g(a)

q−1∑

j
l
=1

q−1∑

j
l+1,...,jt=0

e−
2πi

q

Pt

l=l
jlal

×e
2πi

q

Pt

l=l+1
jlns+l−1

e
2πi

q
j
l
n

l+s−1 − 1

e
2πi

q
j
l − 1

=
1

qt

r(n)∑

s=0

γs

t∑

l=1

ql+s−1
∑

a∈Γ

g(a)

×

q−1∑

j
l
=1

n
s+l−1−1∑

k=0

e
2πi

q
j
l
(k−a

l
)

q−1∑

j
l+1,...,jt=0

e
2πi

q

Pt

l=l+1
jl(ns+l−1−al).

Together with the above results we find that

Σ4 =
n

qt

r(n)∑

s=0

γs
qt+s

n

t∑

l=1(
−
ns+l−1

q
fq(a1, . . . , al, ns+l, . . . , ns+t−1) +

ns+l−1−1∑

k=0

fq(a1 . . . , al−1, k, ns+l, . . . , ns+t−1)

)
.

Adding up Σ3 and Σ4, we have

Σ = Σ4 + Σ3 =
n

qt

r(n)∑

s=0

γs
qs+t

n
Ψ

(
n

qs+t

)
,

where

Ψ(x) :=

t∑

l=1

Ψl(x) (3)

with

Ψl(x) := −
1

q
fq(a1, . . . , al, r(x, l + 1), . . . , r(x, t))(r(x, l) + {xqt−l+1})

+fq(a1, . . . , al−1, r(x, l), . . . , r(x, t)){xq
t−l+1}

+

r(x,l)−1∑

k=0

fq(a1, . . . , al−1, k, r(x, l + 1), . . . , r(x, t))

and
r(x, l) := ⌊xqt−l+1⌋ − q⌊xqt−l⌋.

Altogether we can deduce the following corollary, which is a more concise version of
the formula in Theorem 2.
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Corollary 1 For any integer n ≥ 2 we have

Sq(n,γ) =
n

qt

∑

a∈Γ

g(a)

r(n)∑

s=0

γs − g(0)

r(n)∑

s=0

γsq
s +

n

qt

r(n)∑

s=0

γs
qs+t

n
Ψ

(
n

qs+t

)
,

where r(n) := ⌊logq(n)⌋ and l := min{l ∈ {1, ..., t} : jl 6= 0}.

Example 3 For q = 2, t = 1 and g : Γ → R the identity function we have Ψ(x) = −‖x‖
and we obtain the result from Example 1. For q = 2, t = 2 and g : Γ → R the function
given by g(0, 0) = g(1, 1) = 0 and g(0, 1) = g(1, 0) = 1 we have Ψ(x) = (−1)x1+1‖2x‖,
where x1 = ⌊2x⌋ − 2⌊x⌋. This yields the result from Example 2.

Before we move on, we collect some useful properties of the function Ψ(x).

Lemma 3 Let the function Ψ be defined as in (3). Then we have

1. Ψ is periodic with period 1.

2. Ψ is continuous on [0,∞).

3. Ψ(z) = 0 for any integer z ∈ N0.

4. For all m ∈ {1, . . . , t} and z ∈ {1, . . . , q − 1} we have

Ψ

(
z

qm

)
=

z−1∑

k=0

fq(a1, . . . , at−m, k, 0, . . . , 0) −
z

qm
fq(a1, . . . , at).

5. For any m ∈ N and z ∈ {1, . . . , q − 1} we get

Ψ

(
z

qt+m

)
=

z

qm
g(0) −

z

qt+m
fq(a1, . . . , at).

6. For j ∈ N and m ∈ {1, . . . , t} we have

Ψ

(
qj + 1

qj+m

)
= −

qj + 1

qj+m
fq(a1, . . . , at) + fq(a1, . . . , at−m, 0, . . . , 0)

+fq(a1, . . . , at−(m+j), 0, . . . , 0︸ ︷︷ ︸
j−times

, 1, 0, . . . , 0) min

{
1,

1

qj+m−t

}
.

7. For m, j ∈ N and m > t we have

Ψ

(
qj + 1

qj+m

)
= −

qj + 1

qj+m
fq(a1, . . . , at) + g(0)

qj + 1

qm+j−t
.

Proof. 1. This is obviously true since the function {xqt−l+1} has period 1/qt−l+1 and
r(x, l) has period 1/qt−l.
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2. First we note that Ψl(0
+) = 0 because limx→0+{xqt−l+1} = 0 and limx→0+ r(x, l) = 0.

Since limx→1−{xq
t−l+1} = 1 and limx→1− r(x, l) = q − 1 we also have

Ψl(1
−) =

q−2∑

k=0

fq(a1, . . . , al−1, k, q − 1, . . . , q − 1) + fq(a1, . . . , al−1, q − 1, . . . , q − 1)

−fq(a1, . . . , al, q − 1, . . . , q − 1) = 0.

Due to the periodicity of Ψ it is therefore enough to prove the continuity of Ψ on
the interval (0, 1)

The function Ψl(x) is continuous on the interval
(
n
qt ,

n+1
qt

)
with an arbitrary n ∈

{0, . . . , qt−1} because {xqt−l+1} is continuous and r(x, l) is constant on this interval
for all l ∈ {1, . . . , t}.

We show that Ψl(x) is also continuous in n
qt with an arbitrary n ∈ {0, . . . , qt − 1}.

Let n
qm be the reduced fraction with n

qm = n
qt . We have the q-adic expansion n =

nm−1q
m−1 + · · · + n0 and we know n0 6= 0. Now we have

lim
x→ n

qm
+
r(x, l) =






nm−t−1+l if l > t−m+ 1,
n0 if l = t−m+ 1,
0 if l < t−m+ 1,

lim
x→ n

qm
−
r(x, l) =





nm−t−1+l if l > t−m+ 1,
n0 − 1 if l = t−m+ 1,
q − 1 if l < t−m+ 1,

lim
x→ n

qm
+
{xqt−l+1} =

{
1

ql−(t−m+1)

∑m+l−t−2
s=0 nsq

s if l > t−m+ 1,

0 if l ≤ t−m+ 1,

lim
x→ n

qm
−
{xqt−l+1} =

{
1

ql−(t−m+1)

∑m+l−t−2
s=0 nsq

s if l > t−m+ 1,

1 if l ≤ t−m+ 1.

With these results we can see, after some tedious but straight forward considerations,
that Ψl(x) is continuous in n

qt for all n ∈ {0, . . . , qt − 1} and any l ∈ {1, . . . , t}.

3. See the proof of item 2 and item 1.

4. Let m ∈ {1, . . . , t} and let z ∈ {1, . . . , q − 1} be arbitrary. We compute Ψl (z/q
m)

with the results from item 2. We have

r(z/qm, l) =

{
z if l = t−m+ 1,
0 if l 6= t−m+ 1,

and {
z

qm
qt−l+1

}
=

{
z

ql−(t−m+1) if l > t−m+ 1,

0 if l ≤ t−m+ 1.

Therefore we get for l < t−m+ 1, Ψl(z/q
m) = 0. For l = t−m+ 1 we get

Ψl

(
z

qm

)
= −

z

q
fq(a1, . . . , at−m+1, 0, . . . , 0) +

z−1∑

k=0

fq(a1, . . . , at−m, k, 0, . . . , 0)
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and for l > t−m+ 1 we get

Ψl

(
z

qm

)
= −

1

q
fq(a1, . . . , al, 0, . . . , 0)

z

ql−(t−m+1)
+fq(a1, . . . , al−1, 0, . . . , 0)

z

ql−(t−m+1)
.

We sum up Ψl(z/q
m) for all l ∈ {1, . . . , t} and the result follows.

5. The proof is similar to the one of item 4.

6. We use the results from the proof of item 2, where n = qj + 1. We have

r

(
qj + 1

qj+m
, l

)
=

{
1 if l = t− (m+ j) + 1 or l = t−m+ 1,
0 otherwise,

and

{
qj + 1

qm+j
qt−l+1

}
=






0 if l ≤ t− (m+ j) + 1,
1

qm+j−(t−l+1) if t− (m+ j) + 1 < l ≤ t−m+ 1,
qj+1

qm+j−(t−l+1) if l > t−m+ 1.

So we can compute Ψl

(
qj+1
qm+j

)
for the different values of l.

(a) If l < t− (m+ j) + 1, then Ψl

(
qj+1
qm+j

)
= 0.

(b) If l = t− (m+ j) + 1, then

Ψl

(
qj + 1

qm+j

)
= −

1

q
fq(a1, . . . , at−(m+j)+1, 0, . . . , 0︸ ︷︷ ︸

j−1−times

, 1, 0 . . . , 0)

+fq(a1, . . . , at−(m+j), 0, . . . , 0︸ ︷︷ ︸
j−times

, 1, 0, . . . , 0).

(c) If t− (m+ j) + 1 < l < t−m, then

Ψl

(
qj + 1

qm+j

)
= −

1

qm+j−(t−l)
fq(a1, . . . , al, 0, . . . , 0︸ ︷︷ ︸

t−m−l−times

, 1, 0, . . . , 0)

+
1

qm+j−(t−l+1)
fq(a1, . . . , al−1, 0, . . . , 0︸ ︷︷ ︸

t−m−l+1−times

, 1, 0, . . . , 0).

(d) If l = t−m+ 1, then

Ψl

(
qj + 1

qm+j

)
= −

1

qj+1
fq(a1, . . . , at−m+1, 0, . . . , 0) −

1

q
fq(a1, . . . , at−m+1, 0, . . . , 0)

+
1

qj
fq(a1, . . . , at−m, 1, 0, . . . , 0) + fq(a1, . . . , at−m, 0, . . . , 0).

(e) If l > t−m+ 1, then

Ψl

(
qj + 1

qm+j

)
= −

qj + 1

qm+j−(t−l)
fq(a1, . . . , al, 0, . . . , 0)

+
qj + 1

qm+j−(t−l+1)
fq(a1, . . . , al−1, 0, . . . , 0).
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For the computation of Ψ(x) =
∑t

l=1 Ψl(x) one has to differ the cases m = 1, j = 1,
j ∈ {2, . . . , t− 1} or j ≥ t and m > 1, j +m < t+ 1 or j +m ≥ t+ 1. We omit the
details.

7. See the proof of item 6. In this case t−m+ 1 ≤ 0 and we get for all l ∈ {1, . . . , t}

Ψl

(
qj + 1

qm+j

)
= −

qj + 1

qm+j−(t−l)
fq(a1, . . . , al, 0, . . . , 0)

+
qj + 1

qm+j−(t−l+1)
fq(a1, . . . , al−1, 0, . . . , 0)

and the result follows.
2

Now we can give the (weak) Delange type result for the first moment of the generalized
weighted digit-block-counting function under the assumption of convergent weights γ.

Theorem 3 If the sequence γ = (γs)s≥0 of weights converges, say lims→∞ γs = γ̃, then
for the first moment of the generalized weighted digit-block-counting function we have

Sq(n,γ) =
n

qt
fq(a1, . . . , at)



{logq(n)}γr(n) +

r(n)−1∑

s=0

γs





−g(0)



{logq(n)}γr(n)q
r(n) +

r(n)−1∑

s=0

γsq
s



+ nF (logq(n)) + nE(n) + o(n),

where

F (x) :=

(
fq(a1, . . . , at)

qt
− g(0)q−{x}

)
(1 − {x})γ̃ +

1

qt

∞∑

s=0

γ̃
Ψ(q{x}+s−t)

q{x}+s−t

is a continuous and periodic function with period 1 and E(n) is defined as

E(n) := −
1

qt

t−1∑

s=1

γ̃
Ψ(nqs−t)

nqs−t
.

We have E(n) = 0 for all n ≡ 0 (mod qt−1) and E(n) = o(1).
Furthermore, we have o(n) = 0 in the above formula if γs = γ̃ for all s ∈ N0.

Proof. The proof is mainly based on Corollary 1 and Lemma 3. We define

H(x) :=

(
fq(a1, . . . , at)

qt
− g(0)q−{x}

)
(1 − {x})γ⌊x⌋ +

1

qt

⌊x⌋∑

s=0

γs
Ψ(qx−s−t)

qx−s−t
.

With this definition we can re-write the formula from Corollary 1 as

Sq(n,γ) =
n

qt
fq(a1, . . . , at)


{logq(n)}γr(n) +

r(n)−1∑

s=0

γs




−g(0)


{logq(n)}γr(n)q

r(n) +

r(n)−1∑

s=0

γsq
s


+ nH

(
logq(n)

)
.
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With γ̃ = lims→∞ γs we have

H(x) =

(
fq(a1, . . . , at)

qt
− g(0)q−{x}

)
(1 − {x})(γ⌊x⌋ − γ̃) +

1

qt

⌊x⌋∑

s=0

(γs − γ̃)
Ψ(qx−s−t)

qx−s−t

+

(
fq(a1, . . . , at)

qt
− g(0)q−{x}

)
(1 − {x})γ̃ +

1

qt

⌊x⌋∑

s=0

γ̃
Ψ(qx−s−t)

qx−s−t
.

It is easy to see, that

(
fq(a1, . . . , at)

qt
− g(0)q−{x}

)
(1 − {x})(γ⌊x⌋ − γ̃) +

1

qt

⌊x⌋∑

s=0

(γs − γ̃)
Ψ(qx−s−t)

qx−s−t
= o(1).

We define

F (x) :=

(
fq(a1, . . . , at)

qt
− g(0)q−{x}

)
(1 − {x})γ̃ +

1

qt

⌊x⌋∑

s=0

γ̃
Ψ(qx−s−t)

qx−s−t
.

Hence H(x) = F (x) + o(1) and o(1) = 0 if the sequence of weights is constant.
We show that F (x) is continuous on (0,∞). From Lemma 3 we know that Ψ(x) is

continuous on [0,∞) and therefore F (x) is continuous on [0,∞) \ Z. But we also know

from Lemma 3 that Ψ (1/qt) = −fq(a1,...,at)
qt + g(0), and therefore one can see easily that

F (x) is also continuous in any positive integer.
We define

F (x) := F (x) +
1

qt

∞∑

s=1

γ̃
Ψ(qx+s−t)

qx+s−t

and

E(n) := −
1

qt

t−1∑

s=1

γ̃
Ψ(nqs−t)

nqs−t
.

Then it is easy to see, that

H(logq(n)) = F (logq(n)) + E(n) + o(1),

where o(1) = 0 if the sequence of weights is constant.
For any nonnegative integer k ∈ N0 we have

F (x+ k) − F (x) =
1

qt

⌊x⌋+k∑

s=0

γ̃
Ψ(qx+k−s−t)

qx+k−s−t
−

1

qt

⌊x⌋∑

s=0

γ̃
Ψ(qx−s−t)

qx−s−t

=
1

qt

−1∑

s=−k

γ̃
Ψ(qx−s−t)

qx−s−t

=
1

qt

k∑

s=1

γ̃
Ψ(qx+s−t)

qx+s−t
,

and hence it follows that

F (x) = F ({x}) +
1

qt

⌊x⌋∑

s=1

γ̃
Ψ(q{x}+s−t)

q{x}+s−t
.
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Further we have
∞∑

s=1

γ̃
Ψ(qx+s−t)

qx+s−t
=

∞∑

s=⌊x⌋+1

γ̃
Ψ(q{x}+s−t)

q{x}+s−t

and

F ({x}) =

(
fq(a1, . . . , at)

qt
− g(0)q−{x}

)
(1 − {x})γ̃ +

1

qt
γ̃

Ψ(q{x}−t)

q{x}−t
.

So we can express F (x) the following way

F (x) =

(
fq(a1, . . . , at)

qt
− g(0)q−{x}

)
(1 − {x})γ̃ +

1

qt

∞∑

s=0

γ̃
Ψ(q{x}+s−t)

q{x}+s−t
.

Because Ψ(z) = 0 for any integer z we have E(n) = 0 if n ≡ 0 (mod qt−1) and because
Ψ(x) is bounded it is clear that E(n) = o(1).

The function F (x) is periodic with period 1 since {x} has period 1. Furthermore F (x)
is continuous on (0, 1) because {x} is continuous on (0, 1), Ψ(x) is continuous and

∞∑

s=0

γ̃
Ψ(q{x}+s−t)

q{x}+s−t

is absolute convergent. But F (x) is also continuous in any arbitrary integer z because

F (1−) =
1

qt

∞∑

s=0

γ̃
Ψ(q1+s−t)

q1+s−t
,

F (0+) =

(
fq(a1, . . . , at)

qt
− g(0)

)
γ̃ +

1

qt

∞∑

s=0

γ̃
Ψ(qs−t)

qs−t

and

Ψ(q−t) = −

(
fq(a1, . . . , at)

qt
− g(0)

)
,

by Lemma 3. This concludes the proof. 2

The following corollary gives the generalization of the results of Delange [2], of Kirschen-
hofer [6] and of Flajolet & Ramshaw [5]. Furthermore, this reproves a result of Cateland
[1] for the unweighted version of the generalized weighted digit-block-counting function.

Corollary 2 In the case of constant weights, say γs = γ̃ for all s ∈ N0, and g(0) = 0 we
get for the first moment of the generalized weighted digit-block-counting function

Sq(n, (γ̃)s≥0) = γ̃

(
1

qt

∑

a∈Γ

g(a)

)
n logq(n) + nF (logq(n)) + nE(n),

where F (x) is a continuous and periodic function on [0,∞) with period 1 and where
E(n) = o(1). In the case t = 1 we have E(n) = 0 for all n ≥ 2. Furthermore
F (x) is nowhere differentiable if and only if there exists at least one n ≥ 1 so that
sq(nq

t−1, (γ̃)s≥0) 6= 0.

Proof. The corollary is a consequence of Theorem 3. The statement on the nowhere
differentiability can be shown in the same way as [13, Théorème 3]. 2
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2.3 Single Converse Results

As already mentioned, for q = 2, t = 1 and g : Γ → R the identity function, the gener-
alized weighted digit-block-counting function equals the weighted sum-of-digits function
for binary representation (see Example 1). In this case it was proved by Larcher & Pil-
lichshammer [10] that a (weak) Delange type result holds if and only if the sequence of
weights converges. In other words in this special case also the converse of the assertion
in Theorem 3 holds. Motivated from their result now the question arises, whether this is
true in the more general case. More detailed, assume the formula for the first moment of
the generalized weighted digit-block-counting function is weak Delange type, i.e., of the
form

Sq(n,γ) =
n

qt
fq(a1, . . . , at)


{logq(n)}γr(n) +

r(n)−1∑

s=0

γs


 (4)

−g(0)



{logq(n)}γr(n)q
r(n) +

r(n)−1∑

s=0

γsq
s



+ nF (logq(n)) + nE(n) + o(n),

where F (x) is a continuous and periodic function and E(n) = 0 for all n ≡ 0 (mod qt−1)
and E(n) = o(1). (If o(n) = 0 we say the formula is Delange type and not only weak
Delange type.)

Is it then true that the sequence of weights has to converge? As it turned out, this
question is by no means trivial. Not even in the case t = 1 we can answer this question
for arbitrary functions g : Γ → R at the moment. However we can answer this question
for many special choices of functions g : Γ → R.

So let us assume now that Sq(n,γ) is of the form (4). From Corollary 1 (see also the
first lines of the proof of Theorem 3) we get F (logq(n))+E(n)+o(1) = H(logq(n)), where

H(logq(n))

=

(
fq(a1, . . . , at)

qt
− g(0)q−{logq(n)}

)
(1 − {logq(n)})γ⌊logq(n)⌋ +

1

qt

⌊logq(n)⌋∑

s=0

γs
Ψ(nq−s−t)

nq−s−t
.

For any fixed n ≥ 2 we get an equation, where the weights γs are the unknowns. Our
method is the following. We use different values for n ≥ 2 to get a system of equations,
which has at least one uniquely determined solution γs = const+o(1) for arbitrary s ∈ N0.
From this we obtain that the sequence of weights converges.

To evaluate the equation for different integers, we need the following lemma, whose
easy proof will be omitted.

Lemma 4 For any positive integer l ∈ N we have q−{logq(ql+1)} = ql/(ql + 1).

We will use the following different values of n:

• Let n = qr with r ≥ t− 1 an arbitrary positive integer. Then we get the equation

F (0) + o(1) =
t−1∑

i=1

γr−i
1

qi
Ψ

(
1

qt−i

)
.

(In particular this shows, that F (z) = 0 for any positive integer z if t = 1.)
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• For n = qr + qr−l with r > t+ l we get the equation

F (logq(q
l + 1)) + o(1)

= γr

(
fq(a1, . . . , at)

qt
− g(0)

ql

ql + 1

)
(1 − {logq(q

l + 1)}) +
ql

ql + 1
Ψ

(
ql + 1

qt+l

)
γr

+

t−1∑

i=1

γr−i
ql−i

ql + 1
Ψ

(
ql + 1

qt+l−i

)
+

l−1∑

i=0

γr−t−i
ql+i−t

ql + 1
Ψ

(
1

ql−i

)
.

In the following we will use these equations to obtain information on the weights γ,
whenever the generalized weighted digit-block-counting function is (weak) Delange type
(4).

2.3.1 The weighted sum-of-digits function

In this case we have t = 1 and g : Γ → R is given by g(a) = a for all a ∈ Γ. We use the
values n ∈ {qr + qr−2, qr + qr−1, qr−1 + qr−2} with r > 3 an arbitrary integer.

First we evaluate Ψ(x) at the relevant points with the help of Lemma 3. We have

Ψ

(
1

q

)
= −

q − 1

2
, Ψ

(
1

q2

)
= −

q − 1

2q
, Ψ

(
q + 1

q2

)
= −

q

2
+

3

2q
,

and

Ψ

(
q2 + 1

q3

)
= −

q

2
+

1

2
−

1

2q
+

3

2q2
.

Now 2(q2 + 1) times the equation for n = qr + qr−2 and 2(q + 1) times the equations
for n = qr + qr−1 and n = qr−1 + qr−2 give the following system of equations with real
constants C1, C2, C3:




C1 + o(1)
C2 + o(1)
C3 + o(1)





=




(q2 + 1)(1 − q) logq(1 + 1

q2
) + 2 1 − q (1 − q)q2

(1 − q2) logq(1 + 1
q
) + 2 1 − q 0

0 (1 − q2) logq(1 + 1
q
) + 2 1 − q








γr
γr−1

γr−2



 .

Since q ≥ 2 we find that the above 3 × 3 matrix is regular. Hence we get a solution for
γr, namely γr = C + o(1) with a real constant C. Since r > 3 was an arbitrary integer
we find that the sequence of weights converges. Together with the result from the last
section we obtain:

Theorem 4 The first moment of the weighted sum-of-digits function in arbitrary base q
is (weak) Delange type if and only if the sequence of weights is constant (converges).

2.3.2 The weighted Gray Code sum

For t = q = 2, and g : Γ → R given by g(0, 0) = g(1, 1) = 0 and g(1, 0) = g(0, 1) = 1 our
generalized weighted digit-block-counting function equals the Gray Code sum. We use
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the same values for n as above, n ∈ {2r + 2r−2, 2r + 2r−1, 2r−1 + 2r−2} with r > 3. Since
Ψ(1/2) = 0 we get a linear system of three equations with the matrix




−5 log2(5)+12
10

1
10

−1
5

−3 log2(3)+5
6

1
6

0

0 −3 log2(3)+5
6

1
6


 .

This matrix has rank 3. Hence we get a solution for γr, namely γr = C + o(1) with a real
constant C. Since r > 3 was an arbitrary integer we find that the sequence of weights
converges. Together with the result from the last section we obtain:

Theorem 5 The first moment of the weighted Gray code sum is (weak) Delange type if
and only if the sequence of weights is constant (converges).

2.3.3 The weighted single-block-occurrence of length 1

We have t = 1 and q ≥ 2 is an arbitrary integer. If g : Γ → R is given by g(a) = 1 for a
given integer a ∈ Γ and zero otherwise, then we count single integer occurrences.

We use the following values n ∈ {qr + qr−2, qr + qr−1, qr−1 + qr−2} with r > 3 an
arbitrary integer and evaluate Ψ(x) at the relevant points with the help of Lemma 3. We
have

Ψ

(
1

q

)
=

{
1 − 1

q
if a = 0,

−1
q

if a > 0,

Ψ

(
1

q2

)
=

{
1 − 1

q2
if a = 0,

− 1
q2

if a > 0,

Ψ

(
q + 1

q2

)
=





1 − q+1
q2

if a = 0,
1
q
− q+1

q2
if a = 1,

− q+1
q2

if a > 1,

Ψ

(
q2 + 1

q3

)
=





1 − q2+1
q3

if a = 0,
1
q2

− q2+1
q3

if a = 1,

− q2+1
q3

if a > 1.

Analogously to the previous cases we get for each integer a ∈ Γ a system of three linear
equations. For example for a = 0 we have the matrix




(q3 − q2 − 1) logq(1 + 1

q2
) q − 1 q − 1

(q2 − q − 1) logq(1 + 1
q
) q − 1 0

0 (q2 − q − 1) logq(1 + 1
q
) q − 1



 .

Clearly this matrix is regular. But we can also show that the corresponding matrix is
regular for any other digit a 6= 0. Hence we have:

Theorem 6 The first moment of the weighted single-block-occurrence function of length
1 is (weak) Delange type if and only if the sequence of weights is constant (converges).

21



2.3.4 The weighted single-block-occurrence of length 2

If t = 2 and g : Γ → R is given by g(a1, a2) = 1 for fixed integers a1, a2 and zero otherwise,
then the weighted generalized digit-block-counting function counts weighted single-block-
occurrences of length 2. In this case we have Ψ (1/q) = −1/q or Ψ (1/q) = 1 − 1/q
depending on the given integers a1 and a2. In any case we can be sure that Ψ (1/q) 6= 0.
For n = qr with r > 1 we get the equation

γr−1
1

q
Ψ

(
1

q

)
= F (0) + o(1),

which shows that the sequence γ converges. Hence we have:

Theorem 7 The first moment of the weighted single-block-occurrence function of length
2 is (weak) Delange type iff the sequence of weights is constant (converges).

2.3.5 The weighted single-block-occurrence of arbitrary length

Let t ≥ 1 and q ≥ 2 be integers. If g : Γ → R is given by g(a1, . . . , at) = 1 for integers
a1, . . . , at ∈ {0, 1, . . . , q−1} and zero otherwise, then the generalized weighted digit-block-
counting function counts weighted single-block-occurrences of length t.

The cases t = 1 or t = 2 have been treated above already. Here we prove similar
results for arbitrary t ≥ 3. To this end we need the following three lemmas, whose easy
proofs will be omitted.

Lemma 5 For any integers q ≥ 2 and l ≥ 1 we have logq(q
l + 1) /∈ Q.

Lemma 6 For any nonnegative integers l 6= k we have gcd
(
q2l

+ 1, q2k

+ 1
)
∈ {1, 2}.

Lemma 7 Let l ≥ 1 be an integer. The numbers 1, logq(q
21

+1), logq(q
22

+1), . . . , logq(q
2l

+
1) are linearly independent over Q.

Let t ≥ 3 and a1, . . . , at ∈ {0, . . . , q − 1} be fixed. We know from Lemma 3 that
Ψ (1/qi) 6= 0 for all i ∈ {1, . . . , t− 1}. Further

fq(a1, . . . , at)

qt
− g(0)

ql

ql + 1
6= 0

for any integer l ≥ 1.
Now qt times the equation for n = qr gives

z1γr−1 + · · ·+ zt−1γr−t+1 = qtF (0) + o(1), (5)

where zi ∈ Z \ {0}. This is an equation in t− 1 variables.
qt(ql + 1) times the equation for n = qr + qr−l with r > t+ l gives the equation

(w0 logq(q
l+1)+w′

0)γr+
t−1∑

i=1

wiγr−i+
l−1∑

i=0

wt+iγr−t−i = qt(ql+1)F (logq(q
l+1))+o(1), (6)
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where w′
0, wi ∈ Z\{0} for all i ∈ {0, . . . , t+ l−1}. We remark that logq(q

l+1) is irrational
according to Lemma 5.

We fix r ∈ N large enough and take l = 2k in Eq. (6) with k ∈ {1, . . . , t − 2} and
get t− 2 equations with t+ 2t−2 variables γr, . . . , γr−t−2t−2+1. We also take n = qs in Eq.
(5) with s ∈ {r − 2t−2, . . . , r + 1} and we get 2t−2 + 2 equations in the same variables
as above. Together we have t + 2t−2 equations with t + 2t−2 variables. We use the last
2t−2 + 2 lines to reduce the first t − 2 lines. This works because of the structure of the
matrix of coefficients. After this the first t− 2 lines of the matrix have at most the first
t− 2 coefficient not equal zero. By Lemma 5 and the structure of the original matrix of
coefficients we still have the irrational parts logq(q

2i

+ 1) in the first column of the new
matrix. We take a look at the left upper (t−2)×(t−2) sub-matrix. By Gauss elimination
we can reduce at least one line of this matrix, such that only the first coefficient of this line
is not equal zero. We know that the first coefficients cannot be zero, because of Lemma
7. This line gives the solution for any γr−j = C + o(1), where C is a real constant and
j ∈ {0, . . . , t − 3}. Because r > t + l was arbitrary, we find that the sequence γ has to
converge. We obtain:

Theorem 8 The first moment of the weighted single-block-occurrence function of arbi-
trary length t ≥ 1 is (weak) Delange type if and only if the sequence of weights is constant
(converges).

2.3.6 Open problem

We close Section 2 with the statement of a conjecture. We assume that the converse result
of Theorem 3 holds for every function g : Γ → R, which is not the zero-function. (Of
course, if g : Γ → R, g(a) = 0 for all a ∈ Γ, then we get for the first moment Sq(n,γ) = 0
such that the converse of Theorem 3 cannot hold.)

Conjecture 1 The first moment of the generalized weighted digit-block-counting func-
tion, where g : Γ → R is not the zero function, is (weak) Delange type if and only if the
sequence of weights is constant (converges).

However, we think that our method used in the previous subsections would be too com-
plicated to prove the converse for general functions g : Γ → R. The reason for this is that
it is not clear in general how to use the different values of n ∈ N. There will be lots of
different cases to consider and it seems to be hard to come to a positive end this way.

3 The generalized weighted digit-block-counting func-

tion and uniform distribution modulo one

In the first part of this paper we have been studying in detail the average growth-behavior
of generalized weighted digit-block-counting functions. In the following we will study
distribution properties of the d-dimensional generalized weighted digit-block-counting se-
quence as defined in (2).

The condition for the uniform distribution of (sq(k,γ))k=0,1,... is rather technical and
we need some notations to be able to state it.
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For arbitrary l, b ∈ {0, . . . , qt − 1} let

l = l0 + l1q + · · · + lt−1q
t−1 and b = b0 + b1q + · · ·+ bt−1q

t−1

and for arbitrary u ∈ N and i ∈ {1, . . . , d} let

Λ(i) = Λ(i)(t, u, l, b)

:=
(
γ

(i)
t(u−1)+1g

(i)(b1, . . . , bt−1, l0) + · · · + γ
(i)
tu−1g

(i)(bt−1, l0, . . . , lt−2)
)

−
(
γ

(i)
t(u−1)+1g

(i)(b1, . . . , bt−1, 0) + · · ·+ γ
(i)
tu−1g

(i)(bt−1, 0, . . . , 0)
)

+
(
γ

(i)
tu g

(i)(l0, l1, . . . , lt−1) + · · ·+ γ
(i)
tu+t−1g

(i)(lt−1, 0, . . . , 0)
)

and
Λ := (Λ(1), . . . ,Λ(d)).

For h := (h1, . . . , hd) ∈ Zd let

vu = vu,t,h := max
l,b∈{0,...,qt−1}

‖Λ · h‖.

Finally for h, l, u like above let

S∗
h(l, u) :=

(l+1)qtu−1∑

k=lqtu

e2πih·sq(k,γ).

We will show the following result.

Theorem 9 The sequence (sq(k,γ))k=0,1,... is uniformly distributed modulo one if and
only if for every h ∈ Zd \ {0} one of the following conditions holds:

(i) For every δ > 0, every u large enough and every l ∈ {0, 1, . . . , qt − 1} we have

|S∗
h(l, u)| < δu,

or

(ii)
∑∞

u=1 v
2
u = +∞.

Remark 2 Note that - from a heuristic point of view - condition (i) is a very rare event,
whereas (ii) is an event of high probability.

Remark 3 As is easily checked, for t = 1 and g(a) = a for all a ∈ Γ the condition of
Theorem 9 coincides with the condition of [11, Theorem 1].

Since the conditions (i) and (ii) are rather technical we consider two important exam-
ples.
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Example 4 First we consider linear functions g(i) : Γ → R, i.e.,

g(i)(k0, . . . , kt−1) = a
(i)
0 k0 + · · ·+ a

(i)
t−1kt−1

for all i ∈ {1, . . . , d} and for given reals a
(i)
j , j ∈ {0, 1, . . . , t− 1} and i ∈ {1, . . . , d}.

Inserting the g(i) in the definition of S∗
h(l, u) we find

|S∗
h(l, u)| =

∣∣∣∣∣

tu−t∏

j=−t+1

q−1∑

k=0

e
2πi

“

Pd
i=1 hiθ

(j)
i

”

k

∣∣∣∣∣ ,

where

θ
(j)
i =




γ
(i)
j
...

γ
(i)
j+t−1


 ·




a
(i)
t−1
...

a
(i)
0


 for all j = −t+ 1, . . . , t(u− 1)

(with γ
(i)
l = 0 if l < 0).

A necessary condition for (i) to hold therefore is that either

(ia)
∑d

i=1 hiθ
(j)
i = A

q
with A ∈ Z, A 6≡ 0 (mod q) for some j, or

(ib)
∑∞

j=1

∥∥∥
∑d

i=1 hiθ
(j)
i

∥∥∥
2

= +∞.

We will show that (ib) implies (ii), so that our sequence is uniformly distributed if and
only if (ia) or (ii) holds for every h 6= 0, and (ia) is equivalent to condition (i’) There is
an integer u such that for all l ∈ {0, 1, . . . , qt − 1} we have S∗

h(l, u) = 0.
First we find that Λ(i) = Λ(i)(t, u, l, b) is independent of the choice of b and is given by

Λ(i) =




γ
(i)
t(u−1)+1

...

γ
(i)
tu+t−1


 ·




∑t−1
k=0 a

(i)
k l0−(t−1)+k

...∑t−1
k=0 a

(i)
k l2(t−1)−(t−1)+k


 ,

where lk = 0 for k < 0 and for k > t− 1.
We finally show that (ib) implies

∞∑

u=1

max
l,b∈{0,...,qt−1}

‖Λ · h‖2 = +∞.

Let l̃(w) = l̃
(w)
0 + l̃

(w)
1 q + · · ·+ l̃

(w)
t−1q

t−1 with l̃
(w)
j = 0 if j 6= w and l̃

(w)
j = 1 if j = w. Then

Λ(i)(t, u, l̃(w), b) =

t−1∑

z=0

γ
(i)
t(u−1)+w+z+1a

(i)
(t−1)−z = θ

(t(u−1)+w+1)
i .

Let w ∈ {0, . . . , t− 1} be such that

∞∑

u=0

∥∥∥∥∥

d∑

i=1

hiθ
(tu+w+1)
i

∥∥∥∥∥

2

= +∞

25



(such a w exists since (ib) holds). Then

∞∑

u=1

∥∥∥Λ(t, u, l̃(w), b) · h
∥∥∥

2

=
∞∑

u=0

∥∥∥∥∥

d∑

i=1

hiθ
(tu+w+1)
i

∥∥∥∥∥

2

= +∞

and hence (ii) holds. This closes our example.

Motivated by this example and by the result in [11] one may assume that the rare
event (i) in Theorem 9 can be replaced by the even more rare event (i’) There is an integer
u such that for all l ∈ {0, 1, . . . , qt − 1} we have S∗

h(l, u) = 0. This, however, is in general
not the case. To illustrate this, we consider the weighted Gray code sequence.

Example 5 As second example we consider the weighted Gray code sequence, i.e., d = 1,
q = 2, t = 2 and g : Γ → R given by g(k0, k1) = k0 ⊕k1 where ⊕ denotes addition modulo
2. Here for l = l0+l12 and b = b0+b12 we have (we omit the superscript for the dimension)

Λ(2, u, l, b) = γ2u−1((b1 ⊕ l0) − b1) + γ2u(l0 ⊕ l1) + γ2u+1l1

and therefore

vu = max{‖h(γ2u + γ2u+1)‖, ‖h(γ2u−1 + γ2u)‖, ‖h(γ2u−1 + γ2u+1)‖,

‖h(−γ2u−1 + γ2u)‖, ‖h(−γ2u−1 + γ2u+1)‖}.

For l = l0 + l12 and k = k0 + k12 + · · ·+ k2u−12
2u−1 we have

s2(k+lqtu) = (k0⊕k1)γ0+· · ·+(k2u−2⊕k2u−1)γ2u−2+(k2u−1⊕l0)γ2u−1+(l0⊕l1)γ2u+l1γ2u+1.

Therefore

|S∗
h(l, u)| =

∣∣∣∣∣∣

1∑

k0,...,k2u−1=0

e2πih((k0⊕k1)γ0+···+(k2u−2⊕k2u−1)γ2u−2+(k2u−1⊕l0)γ2u−1)

∣∣∣∣∣∣
.

As for fixed l0 the mapping {0, 1}2u → {0, 1}2u, (k0, . . . , k2u−1) 7→ (k0 ⊕ k1, . . . , k2u−2 ⊕
k2u−1, k2u−1 ⊕ l0) is bijective, we obtain

|S∗
h(l, u)| =

∣∣∣∣∣

2u−1∏

j=0

1∑

k=0

e2πihkγj

∣∣∣∣∣ .

A necessary condition for (i) to hold therefore is that either

(ia) hγj = A
2

with A ∈ Z, A ≡ 1 (mod 2) for some j, or

(ib)
∑∞

j=1 ‖hγj‖
2 = +∞.

Now we construct a sequence γ such that (ib) does not imply (ia) or (ii). (Note that (ia)
is equivalent to (i’) mentioned above.)

Let h 6= 0 be fixed. We define the sequence γ = (γj)j≥1 in such a way that hγj 6=
1
2

but∣∣hγj − 1
2

∣∣ < j−2 for all j ≥ 1. Then we have ‖hγj‖ ≥ 1
2
− j−2 and hence ‖hγj‖

2 ≥ 1
4
− j−2.

Therefore
∞∑

j=1

‖hγj‖
2 = +∞
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such that (ib) is satisfied.
Of course, condition (ia) is not satisfied by the construction of the γj’s. Now we show

that also (ii) cannot hold. For i, j ∈ N we have

‖h(γi + γj)‖ ≤ |h(γi + γj) − 1| ≤

∣∣∣∣hγi −
1

2

∣∣∣∣+
∣∣∣∣hγj −

1

2

∣∣∣∣ <
1

i2
+

1

j2
≤

2

min{i, j}2
.

We also have

‖h(−γi + γj)‖ ≤ ‖h(γi + γj)‖ + ‖2hγi‖ <
2

min{i, j}2
+

2

i2
≤

4

min{i, j}2
.

Therefore it follows that vu <
4

(2u−1)2
for all u ≥ 1 and from this we obtain

∑∞
u=1 v

2
u < +∞.

Hence (ii) is not satisfied. This shows that (i) cannot be replaced by (i’) in general.
We conclude this example by noting that for the sequence γ given by γj = α for all

j ∈ N, the conditions (ib) and (ii) are equivalent to max{‖hα‖, ‖2hα‖} 6= 0. Compare
this with [9, Remark 3].

For the proof of Theorem 9 we will use the following lemmas.

Lemma 8 Let Q ∈ N,

σ(0, 0) = σ(1, 0) = · · · = σ(Q− 1, 0) = 1,

further, for l, j ∈ {0, . . . , Q − 1} and w ∈ N0 let α(l, j, w) ∈ C with |α(l, j, w)| = 1 and
α(0, j, w) = 1 for all j and w.

Finally, for l ∈ {0, . . . , Q− 1} and w ∈ N0 let

σ(l, w + 1) =

Q−1∑

j=0

α(l, j, w)σ(j, w).

Then with an absolute constant c > 0 (depending only on Q) and with

νw := max
l,j∈{0,...,Q−1}

∥∥∥∥
argα(l, j, w)

2π

∥∥∥∥

(where arg means the argument of a complex number; arg reiγ := γ for −π < γ ≤ π) we
have for all l ∈ {0, . . . , Q− 1}, u ∈ N and x, y ∈ {0, 1, 2}, that

|σ(l, 3u+ x)| ≤ Q4
u−1∏

w=0

(
Q3 − cν2

3w+y

)
.

Proof. In the following we use the fact that there exists a positive constant c1 (depending
only on Q) such that

∣∣∣∣∣

Q−1∑

l=0

α(l, j, w)

∣∣∣∣∣ =
∣∣∣∣∣1 +

Q−1∑

l=1

α(l, j, w)

∣∣∣∣∣ ≤ Q− c1ν
2
w

for all j and w.
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We have

|σ(0, w + 1)| =

∣∣∣∣∣

Q−1∑

j=0

σ(j, w)

∣∣∣∣∣

=

∣∣∣∣∣

Q−1∑

j=0

Q−1∑

k=0

α(j, k, w − 1)σ(k, w − 1)

∣∣∣∣∣

=

∣∣∣∣∣

Q−1∑

k=0

(
Q−1∑

j=0

α(j, k, w − 1)

)
σ(k, w − 1)

∣∣∣∣∣

≤ Q(Q− c1ν
2
w−1)Tw−1

= (Q2 − cν2
w−1)Tw−1,

where Tw−1 := maxk∈{0,...,Q−1} |σ(k, w − 1)|.
Trivially we have

|σ(l, w + 1)| ≤ Q2Tw−1 for all l ∈ {0, . . . , Q− 1},

and hence

|σ(l, w + 2)| ≤ (Q− 1)Q2Tw−1 + (Q2 − cν2
w−1)Tw−1 = (Q3 − cν2

w−1)Tw−1

and
|σ(l, w + z)| ≤ Qz−2(Q3 − cν2

w−1)Tw−1

for z ∈ N, z ≥ 2. Hence finally

|σ(l, 3u+ x)| ≤ Qx+2−y(Q3 − cν2
3(u−1)+y)T3(u−1)+y

≤ Qx+2−y

u−1∏

w=0

(Q3 − cν2
3w+y)Ty

≤ Qx+2

u−1∏

w=0

(Q3 − cν2
3w+y),

and the result follows. 2

Lemma 9 Let z1, . . . , zQ be complex numbers with |arg zi − arg zj | < π/8 for all i, j ∈
{1, . . . , Q}. Let ρ1, . . . , ρQ be complex numbers with |ρi| = 1 and with |arg ρi| < π/8 for
all i ∈ {1, . . . , Q}.

Let B = z1 + · · · + zQ and Bρ = ρ1z1 + · · · + ρQzQ. Then we have

|argBρ − argB| ≤ 2 max
i∈{1,...,Q}

|arg ρi|.

Proof. This is [9, Lemma 3]. 2

Lemma 10 There is a constant c > 0 such that for all µ > 0 and all z1, . . . , zQ ∈ C

(Q ≥ 2) we have
|z1 + · · ·+ zQ| ≥ (Q− cµ2) min

j∈{1,...,Q}
|zj|

provided that maxi,j∈{1,...,Q}

∥∥ arg zi

2π
−

arg zj

2π

∥∥ ≤ µ.
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We omit the easy proof of this lemma.
Now we can give the proof of Theorem 9.

Proof. By Weyl’s criterion (see for example [3, 8]) it suffices to investigate under which
conditions

1

N
Sh(N) :=

1

N

N−1∑

k=0

e2πih·sq(k,γ)

tends to zero as N → ∞ for all h ∈ Zd \ {0}.
Let N ∈ N have the following representation in base qt,

N =
r∑

j=0

Njq
tj

with Nj ∈ {0, 1, . . . , qt − 1} and Nr 6= 0. Let further

Lj := Nj+1q
t(j+1) + · · ·+Nrq

tr

for j ∈ {0, . . . , r − 1} and Lr := 0.
Then (for simplicity we write s(k) instead of sq(k,γ) and e(x) instead of e2πix in the

following)

Sh(N) =
N−1∑

k=0

e(h · s(k))

=

r∑

j=0

Nj−1∑

ǫ=0

Lj+(ǫ+1)qtj−1∑

k=Lj+ǫqtj

e(h · s(k))

=
r∑

j=0

Nj−1∑

ǫ=0

qtj−1∑

k=0

e(h · s(k + Lj + ǫqtj))

=

r∑

j=0

Nj−1∑

ǫ=0

qt−1∑

l=0

(l+1)qt(j−1)−1∑

k=lqt(j−1)

e(h · s(k + Lj + ǫqtj)).

Consider now fixed ǫ, l and k with q-adic representations

ǫ = ǫ0 + ǫ1q + · · ·+ ǫt−1q
t−1,

l = l0 + l1q + · · · + lt−1q
t−1 and

k = k0 + k1q + · · ·+ kt(j−1)−1q
t(j−1)−1 + lqt(j−1).

Then the argument k + Lj + ǫqtj has a q-adic representation of the form

k0k1 . . . kt(j−1)−1l0l1 . . . lt−1ǫ0ǫ1 . . . ǫt−1Nj+1︸︷︷︸
t digits

. . . Nr︸︷︷︸
t digits

and hence for the i-th coordinate s(i) of s we have

s(i)(k + Lj + ǫqtj) = s(i)(k) + s(i)(ǫqtj + Lj) + Ω(i)(t, j, l, ǫ),
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where

Ω(i)(t, j, l, ǫ) := −γ
(i)
t(j−1)+1g(l1, . . . , lt−1, 0) − · · · − γ

(i)
tj−1g(lt−1, 0, . . . , 0)

−γ
(i)
t(j−1)+1g(0, . . . , 0, ǫ0) − · · · − γ

(i)
tj−1g(0, ǫ0, . . . , ǫt−1)

+γ
(i)
t(j−1)+1g(l1, . . . , lt−1, ǫ0) + · · · + γ

(i)
tj−1g(lt−1, ǫ0, . . . , ǫt−1)

and therefore with Ω := (Ω(1), . . . ,Ω(d)) we have

e(h · s(k + Lj + ǫqtj)) = e(h · s(k))e(h · (s(ǫqtj + Lj) + Ω))

=: e(h · s(k))ϕh(t, j, l, ǫ)

and

Sh(N) =
r∑

j=0

Nj−1∑

ǫ=0

qt−1∑

l=0

ϕh(t, j, l, ǫ)

(l+1)qt(j−1)−1∑

k=lqt(j−1)

e(h · s(k))

=
r∑

j=0

Nj−1∑

ǫ=0

qt−1∑

l=0

ϕh(t, j, l, ǫ)S∗
h(l, j − 1).

Now if condition (i) is satisfied, then of course 1
N
Sh(N) tends to zero as N → ∞. Oth-

erwise, and if condition (ii) is satisfied, then for l = 0, . . . , qt − 1 and u ∈ N0 we study
now

S∗
h(l, u) =

qt−1∑

b=0

(b+1)qt(u−1)−1∑

k=bqt(u−1)

e(h · s(k + lqtu)).

Since s(i)(k + lqtu) = s(i)(k) + Λ(i)(t, u, l, b), we have

S∗
h(l, u) =

qt−1∑

b=0

ψh(t, u, l, b)S∗
h(b, u− 1),

where ψh(t, u, l, b) := e(h · Λ). Note that ‖h · Λ‖ =
∥∥∥ argψh(t,u,l,b)

2π

∥∥∥.
Since by assumption

∑∞
u=1 v

2
u = +∞, there exists a y ∈ {0, 1, 2} with

∞∑

w=0

v2
3w+y = +∞.

We can apply Lemma 8 and we obtain, with a positive constant c depending only on q,

|S∗
h(l, 3u+ x)| ≤ q4t

u−1∏

w=0

(q3t − cv2
3w+y)

for all x ∈ {0, 1, 2}.
Altogether we obtain

|Sh(N)| ≤ q2t
r∑

j=0

max
l∈{0,...,qt−1}

|S∗
h(l, j − 1)| ≤ q2tq4t

r∑

j=0

⌊ j−4
3 ⌋∏

w=0

(q3t − cv2
3w+y)
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and
∣∣∣∣
Sh(N)

N

∣∣∣∣ ≤ q6t
r∑

j=0

qjt

qrt

⌊ j−4
3 ⌋∏

w=0

(
1 −

c

q3t
v2
3w+y

)
.

We have
∏A

w=0

(
1 − c

q3t v
2
3w+y

)
→ 0 if A tends to infinity. For arbitrary ε > 0 let j0 be

such that
⌊ j−4

3 ⌋∏

w=0

(
1 −

c

q3t
v2
3w+y

)
< ε for all j ≥ j0.

Then ∣∣∣∣
Sh(N)

N

∣∣∣∣ ≤ q6t

(
j0−1∑

j=0

qjt

qrt
+

r∑

j=j0

qjt

qrt
ε

)
< 4q6tε

for r large enough. Now the first direction of our result follows.
Assume now that neither (i) nor (ii) is satisfied. Since (i) is not satisfied, there exists

a δ > 0 such that for infinitely many u there is an l such that

|S∗
h(l, u)| >

δ

2
max

b∈{0,...,qt−1}
|S∗

h(b, u− 1)|. (7)

Let now 0 < ε < 1/32 be so small that 8πqt

δ
ε < 1

3
and let u0 be such that vu < ε for all

u ≥ u0 (note that such u0 exists since (ii) is not satisfied), and let u1 ≥ u0 be such that
(7) is satisfied. Then |S∗

h(l, u1)| > 0 and for every l′ ∈ {0, . . . , qt − 1} we have

|S∗
h(l, u1) − S∗

h(l′, u1)| ≤

qt−1∑

b=0

|ψh(t, u1, l, b) − ψh(t, u1, l
′, b)| · |S∗

h(b, u1 − 1)|

≤ qt4πvu1 max
b∈{0,...,qt−1}

|S∗
h(b, u1 − 1)|

≤
8πqt

δ
vu1 |S

∗
h(l, u1)|.

Hence ∣∣∣∣1 −
S∗

h(l′, u1)

S∗
h(l, u1)

∣∣∣∣ <
8πqt

δ
vu1 <

8πqt

δ
ε <

1

3

and therefore

|argS∗
h(l′, u1) − arg S∗

h(l, u1)| < arcsin
1

3
<
π

8
.

So we can apply Lemma 9 (note that ε < 1/32 and hence 4πvu1 < π/8) and obtain that

|argS∗
h(l′, u) − arg S∗

h(l, u)| < 4πvu for all u > u1.

Further we have

|S∗
h(l′, u1)| ≥ |S∗

h(l, u1)|

(
1 −

8πqt

δ
ε

)
>

2

3
|S∗

h(l, u1)| =: B > 0

for all l′ ∈ {0, . . . , qt − 1}.

31



By Lemma 10 we obtain for all u > u1 and all l′ ∈ {0, . . . , qt − 1} ,

|S∗
h(l′, u)| ≥ (qt − c′′v2

u) min
b∈{0,...,qt−1}

|S∗
h(b, u− 1)|,

hence

|S∗
h(0, u)| ≥

(
u∏

w=u1

(qt − c′′v2
w)

)
B

and therefore

1

qut
|Sh(qut)| =

1

qut
|S∗

h(0, u)| ≥
1

qt(u1−1)

u∏

w=u1

(
1 −

c′′

qt
v2
w

)
,

with the last expression not tending to zero as u→ ∞, since
∑∞

u=1 v
2
u is finite. 2
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fonctions sommatoires. In R. L. Graham, J. Nesetril (eds), The mathematics of Paul
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