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Abstract

Polynomial lattice point sets are polynomial versions of classical lattice point sets and
among the most widely used classes of node sets in quasi-Monte Carlo integration algorithms.
In this paper, we show the existence of s-dimensional polynomial lattice point sets with
N points whose star discrepancy D∗

N satisfies a discrepancy bound of the type ND∗
N ≤

c(log N)s−1 log log N (c a constant). This result is a substantial extension of an earlier result
by Larcher.

Keywords: Polynomial lattice point sets, star discrepancy.

2010 Mathematics Subject Classification: 11K38, 11K06, 15A99.

1 Introduction and Statement of the Result

For a point set P = {x0, . . . ,xN−1} of N ≥ 1 points in the s-dimensional unit cube [0, 1)s, the
star discrepancy is defined by

D∗
N (P) = sup

B

∣∣∣∣AN (B)
N

− λ(B)
∣∣∣∣ ,

where the supremum is extended over all subintervals B of [0, 1)s of the form B =
∏s

i=1[0, bi),
0 < bi ≤ 1, AN (B) denotes the number of n for which xn ∈ B, and λ is the Lebesgue measure.
It should be noted that by “point set” we do not mean a set in the set-theoretic sense, but a
collection of points where single points may occur repeatedly. For a finite or infinite sequence ω
we denote by D∗

N (ω) the star discrepancy of the first N terms of ω.
The star discrepancy is a quantitative measure for the irregularity of distribution of P, i.e.,

the deviation from perfect uniform distribution. Point sets with low star discrepancy are required
as nodes of quasi-Monte Carlo algorithms for the integration of high dimensional functions; see
the monographs [3, 8] for further information.

It is known that for any dimension s there exists a constant c(s) > 0, depending only on s,
such that for any point set P consisting of N points in [0, 1)s we have

D∗
N (P) ≥ c(s)

(log N)κs

N
,

where κ2 = 1 (see [1, 11]) and κs ≥ (s− 1)/2 for s ≥ 3 which follows from a result of Roth [10].
For s ≥ 3 the lower bound on κs has recently been improved to κs ≥ (s − 1)/2 + δs for some
unknown δs ∈ (0, 1/2); see [2]. The exact value of κs for s ≥ 3 is not known until now, but it is
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conjectured that κs = s− 1. (Throughout the paper there will appear several constants c which
are assumed to be different from occurence to occurrence. These constants may depend on the
dimension s or on other quantities which are then indicated in parentheses.)

The currently most effective constructions of point sets with small star discrepancy are based
on the concept of (t, m, s)-nets in a base b. For a definition of such nets see [3, 8]. In [7] (see also
[3, 8]) Niederreiter introduced a special construction of such nets. These types of nets, which
are based on rational functions over finite fields, are known as polynomial lattice point sets.

For the construction of a polynomial lattice point set, choose a prime q and let Fq be the
finite field consisting of q elements. We identify Fq with Zq := {0, . . . , q − 1} endowed with
the usual arithmetic operations modulo q (addition and subtraction modulo q will be denoted
by ⊕ and 	, respectively). Furthermore let Fq[x] be the field of polynomials over Fq, and let
Fq((x−1)) be the field of formal Laurent series over Fq, with elements of the form

∑∞
l=z tlx

−l,
where z is an arbitrary integer and the tl are arbitrary elements in Fq. Note that the field of
Laurent series contains the field of rational functions as a subfield. Given an integer m ≥ 1,
define a map φm : Fq((x−1)) → [0, 1) by

φm

( ∞∑
l=z

tlx
−l

)
:=

m∑
l=max(1,z)

tlq
−l.

For 0 ≤ n < qm let n = n0 + n1q + · · ·+ nm−1q
m−1, where ni ∈ Zq, be the q-adic expansion

of n. With each such n we associate the polynomial n(x) =
∑m−1

r=0 nrx
r ∈ Fq[x].

Given a prime q, an integer m ≥ 1, and a dimension s ≥ 1, choose an f ∈ Fq[x] with
deg(f) = m and s polynomials g1, . . . , gs ∈ Fq[x] and define

xn :=
(

φm

(
n(x)g1(x)

f(x)

)
, . . . , φm

(
n(x)gs(x)

f(x)

))
for 0 ≤ n < qm.

The point set P(g, f) = {xn : 0 ≤ n < qm}, where g := (g1, . . . , gs), is called polynomial lattice
point set.

For any s ∈ N and any prime number q there exists a c(s, q) > 0, depending only on s and q,
with the following property: for any f ∈ Fq[x] with deg(f) = m there exist g ∈ Fq[x]s such that

D∗
N (P(g, f)) ≤ c(s, q)

(log N)s

N
, (1)

where N = qm; see [3, 8]. Such g can be constructed by using the so-called component-by-
component method (see [3]). There are even vectors g of the form g = (1, g, . . . , gs−1) (mod f)
which satisfy an upper bound of the form (1) (see again [3]). However, it was shown in [4] that
the method of proof used to show (1) does not allow an improvement of this upper bound with
respect to the order of magnitude in the total number of points N .

In [9] Larcher showed the following improved existence result for the special case f(x) = xm.
There exists a c(s, q) > 0 with the property that for every m ∈ N there exists a vector g ∈ Fq[x]s

such that

D∗
N (P(g, xm)) ≤ c(s, q)

(log N)s−1 log log N

N
,

where N = qm.
It should also be noted that for s = 2 and q = 2 there is, for any m ≥ 1, an explicit

construction due to Niederreiter of a polynomial g ∈ F2[x] which yields D∗
N (P((1, g), xm)) ≤

c(log N)/N , where N = 2m — combine the results from [8, p. 86–88] with [6, Theorem 2].
It is the aim of this paper to show a result corresponding to that of Larcher for all f ∈ Fq[x]

with gcd(f, x) = 1. To be more precise, we are going to show the following theorem.
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Theorem 1 Let s ∈ N and let q be a prime number. Then there exists a c(s, q) > 0, depending
only on q and s, with the following property: for any polynomial f ∈ Fq[x] of degree m with
gcd(f, x) = 1 there exists a generating vector g = (g1, . . . , gs) ∈ Fq[x]s of monic polynomials
where g1 = 1 and deg(gi) < m for 2 ≤ i ≤ s, such that, for the star discrepancy of the
polynomial lattice point set P(g, f), we have

D∗
N (P(g, f)) ≤ c(s, q)

(log N)s−1 log log N

N
,

where N = qm.

2 The Proof of Theorem 1

The proof of Theorem 1 is inspired by the proof of the corresponding result in [9]. Since many
technical difficulties have to be overcome in the extension of Larcher’s result to the one presented
here, and in order to keep the paper self-contained, we provide a detailed outline of the proof.

Proof. Let f(x) = xm + a1x
m−1 + a2x

m−2 + · · ·+ am−1x + am. Furthermore, let g1 = 1 and, for
2 ≤ i ≤ s, let gi(x) = g

(i)
1 xm−1 + g

(i)
2 xm−2 + · · ·+ g

(i)
m−1x + g

(i)
m .

We interpret P(g, f) = {x0, . . . ,xqm−1} as a digital net over Fq with generating matrices
C(1), . . . , C(s). I.e., for 0 ≤ k < qm with q-adic expansion k = k0 + k1q + · · · + km−1q

m−1 with
digits ki ∈ Zq

∼= Fq, set ~k := (k0, . . . , km−1)>. Then for 1 ≤ i ≤ s the i-th component x
(i)
k

of xk is given by x
(i)
k = xk,i,1q

−1 + · · · + xk,i,mq−m, where (xk,i,1, . . . , xk,i,m)> = C(i)~k; see [3,
Chapter 10]. Motivated by this construction, we will often write x

(i)
k
∼= C(i)~k.

According to what is outlined in [3, Section 10.1], the first generating matrix C(1) of the
point set P(g, f) is of the form (since g1 = 1)

C(1) =


0 . . . 0 0 1
0 . . . 0 1 u

(1)
m+1

0 . . . 1 u
(1)
m+1 u

(1)
m+2

... . . . . . .
...

...
1 u

(1)
m+1 u

(1)
m+2 . . . u

(1)
2m−1

 ,

where the u
(1)
i are elements in Fq, depending on f . Furthermore, the matrices C(2), . . . , C(s) are

Hankel matrices over Fq, i.e., they are of the form

C(i) =


u

(i)
1 . . . . . . u

(i)
m−1 u

(i)
m

u
(i)
2 . . . . . . u

(i)
m u

(i)
m+1

u
(i)
3 . . . . . . u

(i)
m+1 u

(i)
m+2

... . . . . . .
...

...
u

(i)
m u

(i)
m+1 u

(i)
m+2 . . . u

(i)
2m−1

 , i = 2, . . . , s, (2)

where the u
(i)
j are again elements of Fq, depending on gi and f . (In fact, u

(i)
l is the coefficient

of x−l in the Laurent series expansion of gi/f ; see [3, Section 10.1].)
Since C(1) is non-singular, we can find a non-singular matrix C̃ = C̃(C1) such that

C(1)C̃ = Em :=


0 . . . 0 0 1
0 . . . 0 1 0
... . . . . . . . . .

...
0 1 0 . . . 0
1 0 0 . . . 0

 .
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Note that, due to the special form of C(1), C̃ is a non-singular right upper triangular matrix.
We now write D(i) := C(i)C̃ for 1 ≤ i ≤ s. It is well known (see, e.g., [3, Lemma 4.61]) that
if we multiply the generating matrices of a digital net by a non-singular matrix from the right,
the net does not change except for the order of points. Hence we can say that P(g, f), up to
the order of points, is also generated by D(1), D(2), . . . , D(s), where D(1) = Em. In order to
keep an overview, we denote this re-ordered version of P(g, f) by R(g, f) = {r0, . . . , rqm−1}
where rk = (r(1)

k , . . . , r
(s)
k ) and r

(i)
k
∼= D(i)~k. In particular, the points of R(g, f) are of the form

rk = ( k
qm , r

(2)
k , . . . , r

(s)
k ), for all 0 ≤ k < qm.

Now we use a result from [5] (see also [3, Lemma 3.45]) to obtain

ND∗
N (P(g, f)) = ND∗

N (R(g, f)) ≤ max
1≤N0≤N

N0D
∗
N0

((r̃k)N−1
k=0 ) + 1,

where r̃k is the projection of rk onto its last s− 1 components, i.e., r̃k = (r(2)
k , . . . , r

(s)
k ).

Theorem 1 now follows by applying Proposition 1 below to the sequence (r̃k)N−1
k=0 . 2

Proposition 1 Let a polynomial f ∈ Fq[x] of degree m with gcd(f, x) = 1 and a non-singular
right upper triangular matrix C̃ over Fq be given. Then there exists a polynomial lattice P(g, f)
with generating matrices C(1), . . . , C(s) (which are obtained from g and f as usual by the algo-
rithm outlined, e.g., in [3, Chapter 10]), such that the re-ordered point set Q(g, f), generated by
D(1), . . . , D(s), where D(i) = C(i)C̃, satisfies

N0D
∗
N0

(Q(g, f)) ≤ c(s, q)(log N)s log log N

for all N0 ∈ {1, . . . , N}, where c(s, q) > 0 is a constant depending only on s and q.

The proof of Proposition 1 requires several lemmas, which we shall formulate and discuss
within the proof of the proposition.

Proof. Let N0 ∈ {1, . . . , N}. We are interested in studying the point set {y0, . . . ,yN0−1}, where

yk = (y(1)
k , . . . , y

(s)
k ) and y

(i)
k
∼= D(i)~k,

where ~k denotes the m-dimensional base q digit vector of k, 0 ≤ k ≤ N0 − 1. Let now T :
{0, . . . , qm − 1} → {0, . . . , qm − 1} be the map that is defined by the matrix C̃ via ~T (k) = C̃~k
where ~T (k) is the m-dimensional q-adic digit vector of T (k). Then we can, equivalently, study
the point set {xT (0),xT (1), . . . ,xT (N0−1)}, where

xT (k) = (x(1)
T (k), . . . , x

(s)
T (k)) and x

(i)
T (k)

∼= C(i) ~T (k).

Let

C(i) =


u

(i)
1 . . . . . . u

(i)
m−1 u

(i)
m

u
(i)
2 . . . . . . u

(i)
m u

(i)
m+1

u
(i)
3 . . . . . . u

(1)
m+1 u

(i)
m+2

... . . . . . .
...

...
u

(i)
m u

(i)
m+1 u

(i)
m+2 . . . u

(i)
2m−1

 = (c(i)
j,l )

m
j,l=1,

where c
(i)
j,l = u

(i)
l+j−1.

For a given r ∈ {T (0), T (1), . . . , T (N0 − 1)} with base q representation r =
∑m−1

k=0 rkq
k we

have

x(i)
r =

m∑
l=1

q−l
m−1⊕
k=0

rku
(i)
l+k,
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where
⊕

denotes a sum modulo q.
We write

N0 =
m0−1∑
j=0

bjq
j , bj ∈ Zq, bm0−1 6= 0.

For fixed integers 0 ≤ n < m0, and 0 ≤ b < bn, we consider integers k belonging to the set

I(n, b) :=

k ∈ Z :
m0−1∑
j=n+1

bjq
j + bqn ≤ k <

m0−1∑
j=n+1

bjq
j + (b + 1)qn

 . (3)

For such k we have the q-adic expansion

k =
n−1∑
j=0

αjq
j + bqn +

m0−1∑
j=n+1

bjq
j (4)

with αj ∈ Zq, i.e., the m-dimensional base q digit vector is of the form

~k = (α0, . . . , αn−1, b, bn+1, . . . , bm0−1, 0, 0, . . . 0)> .

Since C̃ is right upper triangular,

C̃~k =
(
a0, . . . , an−1, b

′, b′n+1, . . . , b
′
m0−1, 0, 0, . . . , 0

)> (5)

with a0, . . . , an−1 ∈ Zq, and with certain fixed b′, b′n+1, . . . , b
′
m0−1. (Note that, if α0, . . . , αn−1

run through all possible values, then so do a0, . . . , an−1.) Hence we have

T (k) =
n−1∑
j=0

ajq
j + b′qn +

m0−1∑
j=n+1

b′jq
j , (6)

and therefore

x
(i)
T (k) =

m∑
l=1

q−l

n−1⊕
j=0

aju
(i)
l+j ⊕A

(i)
l

 ,

where

A
(i)
l = b′u

(i)
l+n ⊕

m0−n−1⊕
j=1

b′n+ju
(i)
l+n+j

 .

For given, fixed A
(i)
l , we now consider the sequence x̃T (k) = (x̃(1)

T (k), . . . , x̃
(s)
T (k)) with

x̃
(i)
T (k) =

n∑
l=1

q−l

n−1⊕
j=0

aju
(i)
l+j ⊕A

(i)
l

 , (7)

where k is as in (4) with αj ∈ Zq arbitrary, and where a0, . . . , an−1 are the first n components of
C̃~k as given by (5) (i.e., each of the aj runs through all elements of Zq if we vary α0, . . . , αm−1).

Let, for 1 ≤ i ≤ s,
C̃

(i)
1 := (c(i)

j,l )
n
j,l=1

be the left upper n × n submatrix of C(i), and let c
(i)
j be the j-th row of C̃

(i)
1 . Hence we can

write (7) in the form

x̃
(i)
T (k)

∼= C̃
(i)
1 (a0, . . . , an−1)> ⊕ (A(i)

1 , . . . , A(i)
n )>.
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Let h(1) ∈ N0 be maximal such that c
(1)
1 , . . . , c

(1)
h(1) are linearly independent over Fq. If

p(1) ≤ h(1), then for all d ∈ N0, 0 ≤ d < qp(1), there are exactly qm−p(1) integers k of the form
(4) such that

x̃
(1)
T (k) ∈

[
d

qp(1)
,
d + 1
qp(1)

)
. (8)

In the following lemma we characterize those x̃T (k) for which x̃
(1)
T (k) lies in an interval of the

type displayed in (8). This characterization, though rather technical, will enable us to efficiently
count points in certain intervals in order to derive discrepancy bounds.

Lemma 1 For every p(1) ≤ h(1) there exist

(a) a column vector γ(1) = (0, 0, . . . . . . . . . , 0︸ ︷︷ ︸
p(1) components

, γ
(1)
p(1)+1, . . . , γ

(1)
n )>, with some γ

(1)
i ∈ Fq,

(b) a non-singular matrix V (1) ∈ Fn×n
q (depending on p(1) and on C̃

(1)
1 ),

(c) and n-dimensional column vectors v
(1)
i over Fq (depending on p(1), C̃

(1)
1 , and the C̃

(i)
1 , A

(i)
l ),

for 2 ≤ i ≤ s,

such that for d =
∑p(1)−1

j=0 djq
j, dj ∈ Zq, and for k with x̃

(1)
T (k) ∈

[
d

qp(1) ,
d+1
qp(1)

)
, we have

(1)
x̃

(1)
T (k)

∼= C̃
(1)
1 V (1)(d1,η)> ⊕ γ(1)

for some η ∈ Fn−p(1)
q ,

(2) and
x̃

(i)
T (k)

∼= C̃
(i)
1 V (1)(d1,η)> ⊕ v

(1)
i for 2 ≤ i ≤ s,

where η is as in (1),

and where we write for short d1 = (dp(1)−1, . . . , d0).

Proof. Let a = (a0, . . . , an−1)> be such that

C̃
(1)
1 a = (d1, ξ)> 	A (9)

for some ξ ∈ Fn−p(1)
q , where A := (A(1)

1 , . . . , A
(1)
p(1), 0, . . . , 0)>. This is equivalent to the condition

x̃
(1)
T (k) ∈

[
d

qp(1)
,
d + 1
qp(1)

)
when T (k) is of the form (6).

Note that we can restrict ourselves to considering only (A(1)
1 , . . . , A

(1)
p(1), 0, . . . , 0)> in (9), since

A
(1)
p(1)+1, . . . , A

(1)
n can be absorbed by an appropriate choice of ξ.

We arrange the columns of C̃
(1)
1 and the vector a simultaneously into U := (uj,l)n

j,l=1 and
a′ = (a′0, . . . , a

′
n−1)

> in such a way that the system (9) does not change and that the left upper
p(1)× p(1) sub-matrix U0 = (uj,l)

p(1)
j,l=1 of U is non-singular. Then we can rewrite (9) as

Ua′ = (d1, ξ)> 	A. (10)
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Furthermore, we put U1 := (	uj,l)
p(1),n
j=1,l=p(1)+1. Then the vectors a′ which satisfy (10) for

some ξ are given by a′ = (a′0, . . . , a
′
n−1)

> with arbitrary a′p(1), . . . , a
′
n−1 and with

(U0| 	 U1) a′ = d>1 	 (A(1)
1 , . . . , A

(1)
p(1))

>,

which is equivalent to

U0

 a′0
...

a′p(1)−1

 = d>1 ⊕ U1

a′p(1)
...

a′n−1

	


A

(1)
1
...

A
(1)
p(1)

 ,

which is again equivalent to a′0
...

a′p(1)−1

 = U−1
0

d>1 ⊕ U1

a′p(1)
...

a′n−1


	 U−1

0


A

(1)
1
...

A
(1)
p(1)

 .

We now write

G1 :=
(

U−1
0 0
0 In−p(1)

)
and G2 :=

(
Ip(1) U1

0 In−p(1)

)
,

with Il denoting the l × l unit matrix and 0 a zero-matrix of suitable size. This means that

a′ = G1G2(d1, a
′
p(1), . . . , a

′
n−1)

> 	G1A.

We now write

Ṽ := G1G2 =
(

U−1
0 U−1

0 U1

0 In−p(1)

)
and ṽ := G1A,

which results in
a′ = Ṽ (d1, a

′
p(1), . . . , a

′
n−1)

> 	 ṽ.

We now rearrange the rows of Ṽ and ṽ in the inverse way to the initial rearrangement of C̃
(1)
1

and a, and thereby obtain a non-singular matrix V (1) and a vector v. Then

a = V (1)(d1, a
′
p(1), . . . , a

′
n−1)

> 	 v

satisfies
C̃

(1)
1 a = (d1, ξ)> 	A.

By the construction of V (1) and a′ above, we have

x̃
(1)
T (k)

∼= C̃
(1)
1 a⊕A = Ua′ ⊕A

= UṼ (d1, a
′
p(1), . . . , a

′
n−1)

> 	 UG1A⊕A

= C̃
(1)
1 V (1)(d1, a

′
p(1), . . . , a

′
n−1)

> ⊕ γ(1),

where γ(1) = A 	 UG1A. Taking into account the construction of G1 establishes the first
assertion of the lemma by setting η = (a′p(1), . . . , a

′
n−1).

Furthermore, for i ≥ 2, we obtain by inserting

C̃
(i)
1 a = C̃

(i)
1 V (1)(d1,η)> 	 C̃

(i)
1 v,
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for some η ∈ Zn−p(1)
q , such that

x̃
(i)
T (k)

∼= C̃
(i)
1 V (1)(d1,η)> 	 C̃

(i)
1 v ⊕ (A(i)

1 , . . . , A(i)
n )>.

Hence, V (1) and
v

(1)
i := 	C̃

(i)
1 v ⊕ (A(i)

1 , . . . , A(i)
n )>

satisfy the second assertion of the lemma. 2

Let now C̃
(i)
2 := C̃

(i)
1 V (1) for i ≥ 2. Let

C̃
(i)
2 = (c(i)

j,l )
n
j,l=1,

let c
(i)
j be the j-th row of C̃

(i)
2 and let ∗c

(i)
j := (c(i)

j,p(1)+1, . . . , c
(i)
j,n) be the vector consisting of the

last n− p(1) components of the j-th row-vector of C̃
(i)
2 .

Choose h(2) ∈ N0 maximal such that ∗c
(2)
1 , . . . , ∗c

(2)
h(2) are linearly independent over Fq. Let

p(1) ≤ h(1) and p(2) ≤ h(2). Then, for all d(i) ∈ N0, 0 ≤ d(i) < qp(i), i = 1, 2, there are exactly
qn−p(1)−p(2) integers k of the form (4) such that

(x̃(1)
T (k), x̃

(2)
T (k)) ∈

[
d(1)

qp(1)
,
d(1) + 1

qp(1)

)
×

[
d(2)

qp(2)
,
d(2) + 1

qp(2)

)
. (11)

We now show the following lemma, which is the “extension” of Lemma 1 to dimension 2.
I.e., we characterize those x̃T (k) for which (x̃(1)

T (k), x̃
(2)
T (k)) lies in an interval of the form displayed

in (11).

Lemma 2 For every p(1) ≤ h(1) and p(2) ≤ h(2) there exist

(a) a column vector γ(2) = (0, 0, . . . . . . . . . , 0︸ ︷︷ ︸
p(2) components

, γ
(2)
p(2)+1, . . . , γ

(2)
n )>, with some γ

(2)
i ∈ Fq,

(b) a non-singular matrix V (2) ∈ Fn×n
q , depending on p(2) and C̃

(2)
2 ,

(c) and n-dimensional column vectors v
(2)
i over Fq (depending on p(1), p(2), C̃

(1)
1 , C̃

(2)
2 , v

(1)
2 ,

and the C̃
(i)
2 , A

(i)
l ), for 3 ≤ i ≤ s,

such that for d(i) =
∑p(i)−1

l=0 d
(i)
l ql, d

(i)
l ∈ Zq for i = 1, 2, and for k with

(x̃(1)
T (k), x̃

(2)
T (k)) ∈

[
d(1)

qp(1)
,
d(1) + 1

qp(1)

)
×

[
d(2)

qp(2)
,
d(2) + 1

qp(2)

)
,

we have

(1)
x̃

(1)
T (k)

∼= C̃
(1)
1 V (1)(d1,η)> ⊕ γ(1)

for some η ∈ Fn−p(1)
q , as in Lemma 1, and where also γ(1) is as in Lemma 1.

(2)
x̃

(2)
T (k)

∼= C̃
(2)
2 V (2)(d1,d2, ξ)> ⊕ γ(2)

for some ξ ∈ Fn−p(1)−p(2)
q ,
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(3) and
x̃

(i)
T (k)

∼= C̃
(i)
2 V (2)(d1,d2, ξ)> ⊕ v

(2)
i for 3 ≤ i ≤ s,

where ξ is as in (2),

and where we write for short d1 = (d(1)
p(1)−1, . . . , d

(1)
0 ) and d2 = (d(2)

p(2)−1, . . . , d
(2)
0 ).

Proof. Let x̃
(1)
T (k) be such that x̃

(1)
T (k) ∈

[
d(1)

qp(1) ,
d(1)+1
qp(1)

)
. Using Lemma 1, this means that x̃

(1)
T (k) is

of the form as stated in Assertion (1), i.e.,

x̃
(1)
T (k)

∼= C̃
(1)
1 V (1)(d1,η)> ⊕ γ(1)

for some η ∈ Fn−p(1)
q , so this assertion is shown. Furthermore, Lemma 1 implies

x̃
(2)
T (k)

∼= C̃
(2)
1 V (1)(d1,η)> ⊕ v

(1)
2 = C̃

(2)
2 (d1,η)> ⊕ v

(1)
2 .

We also require x̃
(2)
T (k) ∈

[
d(2)

qp(2) ,
d(2)+1
qp(2)

)
, i.e.,

C̃
(2)
2 (d1,η)> = (d2,ρ)> 	 v

(1)
2 , (12)

for some ρ ∈ Fn−p(2)
q . We write ∗w

(2)
j := (c(2)

j,1 , . . . , c
(2)
j,p(1)), so we can write

C̃
(2)
2 = (W |C(∗)),

where

W = ( ∗w
(2)
1 , . . . , ∗w(2)

n )> ∈ Fn×p(1)
q , and C(∗) = ( ∗c

(2)
1 , . . . , ∗c(2)

n )> ∈ Fn×(n−p(1))
q .

Hence we can rewrite (12) as

Wd>1 ⊕ C(∗)η> = (d2,ρ)> 	 v
(1)
2 . (13)

Now we rearrange the columns of C(∗) and the components of η into U = (uj,p(1)+l)
n,n−p(1)
j=1,l=1 and

ξ = (ξn−p(1), . . . , ξ1), such that the left-upper p(2)× p(2) sub-matrix

U0 :=

 u1,p(1)+1 . . . u1,p(1)+p(2)
...

...
up(2),p(1)+1 . . . up(2),p(1)+p(2)

 ∈ Fp(2)×p(2)
q

of U is non-singular and the system (13) remains unchanged. So, (13) can be written as

Wd>1 ⊕ Uξ
> = (d2,ρ)> 	 v

(1)
2 , (14)

where

U =
(

U0 X

Y Z

)
,

with X ∈ Fp(2)×(n−p(1)−p(2))
q , Y ∈ F(n−p(2))×p(2)

q , and Z ∈ F(n−p(2))×(n−p(1)−p(2))
q . With this

notation, we can rewrite (14) as(
U0

Y

)
(ξn−p(1), . . . , ξn−p(1)−p(2)+1)

> = (d2,ρ)> 	 v
(1)
2 	Wd>1 	

(
X

Z

)
(ξn−p(1)−p(2), . . . , ξ1)>.
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Note that in the latter system we need not explicitly deal with the “lower” n−p(2) components,
since those can be absorbed by an appropriate choice of ρ. Hence we consider

U0

 ξn−p(1)
...

ξn−p(1)−p(2)+1

 = d>2 	 ∗v
(1)
2 	


∗w

(2)
1

...
∗w

(2)
p(2)

d>1 	X

ξn−p(1)−p(2)
...
ξ1

 ,

where ∗v
(1)
2 is the vector consisting of the first p(2) components of v

(1)
2 . The latter equation is

equivalent to ξn−p(1)
...

ξn−p(1)−p(2)+1

 = U
−1
0 d>2 	 U

−1
0

∗v
(1)
2 	 U

−1
0


∗w

(2)
1

...
∗w

(2)
p(2)

d>1 	 U
−1
0 X

ξn−p(1)−p(2)
...
ξ1

 .

Let now

G1 =

(
U
−1
0 0
0 In−p(1)−p(2)

)
∈ F(n−p(1))×(n−p(1))

q ,

and

G2 =
(

Ip(2) 	X

0 In−p(1)−p(2)

)
∈ F(n−p(1))×(n−p(1))

q .

Then we have

G1G2 =

(
U
−1
0 	U

−1
0 X

0 In−p(1)−p(2)

)
. (15)

According to what we outlined above, we can now write

ξ
> =

(
U
−1
0

0

)
d>2 	

(
U
−1
0

0

)
∗v

(1)
2 	

(
U
−1
0

0

)
∗w

(2)
1

...
∗w

(2)
p(2)

d>1 ⊕

(
	U

−1
0 X

In−p(1)−p(2)

)ξn−p(1)−p(2)
...
ξ1



= G1G2

(
d>2
ξ>

)
	

(
U
−1
0

0

)
∗v

(1)
2 	

(
U
−1
0

0

)
∗w

(2)
1

...
∗w

(2)
p(2)

d>1 , (16)

where ξ = (ξn−p(1)−p(2), . . . , ξ1). Plugging into (14) yields

(
d>2
ρ>

)
	 v

(1)
2 = Wd>1 ⊕ UG1G2

(
d>2
ξ>

)
	 U

(
U
−1
0

0

)
∗w

(2)
1

...
∗w

(2)
p(2)

d>1 	 U

(
U
−1
0

0

)
∗v

(1)
2 . (17)

Set

γ(2) = v
(1)
2 	 U

(
U
−1
0

0

)
∗v

(1)
2 = v

(1)
2 	

(
U0 X

Y Z

)(
U
−1
0

0

)
∗v

(1)
2 = v

(1)
2 	

(
∗v

(1)
2

Y U
−1
0

∗v
(1)
2

)

(hence γ(2) is of the required form). So we can write (17) as

(
d>2
ρ>

)
	 γ(2) = Wd>1 ⊕ UG1G2

(
d>2
ξ>

)
	 U

(
U
−1
0

0

)
∗w

(2)
1

...
∗w

(2)
p(2)

d>1 . (18)
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We now would like to find a matrix V ∈ Fn×n
q such that the right hand side of (18) can be

written as
(
W |U

)
V (d1,d2, ξ)>. To this end, let

V :=
(

Ip(1) 0
A G1G2

)
,

with A ∈ F(n−p(1))×p(1)
q , the precise form of which will be determined below. We then get

(W |U)V =
(
W |U

)(Ip(1) 0
A G1G2

)
=
(
W ⊕ UA|UG1G2

)
.

So we obtain

(W |U)V (d1,d2, ξ)> = Wd>1 ⊕ UG1G2

(
d>2
ξ>

)
⊕ UAd>1 .

If we now choose

A = 	

(
U
−1
0

0

)
∗w

(2)
1

...
∗w

(2)
p(2)

 ,

then we see that we can indeed write (18) in the form

(d2,ρ)> 	 γ(2) =
(
W |U

)
V (d1,d2, ξ)>.

Now we can arrange the columns of U and the rows of V in the inverse way to the initial
rearrangement of C(∗) and η such that

(d2,ρ)> = C̃
(2)
2 V (2)(d1,d2, ξ)> ⊕ γ(2)

for a certain matrix V (2). Consequently, for i = 2, we obtain

x̃
(2)
T (k)

∼= (d2,ρ)> = C̃
(2)
2 V (2)(d1,d2, ξ)> ⊕ γ(2).

This proves Assertion (2).
Finally, let us prove Assertion (3). We know from Lemma 1 that we must have, due to the

condition on x̃
(1)
T (k),

x̃
(i)
T (k)

∼= C̃
(i)
2 (d1,η)> ⊕ v

(1)
i

for i ≥ 3. Furthermore, due to the condition on x̃
(2)
T (k), we know that (d1,η)> must satisfy (13).

Equivalently, the reordered version ξ of η needs to satisfy (14). However, from our observations
leading to Assertion (2), we know that ξ needs to satisfy (16). From this, it is easy to see that(

d>1
ξ
>

)
= V

d>1
d>2
ξ>

	

 0(
U
−1
0

0

)
∗v

(1)
2

 .

After performing the re-arrangement of the rows of this equation in the inverse way to the initial
rearrangement of η we obtain

(d1,η)> = V (2)(d1,d2, ξ)> ⊕ v
(2)
i ,

where v
(2)
i is some n-dimensional column vector. This finally yields

x̃
(i)
T (k)

∼= C̃
(i)
2 (d1,η)> ⊕ v

(1)
i

= C̃
(i)
2 V (2)(d1,d2, ξ)> ⊕ C̃

(i)
2 v

(2)
i ⊕ v

(1)
i .

Setting v
(2)
i = C̃

(i)
2 v

(2)
i ⊕ v

(1)
i shows Assertion (3). 2
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Having shown Lemma 2, we now set C̃
(i)
3 = C̃

(i)
2 V (2) for i ≥ 3. In particular, let

C̃
(3)
3 = (c(3)

j,l )n
j,l=1,

and ∗c
(3)
j = (c(3)

j,p(1)+p(2)+1, . . . , c
(3)
j,n).

Choose h(3) ∈ N0 maximal such that ∗c
(3)
1 , . . . , ∗c

(3)
h(3) are linearly independent over Fq.

In the same way as in Lemma 2, we construct for p(3) ≤ h(3) a non-singular matrix V (3),
with analogous properties to V (2), and proceed as before.

In general, for any w ∈ {1, . . . , s − 1}, we have matrices C̃
(i)
w for w ≤ i ≤ s, integers

h(1), . . . , h(w), and integers p(1) ≤ h(1), . . . , p(w) ≤ h(w), which are found in the same way as
outlined for the special cases w = 1, 2, 3.

Furthermore, C̃
(i)
w = C̃

(i)
w−1V

(w−1) for w ≥ 2 and i ≥ w, with non-singular matrices V (j) as
above. In analogy to Lemmas 1 and 2, we then construct a non-singular n× n-matrix V (w) and
get

C̃
(i)
w+1 = C̃(i)

w V (w) for i ≥ w + 1.

For w ∈ {1, . . . , s − 1}, we define h(w + 1) := h(p(1), . . . , p(w)), and for w = 0 we define
h(1) := h(), each to be maximal such that with

C̃
(w+1)
w+1 = (zj,l)n

j,l=1

we have that
∗zj = (zj,p(1)+···+p(w)+1, . . . , zj,n) for 1 ≤ j ≤ h(w + 1),

are linearly independent. Then for every p(w + 1) ≤ h(w + 1) and every d(j), 0 ≤ d(j) < qp(j),
1 ≤ j ≤ w + 1, there are exactly qn−(p(1)+···+p(w+1)) integers k of the form (4) with

(x̃(1)
T (k), . . . , x̃

(w+1)
T (k) ) ∈

w+1∏
j=1

[
d(j)
qp(j)

,
d(j) + 1

qp(j)

)
. (19)

This is no longer true if p(w+1) > h(w+1). Due to (19), we see that this property is a property
that is inherent to the sequence of the x̃T (k), and does not depend on the concrete form of the
matrices V (j). The matrices V (j) are just a way of making this property “visible”. Note that
not all tuples (p(1), . . . , p(w)) can occur (e.g., we always need p(1) + · · ·+ p(w) ≤ m).

A tuple p = (p(1), . . . , p(w)) ∈ Nw is called admissible if p(i) ≤ h(i) for all 1 ≤ i ≤ w. Note
that if a tuple p = (p(1), . . . , p(w)) ∈ Nw is admissible then we have p(1) + · · · + p(w) ≤ m.
The empty tuple () for w = 0 will be called admissible by definition. For short we will in the
following write |p| := p(1) + · · ·+ p(w).

We now have the following lemma.

Lemma 3 For the star discrepancy D∗
N0

of the point set (xT (k))
N0−1
k=0 we have

N0D
∗
N0
≤ sqm0 + qs

m0−1∑
n=0

s−1∑
w=0

∑
p∈Nw

admissible

qn−(|p|+h(w+1)).

Proof. We show the result in two steps:

Step 1: For 0 ≤ n < m0 and 0 ≤ b < bn we estimate the star discrepancy of the point set{
x̃T (k) : k ∈ I(n, b)

}
,
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where the index set I(n, b) is as in (3).

For i ∈ {1, . . . , s}, let β(i) :=
∑∞

l=1 β
(i)
l q−l, and B :=

∏s
i=1[0, β(i)).

Let now

Θ :=
⋃

(p(1),...,p(s))
admissible

β
(i)
p(i)

−1⋃
b
(i)
p(i)

=0

i=1,...,s

s∏
i=1

p(i)−1∑
j=1

β
(i)
j

qj
+

b
(i)
p(i)

qp(i)
,

p(i)−1∑
j=1

β
(i)
j

qj
+

b
(i)
p(i) + 1

qp(i)

 .

Note that this is a disjoint union, and, furthermore, that Θ ⊆ B.

Moreover, define

Λ :=
s−1⋃
w=0

⋃
(p(1),...,p(w))

admissible

β
(i)
p(i)

−1⋃
b
(i)
p(i)

=0

i=1,...,w

(
w∏

i=1

p(i)−1∑
j=1

β
(i)
j

qj
+

b
(i)
p(i)

qp(i)
,

p(i)−1∑
j=1

β
(i)
j

qj
+

b
(i)
p(i) + 1

qp(i)

×

×

h(w+1)∑
j=1

β
(w+1)
j

qj
,

h(w+1)∑
j=1

β
(w+1)
j

qj
+

1
qh(w+1)

× [0, 1)s−w−1

)
.

We are now going to show that B ⊆ Θ ∪ Λ by induction on s. For s = 1, we have

Θ ∪ Λ =
⋃
p(1)

admissible

β
(1)
p(1)

−1⋃
b
(1)
p(1)

=0

p(1)−1∑
j=1

β
(1)
j

qj
+

b
(1)
p(1)

qp(1)
,

p(1)−1∑
j=1

β
(1)
j

qj
+

b
(1)
p(1) + 1

qp(1)



∪

h(1)∑
j=1

β
(1)
j

qj
,

h(1)∑
j=1

β
(1)
j

qj
+

1
qh(1)


=

⋃
p(1)

admissible

p(1)−1∑
j=1

β
(1)
j

qj
,

p(1)∑
j=1

β
(1)
j

qj

 ∪

h(1)∑
j=1

β
(1)
j

qj
,

h(1)∑
j=1

β
(1)
j

qj
+

1
qh(1)



=

0,

h(1)∑
j=1

β
(1)
j

qj
+

1
qh(1)


⊇ [0, β(1)),

which is the result for s = 1.

Assume now that we have already shown the result for s − 1. In the induction step, we
would like to show the result for s. Let

B :=
s−1∏
i=1

[0, β(i))× [0, β(s)).

By the induction assumption,

s−1∏
i=1

[0, β(i)) ⊆
⋃

(p(1),...,p(s−1))
admissible

s−1∏
i=1

p(i)−1∑
j=1

β
(i)
j

qj
,

p(i)∑
j=1

β
(i)
j

qj


13



∪
s−2⋃
w=0

⋃
(p(1),...,p(w))

admissible

β
(i)
p(i)

−1⋃
b
(i)
p(i)

=0

i=1,...,w

(
w∏

i=1

p(i)−1∑
j=1

β
(i)
j

qj
+

b
(i)
p(i)

qp(i)
,

p(i)−1∑
j=1

β
(i)
j

qj
+

b
(i)
p(i) + 1

qp(i)

×

×

h(w+1)∑
j=1

β
(w+1)
j

qj
,

h(w+1)∑
j=1

β
(w+1)
j

qj
+

1
qh(w+1)

× [0, 1)s−w−2

)
.

We extend each of the (s− 1)-dimensional intervals K on the right-hand side above to an
s-dimensional interval K ′ such that B is contained in the union of these extensions.

If K is of the form
s−1∏
i=1

p(i)−1∑
j=1

β
(i)
j

qj
,

p(i)∑
j=1

β
(i)
j

qj


for some admissible (p(1), . . . , p(s− 1)), then we take

K ′ =
s−1∏
i=1

p(i)−1∑
j=1

β
(i)
j

qj
,

p(i)∑
j=1

β
(i)
j

qj

×
h(s)⋃

l=1

 l−1∑
j=1

β
(s)
j

qj
,

l∑
j=1

β
(s)
j

qj

 ∪

h(s)∑
j=1

β
(s)
j

qj
,

h(s)∑
j=1

β
(s)
j

qj
+

1
bh(s)

 .

The remaining intervals K are just extended by [0, 1). So, by inserting, we obtain

B ⊆
⋃

(p(1),...,p(s−1))
admissible

s−1∏
i=1

p(i)−1∑
j=1

β
(i)
j

qj
,

p(i)∑
j=1

β
(i)
j

qj

×
h(s)⋃
l=1

 l−1∑
j=1

β
(s)
j

qj
,

l∑
j=1

β
(s)
j

qj

 ∪

∪
⋃

(p(1),...,p(s−1))
admissible

s−1∏
i=1

p(i)−1∑
j=1

β
(i)
j

qj
,

p(i)∑
j=1

β
(i)
j

qj

×

h(s)∑
j=1

β
(s)
j

qj
,

h(s)∑
j=1

β
(s)
j

qj
+

1
bh(s)

 ∪

∪
s−2⋃
w=0

⋃
(p(1),...,p(w))

admissible

(
w∏

i=1

p(i)−1∑
j=1

β
(i)
j

qj
,

p(i)∑
j=1

β
(i)
j

qj

×

×

h(w+1)∑
j=1

β
(w+1)
j

qj
,

h(w+1)∑
j=1

β
(w+1)
j

qj
+

1
qh(w+1)

× [0, 1)s−w−1

)
= Θ ∪ Λ.

and the induction is finished.

For fixed 0 ≤ n ≤ m0−1 and 0 ≤ b ≤ bn−1 and an interval B ⊆ [0, 1)s as above, let A(B)
be the number of points x̃T (k), with k ∈ I(n, b), in B. Since the union in the definition
of Θ is extended over all admissible tuples p = (p(1), . . . , p(s)), it follows that each of the
s-dimensional intervals contains exactly qn−|p| elements x̃T (k). Hence it follows that

A(Θ)− qnλ(Θ) = 0.

Furthermore, by the same argument,

qnλ(Λ) = A(Λ) =
s−1∑
w=0

∑
p∈Nw

admissible

β
(i)
p(i)

−1∑
b
(i)
p(i)

=0

i=1,...,w

qn−(|p|+h(w+1)).

14



Since Θ ⊆ B ⊆ Θ ∪ Λ, it follows easily that

|A(B)− qnλ(B)| ≤ max{A(Λ), qnλ(Λ)} ≤
s−1∑
w=0

∑
p∈Nw

admissible

qwqn−(|p|+h(w+1)).

¿From this it follows that, for 0 ≤ n < m0 and 0 ≤ b < bn,

qnD∗
qn

({
x̃T (k) : k ∈ I(n, b)

})
≤

s−1∑
w=0

∑
p∈Nw

admissible

qwqn−(|p|+h(w+1)).

Step 2: Since N0 = b0 + b1q + · · ·+ bm0−1q
m0−1, where bj ∈ Zq and bm0−1 6= 0, we can write

(xT (k))
N0−1
k=0 =

m0−1⋃
n=0

bn−1⋃
b=0

{
xT (k) : k ∈ I(n, b)

}
.

Since |x̃(i)
T (k) − x

(i)
T (k)| ≤ q−n for 1 ≤ i ≤ s and k ∈ I(n, b), with 0 ≤ n < m0 and

0 ≤ b ≤ bn − 1, we can apply [3, Proposition 3.15], and obtain∣∣qnD∗
qn

({
x̃T (k) : k ∈ I(n, b)

})
− qnD∗

qn

({
xT (k) : k ∈ I(n, b)

})∣∣ ≤ s.

Therefore, by using the so-called triangle inequality for the discrepancy (see [3, Proposi-
tion 3.16] or [5, p. 115, Theorem 2.6]), for the star discrepancy D∗

N0
of (xT (k))

N0−1
k=0 we

get

N0D
∗
N0

≤
m0−1∑
n=0

bn−1∑
b=0

qnD∗
qn

({
xT (k) : k ∈ I(n, b)

})
≤

m0−1∑
n=0

bn−1∑
b=0

(
s + qnD∗

qn

({
x̃T (k) : k ∈ I(n, b)

}))
≤ sqm0 + qs

m0−1∑
n=0

s−1∑
w=0

∑
p∈Nw

admissible

qn−(|p|+h(w+1)).

2

Let now ε ∈ N0 and r ∈ N0 be fixed. Let n ≤ m and let p = (p(1), . . . , p(r − 1)) ∈ Nr−1

be admissible with respect to n, which means with respect to the n × n matrices C̃
(i)
i for

1 ≤ i < r. Let C̃
(r)
r := (zj,l)m

j,l=1 be the matrix that is constructed with respect to these
parameters according to the algorithm outlined above. Again, let

∗zj := (zj,|p|+1, . . . , zj,n).

Note that these definitions only depend on the choice of g1, . . . , gr and f , but not on gr+1, . . . , gs.
We now define Mr, 1 ≤ r ≤ s, as the set of all (g1, . . . , gr) ∈ Fq[x]r such that there

exists an n ≤ m, and p = (p(1), . . . , p(r − 1)) admissible with respect to n, such that ∗zj ,
1 ≤ j ≤ n−|p|− ε, are linearly dependent over Fq. In this definition, ∗zj , j = 1, . . . , n−|p|− ε,
are viewed to be linearly independent if n− |p| − ε ≤ 0. I.e.,

Mr = {(g1, . . . , gr) ∈ Fq[x]r : ∃n ≤ m and p ∈ Nr−1 admissible with respect to n

such that ∗z1, . . . ,
∗ zn−|p|−ε are linearly dependent over Fq}.

We now have the following lemma.
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Lemma 4 For 1 ≤ r ≤ s we have |Mr| ≤ c′sq
rm−εmr, where c′s > 0 depends only on s.

Proof. We have

|Mr| ≤
m∑

n=1

∑
p admissible

with respect to n

∑
λ∈Fn−|p|−ε

q \{0}

|M(λ,p, n)| ,

where λ = (λ1, . . . , λn−|p|−ε) and

|M(λ,p, n)| :=
{

(g1, . . . , gr) ∈ Fq[x]r : p ∈ Nr−1 admissible with respect to n

and
n−|p|−ε∑

j=1

λj
∗zj = 0

}
.

We have C̃
(r)
r = C̃

(r)
1 M with a non-singular n× n matrix M . Let

C̃(r)
r = (z1, . . . ,zn)> and C̃

(r)
1 = (u1, . . . ,un)>,

with
uj = (uj,1, . . . , uj,n) = (u(r)

j , u
(r)
j+1, . . . , u

(r)
j+n−1),

where the u
(r)
l ∈ Fq depend on gr and f according to (2). Furthermore, let

M = (σ1| . . . |σn), with σj = (σ1,j , . . . , σn,j)> for 1 ≤ j ≤ n.

Then the system
n−|p|−ε∑

j=1

λj
∗zj = 0 (20)

is equivalent to
n∑

j=1

ξjσj,|p|+l = 0 for 1 ≤ l ≤ n− |p|, (21)

where ξj :=
∑n−|p|−ε

k=1 λku
(r)
j+k−1 ∈ Fq for 1 ≤ j ≤ n.

We consider two cases:

CASE (a): Suppose first that 2n − |p| − ε − 1 ≤ m. The linear system (21) in the variables
ξ1, . . . , ξn has rank n− |p| since M is non-singular. For each of the q|p| solutions (ξ1, . . . , ξn) of
(21) we consider the system

ξ1
...

ξn

 =


λ1 λ2 . . . λn−|p|−ε 0 0 . . . 0
0 λ1 λ2 . . . λn−|p|−ε 0 . . . 0
...

. . . . . . . . . . . . . . . . . .
...

0 . . . 0 λ1 λ2 . . . λn−|p|−ε 0
0 0 . . . 0 λ1 λ2 . . . λn−|p|−ε


︸ ︷︷ ︸

=:L∈Fn×(2n−|p|−ε−1)
q


u

(r)
1
...

u
(r)
2n−|p|−ε−1

 (22)

Since at least one of the λj is different from zero, the matrix L has rank n. Therefore, we
have qn−|p|−ε−1 solutions to (22) for each (ξ1, . . . , ξn). Hence, the initial system (21) has
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qn−|p|−ε−1q|p| = qn−ε−1 solutions. Note, furthermore, that we can choose g1, . . . , gr−1 arbi-
trarily, for which we have no more than q(r−1)m possibilities. Since not necessarily each solution
(u(r)

1 , . . . , u
(r)
2n−|p|−ε−1) of (22) can be represented by an appropriate gr ∈ Fq[x], we obtain

|M(λ,p, n)| ≤ q(r−1)mqn−ε−1.

Using the assumption 2n− |p| − ε− 1 ≤ m, we obtain

|M(λ,p, n)| ≤ qrm+|p|−n.

Consequently, ∑
λ∈Fn−|p|−ε

q \{0}

|M(λ,p, n)| ≤ qrm−ε.

We now consider the second case.

CASE (b): Assume that 2n− |p| − ε− 1 > m. Again, we have q|p| solutions (ξ1, . . . , ξn) to the
system (21). Again, we would like to have

ξ1
...

ξn

 =


λ1 λ2 . . . λn−|p|−ε 0 0 . . . 0
0 λ1 λ2 . . . λn−|p|−ε 0 . . . 0
...

. . . . . . . . . . . . . . . . . .
...

0 . . . 0 λ1 λ2 . . . λn−|p|−ε 0
0 0 . . . 0 λ1 λ2 . . . λn−|p|−ε


︸ ︷︷ ︸

=:L∈Fn×(2n−|p|−ε−1)
q


u

(r)
1
...

u
(r)
2n−|p|−ε−1

 (23)

Note that, due to the construction of the matrices Ci (cf. [3, Proposition 10.4]), the u
(r)
l also

need to satisfy the system



g
(r)
1
...

g
(r)
m

0
...
0


=



1 0 0 0 . . . . . . . . . . . . 0
a1 1 0 0 . . . . . . . . . . . . 0
a2 a1 1 0 . . . . . . . . . . . . 0
...

. . . . . . . . . . . . . . . . . . . . .
...

am am−1 . . . a1 1 0 . . . . . . 0
0 am am−1 . . . a1 1 0 . . . 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 . . . 0 am am−1 . . . a1 1 0
0 . . . 0 0 am am−1 . . . a1 1




u

(r)
1
...
...

u
(r)
2m−1

 . (24)

Combining (23) and the last m − 1 rows of (24), we obtain, as a necessary condition on
u

(r)
1 , . . . , u

(r)
2n−|p|−ε−1, 

ξ1
...

ξn

0
...
0


=
(

L

A

)
u

(r)
1
...

u
(r)
2n−|p|−ε−1

 , (25)
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where A ∈ F(m−1)×(2n−|p|−ε−1)
q is the matrix

am am−1 . . . . . . a1 1 0 0 . . . 0
0 am am−1 . . . . . . a1 1 0 . . . 0
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

0 . . . 0 am am−1 . . . . . . a1 1 0
0 . . . . . . 0 am am−1 . . . . . . a1 1
0 . . . . . . . . . 0 am am−1 . . . . . . a1
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

0 . . . . . . . . . . . . 0 0 am . . . a2m−2n+|p|+ε


.

Note that am 6= 0 since gcd(f, x) = 1. For short, we write

Z :=
(

L

A

)
∈ F(n+m−1)×(2n−|p|−ε−1)

q .

We would now like to estimate the rank of Z. To this end, let

i0 := max {i ∈ {1, . . . , n− |p| − ε} : λi 6= 0} .

We distinguish two sub-cases.

CASE (b.1): Suppose first that 1 ≤ i0 ≤ m− n + 1. Then we have

rank(Z) ≥ n + 2n− |p| − ε−m− 1,

which implies that the number of solutions of (25) is at most qm−n. The same arguments as in
Case (a) yield

|M(λ,p, n)| ≤ q|p|q(r−1)mqm−n = qrm+|p|−n.

Consequently, ∑
λ∈Fn−|p|−ε

q \{0}
i0≤m−n+1

|M(λ,p, n)| ≤ qrm+|p|−nqn−|p|−ε = qrm−ε.

CASE (b.2): Let us now suppose i0 = m − n + τ + 1, with 1 ≤ τ ≤ 2n −m − |p| − ε − 1. It
then follows that

ρ := rank(Z) ≥ 3n−m− τ − |p| − ε− 1,

because the first n rows together with the rows n + τ + 1, n + τ + 2, . . . , 3n−m− |p| − ε− 1 of
Z are linearly independent over Fq. On the other hand, we also know that

ρ ≥ m− 1,

as the last m − 1 rows of Z are certainly linearly independent (recall that am 6= 0). Since
3n−m− τ − |p| − ε− 1 ≥ m− 1 if and only if 3n− 2m− |p| − ε ≥ τ we get

ρ ≥
{

3n−m− τ − |p| − ε− 1 if τ ≤ 3n− 2m− |p| − ε,
m− 1 otherwise.

The number of solutions of (25) is q2n−|p|−ε−1−ρ, so

|M(λ,p, n)| ≤ q2n−|p|−ε−1−ρq|p|+(r−1)m = q2n−ε−1+(r−1)m−ρ.
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Hence,

∑
λ∈Fn−|p|−ε

q \{0}
i0>m−n+1

|M(λ,p, n)| ≤
3n−2m−|p|−ε∑

τ=1

q2n−ε−1+(r−1)m−(3n−m−τ−|p|−ε−1)

+
2n−m−|p|−ε−1∑

τ=3n−2m−|p|−ε+1

q2n−ε−1+(r−1)m−(m−1)

= qrm−n+|p|
3n−2m−|p|−ε∑

τ=1

qτ + q(r−1)m−ε+nqn−m(m− n− 1).

However, note that, due to our assumption for Case (b), we have m−n− 1 < 2n− |p| − ε− 1−
n− 1 ≤ n. Furthermore, qn−m ≤ 1 and consequently,

∑
λ∈Fn−|p|−ε

q \{0}
i0>m−n+1

|M(λ,p, n)| ≤ qrm−n+|p|
3n−2m−|p|−ε∑

τ=1

qτ + nq(r−1)m−ε+n

≤ qrm−n+|p|q3n−2m−|p|−ε+1 + nq(r−1)m−ε+n

≤ qrm−ε+1 + nq(r−1)m−ε+n.

Putting Case (a) and Case (b) together, we obtain

|Mr| ≤
m∑

n=1

∑
p

|p|≤n

(nqn+(r−1)m−ε + 2qqrm−ε)

which yields, after some algebra, the desired result. 2

We now outline the last step in the proof of Proposition 1.
Let again ε ∈ N0. We define a sequence of sets of polynomials H0,H1, . . . ,Hs−1 with Hr−1 ⊆

Fq[x]r consisting of (g1, . . . , gr) with the following properties:

• g1, . . . , gr are monic and deg(gi) < m for all 1 ≤ i ≤ r,

• for all j < r we have (g1, . . . , gj) ∈ Hj−1.

• for all n ≤ m and all (p(1), . . . , p(r − 1)) which are admissible with respect to (g1, . . . , gr)
and n, the vectors ∗z1, . . . ,

∗zn−|p|−ε, stemming from the matrix C̃
(r)
r as outlined in the

definition of the set Mr, are linearly independent over Fq.

Let now H := Hs−1 and choose ε = ε(m, s) =
⌈

log(2sc′smsqs)
log q

⌉
, with c′s as in Lemma 4 and dxe

denoting the smallest integer larger than or equal to a real x. This choice of c′s yields

c′sm
sq−ε <

1
2s

q−s,

and therefore
|Mr| ≤

1
2s

qr(m−1)

for all 1 ≤ r ≤ s.
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We then have

|H0| ≥ qm−1 − 1
2s

qm−1 = qm−1

(
1− 1

2s

)
,

and

|H1| ≥ qm−1

(
1− 1

2s

)
qm−1 − 1

2s
q2(m−1) = q2(m−1)

(
1− 2

2s

)
.

Inductively, we obtain,

|H| ≥ qs(m−1)

2
.

We now would like to take the average over all elements in H of a sum that serves as an upper
bound on the crucial sum in Lemma 3. To this end, we consider the term

Σ =
1
|H|

∑
g∈H

m−1∑
n=0

s−1∑
w=0

∑
p∈Nw

admissible

qn−(|p|+h(w+1)),

where the innermost sum is over all p = (p(1), . . . , p(w)) admissible with respect to n and
g = (g1, . . . , gs) ∈ H. In the following we shall write, for short, h instead of h(w + 1).

We now have

Σ ≤ 1
|H|

m−1∑
n=0

s−1∑
w=0

qm(s−w−1)
∑

(g1,...,gw+1)∈Hw

∑
p∈Nw

admissible

qn−|p|−h

≤ 2qs
m−1∑
n=0

s−1∑
w=0

q−m(w+1)
∑

(g1,...,gw+1)∈Hw

∑
p∈Nw

admissible

qn−|p|−h

≤ 2qs+1
m−1∑
n=0

s−1∑
w=0

q−m(w+1)
∑

p∈Nw

|p|≤n

n−|p|∑
i=n−|p|−ε

qn−|p|−i
∑

λ∈Fi
q\{0}

Γ(w,p,λ), (26)

where λ = (λ1, . . . , λi) and Γ(w,p,λ) denotes the number of (g1, . . . , gw+1) ∈ Hw for which p
is admissible and λ1

∗z1 + · · · + λi
∗zi = 0. For estimating the innermost sum in (26), we can

use exactly the same method as we used in the proof of Lemma 4 for estimating the sums of
|M(λ, p, n)|. We then obtain

Σ ≤ 2qs+1
m−1∑
n=0

s−1∑
w=0

q−m(w+1))
∑

p∈Nw

|p|≤n

n−|p|∑
i=n−|p|−ε

qn−|p|−i(nqwm+i+|p| + 2qq(w+1)m+i+|p|−n).

Again, a few basic estimates show that the latter expression is of order εms with implied con-
stants only depending on q and s. Since ε = ε(m, s) = O(log m) with implied constant depending
only on s and q we obtain

Σ ≤ c(s, q)(log N)s log log N,

where N = qm, which, using Lemma 3, finally yields the result of Proposition 1. 2
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