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1 Introduction

In the area of algorithms and data structures many recursive structures and al-
gorithms appear that are commonly used in practical applications in Computer
Science. Various trees used for the organization of data, algorithms for search-
ing and sorting problems, algorithms on graphs and algorithms on sequences
(DNA sequences, searching the internet) as well as problems from combinatorial
optimization have a recursive structure. To measure the complexity of such al-
gorithms certain elementary operations are counted to measure the time needed
by the algorithm. The basic interest consists in quantitative information about
complexity measures so that algorithms can be compared and efficient algorithms
can be identified.

Since complexity measures usually depend on the particular input of the
algorithm, in Computer Science one mainly does a “worst case” analysis or an
“average case” analysis. While for the worst case one just takes the supremum
of the complexity over all possible inputs (of a given size) for an average case
analysis a certain probability measure is assumed on the set of possible inputs.
This is often the uniform distribution if the possible inputs form a finite set.

The “Average Case Analysis of Algorithms” was started by D. E. Knuth in
1963 and has developed into a mathematical field, where generating function play
a dominant role. An encyclopedic discussion of this approach to the analysis of
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algorithms is given by Knuth’s (1969a, 1969b, 1973) books “The Art of Computer
Programming”.

Since the 80s of the last century the whole distributions of complexity mea-
sures have more regularly been studied to obtain more refined information on
the behavior of the algorithms. As in the “average case analysis of algorithms”
a stochastic model for the input is assumed for this. Then, beyond averages one
tries to approximate and describe the distributions, for example with respect
to large deviations and limit laws. Large deviations are of interest for Com-
puter Science, since such bounds quantify the probability of bad behavior of the
algorithm, something one usually wants to be controlled.

Here, we are not hunting for large deviations but for limit laws. For the
study of weak convergence of complexity measures of recursive algorithms and
data structure various techniques are in use:

• moment generating functions and saddle point methods, cf., e.g.,
Flajolet and Odlyzko (1982, 1990), Pittel (1999), Drmota (1997), Sz-
pankowski (2001) and the references therein.

• moments method (and cumulants), cf. Hwang (2003), Janson, ÃLuczak
and Ruciński (2000, chapter 6) and the references therein.

• martingale methods, cf. Régnier (1989), Chauvin and Rouault (2004)
and the references therein.

• shortcuts to asymptotic normality (using representations of indepen-
dent or weakly dependent random variables, Stein’s method, Berry-Esseen
methods), cf. Devroye (2002/03), Barbour, Holst and Janson (1992), Jan-
son, ÃLuczak and Ruciński (2000, chapter 6) and the references therein.

• contraction method, cf. Rösler (1991, 1992), Rachev and Rüschendorf
(1995), Rösler and Rüschendorf (2001) and Neininger and Rüschendorf
(2004a, 2004b) and the references therein.

In this text we will discuss the approach by the contraction method. The
method is tailored to derive convergence in distribution for parameters of re-
cursive structures. It was introduced in Rösler (1991) and later independently
extended in Rösler (1992) and Rachev and Rüschendorf (1995) and has been
developed to a fairly general tool during the last years.

By this method one starts with a recurrence satisfied by the quantities of
interest and, based on information on the first two moments, does a proper
normalization of the quantities. The recurrence for the scaled quantities leads to
a fixed-point equation and a potential limit distribution is characterized as the
fixed-point of a measure valued map.

4



In probability theory the concept of limit laws aims to approximate (con-
vergent) sequences of distributions by their limit distribution. The contraction
method can be considered a one step towards this aim. Often, beforehand as-
ymptotic expansion of moments are needed which in more difficult cases are often
derived using generating functions. Based on moments the contraction method
can be used to show convergence in distribution. However, the limit distribu-
tion typically cannot directly be used to approximate the quantities as it is only
given implicitly by some fixed-point property. In a final step one has to extract
information about the limit distribution from the fixed-point property.

Here, we survey aspects of the method which have proven useful for the
analysis of many concrete problems form Computer Science and related fields.
For this, we start in section 2 with a general type of recurrence for distributions
together with a dozen of application from various areas. In section 3 the idea
of the method is explained. Later on, the realization of the idea depends on the
choice of a suitable probability metric.

Until 2001, almost every practical application in Computer Science was de-
rived in an L2 setting based on the minimal L2 metric. This realization of the
general idea is discussed in section 4 together with applications.

In section 5 some fundamental limitations of the L2 settings, mainly related to
asymptotic normality, are discussed. These problems, together with applications,
are studied in sections 6-8, where the contraction method is developed with the
use of Zolotarev’s metric following Neininger and Rüschendorf (2004a, 2004b).

In section 6 properties of ideal metrics and, in particular, of the Zolotarev
metric are briefly introduced. Section 7 has a general convergence theorem with
respect to the Zolotarev metric, that is specialized in different directions. In
this section it is also discussed up to which extend information on the expansion
of moments is needed to apply the method. Various contraction conditions are
compared. Section 8 contains a universal limit law for quantities with a variance
that is slowly varying at infinity. This covers cases in applications that lead to
so-called degenerate fixed-point equations.

In section 9 some selected related problems are discussed, in particular rates
of convergence, large deviations, the characterization of the set of solutions of
a fixed-point equation, properties and perfect simulation of fixed-points, and
recurrences, where we have a maximum instead of a sum.

The theory is illustrated a lot with applications. The reason for this is to
show the richness of problems Computer Science has to offer and to capture the
various different mathematical phenomenon that appear in the analysis of these
problems.
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2 Recursive sequences of distributions

In the section we specify a general recursive sequence of distributions and give
various examples from the area of algorithms and data structures, that are special
cases of the general setting. We develop the theory for random vectors in Rd. For
most applications however, it is sufficient to consider the univariate case d = 1.

2.1 A general type of recurrence

We consider a sequence of random, d-dimensional vectors (Yn)n∈N0 which satisfy
the recurrence

Yn
d
=

K∑
r=1

Ar(n)Y
(r)

I
(n)
r

+ bn, n ≥ n0, (1)

where (A1(n), . . . , AK(n), bn, I
(n)

), (Y
(1)
n ), . . . , (Y

(K)
n ) are independent,

A1(n), . . . , AK(n) are random d× d matrices, bn is a random d-dimensional vec-

tor, I(n) is a vector of random integers I
(n)
r ∈ {0, . . . , n}, and (Y

(1)
n ), . . . , (Y

(K)
n )

are identical distributed as (Yn). The symbol
d
= denotes, that left and right

hand side of equation (1) are identically distributed. We have n0 ≥ 1 and
Y0, . . . , Yn0−1 are given initializing random vectors. The number K ≥ 1 is
deterministic. For random K, K = Kn dependent on n or Kn → ∞ the results
presented subsequently can be generalized.

2.2 Examples from Computer Science

In this section we are looking at some applications from Computer Science and
related areas, that are covered by the general equation (1) and to which we will
come back later. We only give the relevant recursive equations and refer to where
the algorithms and data structures are introduced in detail.

2.2.1 Quicksort

The number of key comparisons needed by the sorting algorithm Quicksort
(Hoare (1962)) when applied to a uniform random permutation of length n (or
applied to an arbitrary permutation with random uniform choice of the pivot
element) satisfies recurrence (1) with d = 1, K = 2, A1(n) = A2(n) = 1, I

(n)
1

uniformly distributed on {0, . . . , n − 1}, I
(n)
2 = n − 1 − I

(n)
1 and bn = n − 1,

cf. Mahmoud (2000). For this example the contraction method was originally
introduced by Rösler (1991). The number of key exchanges of Quicksort when
applied to a uniform random permutation of length n also satisfies (1), where
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the parameters d, K, A1(n). A2(n), I(n) are gives as for the key comparisons,
however bn now depends on I(n) as

P(bn = j | I(n)
1 = k) =

(
k
j

)(
n−1−k

j

)
(

n−1
k

) , 0 ≤ j ≤ k < n,

cf. Sedgewick (1980, page 55) and Hwang and Neininger (2002, section 6).

2.2.2 Valuations of random binary search trees

For the probabilistic analysis of binary search trees it is usually assumed that the
tree is generated from an equiprobable random permutation. This is the model
of the random binary search tree, cf. Mahmoud (1992, chapter 2). The internal
path length of a random binary search tree with n internal nodes has the same
distribution as the number of key comparisons of Quicksort and hence satisfies
the recurrence of type (1) specified in section 2.2.1. It turns out that a couple
of other parameters of random binary search trees satisfy the same recurrence,
the only difference being the so-called toll function bn which is specific for each
parameter. For this reason Devroye (2002/03) and Hwang and Neininger (2002)
consider general valuations of random binary search trees with n internal nodes,
i.e., recurrence (1) with d = 1, K = 2, A1(n) = A2(n) = 1, I

(n)
1 uniformly

distributed on {0, . . . , n − 1}, I
(n)
2 = n − 1 − I

(n)
1 and variable toll function bn,

which is only allowed to depend on I(n). Numerous quantities of random binary
search trees with direct algorithmic interpretation, that are covered by this type
of recurrence, are discussed in Hwang and Neininger (2002, section 6).

2.2.3 Depth of nodes in random binary search trees

The depth of a random (uniformly chosen) node in a random binary search tree
describes the complexity for a typical (successful) search in the tree. The depth
(in a tree with n internal nodes) satisfies recurrence (1) with d = 1, K = 1,
A1(n) = 1, bn = 1 and

P(I
(n)
1 = k) =

{
1
n

for k = 0,

2k
n2 for 1 ≤ k ≤ n− 1,

cf. Mahmoud (1992, section 2.5) and Cramer and Rüschendorf (1996).

2.2.4 Wiener index of random binary search tree

The Wiener index of a connected graph is the sum of the distances between all
pairs of nodes in the graph, where distance is the minimal number of edges con-
necting the nodes in the graph. The Wiener index has its origin in mathematical
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chemistry but has independently been investigated in graph theory, cf. Gutman
and Polansky (1986), Trinajstić (1992) and Dobrynin, Entringer and Gutman
(2001). The Wiener index of a random binary search tree does not satisfy recur-
rence (1) for (Yn) with dimension d = 1. However, it can be covered by (1) in

dimension d = 2 as follows, cf. Neininger (2002): We choose d = 2, K = 2, I
(n)
1

uniformly distributed on {0, . . . , n− 1}, I
(n)
2 = n− 1− I

(n)
1 as well as

A1(n) =

[
1 n− I

(n)
1

0 1

]
, A2(n) =

[
1 n− I

(n)
2

0 1

]
, bn =

(
2I

(n)
1 I

(n)
2 + n− 1
n− 1

)
.

The first component of Yn then has the distribution of the Wiener index, the
second component has the distribution of the internal path length of a random
binary search tree with n internal nodes.

2.2.5 Size of random m-ary search trees

The size Yn of random m-ary search trees, m ≥ 3, (cf. Mahmoud (1992, chapter
3)) with n data inserted satisfies recurrence (1) with d = 1, K = m, A1(n) =
· · · = Am(n) = 1 and bn = 1. We denote by V = (U(1), U(2)−U(1), . . . , 1−U(m−1))
the vector of spacings between independent, uniform on [0, 1] distributed random
U1, . . . , Um−1. With the order statistics U(1), . . . , U(m−1) we can hence write S1 =
U(1), S2 = U(2) − U(1), . . . , Sm−1 = U(m) − U(m−1), Sm = 1 − U(m). With this
notation for u ∈ [0, 1]m with

∑m
r=1 ur = 1 the conditional distribution of I(n)

given V = u is multinomial:

PI(n) |V =u = M(n− (m− 1), u),

where M(n, u) denotes the multinomial distribution with parameters n and u,
cf. Mahmoud and Pittel (1989), Lew and Mahmoud (1994) and Chern and Hwang
(2001b).

2.2.6 Size and path length of random tries

The size Yn of a random trie with n data inserted satisfies in a standard model
Y0 = 0 and recurrence (1) with d = 1, K = 2, A1(n) = A2(n) = 1, and

I
(n)
1 binomial B(n, p) distributed and I

(n)
2 = n − I

(n)
1 . For p = 1/2 this is the

symmetric Bernoulli model, for p 6= 1/2 the asymmetric Bernoulli model. For the
(external) path length of a random trie we have the same recurrence as for the
size, only bn = 1 has to be changed to bn = n. As for random binary search trees
in section 2.2.2 we can consider general valuations of random tries (i.e. variable
bn) and cover further quantities relevant in applications, cf. Schachinger (2001).
Parameters for digital search trees and Patricia tries can be covered by similar
recurrences, also being of type (1), cf. Szpankowski (2001).
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2.2.7 Mergesort

The number of key exchanges of the sorting algorithm Mergesort (in its “top-
down” variant) applied to an equiprobable random permutation of length n sat-

isfies recurrence (1) with d = 1, K = 2, A1(n) = A2(n) = 1, I
(n)
1 = dn/2e,

I
(n)
2 = n − I

(n)
1 and bn a random variable, that is described in Knuth (1973,

section 5.2.4), cf. Flajolet and Golin (1994), Hwang (1996, 1998), Cramer (1997)
and Chen, Hwang and Chen (1999).

2.2.8 Randomized game tree evaluation

The complexity of algorithms to evaluate game trees is usually measured by the
number of external nodes read by the algorithm, cf. Motwani and Raghavan
(1995, chapter 2). For the randomized algorithm of Snir (1985) to evaluate game
trees it can be shown that there are certain inputs, for which the complexity is
maximized in stochastic order, cf. Ali Khan and Neininger (2004). This worst
case complexity can be described by recurrence (1) with d = 2, K = 4,

A1(n) = A2(n) = Id2, A3(n) =

[
B1B2 0
1−B2 0

]
, A4(n) =

[
0 B1

B1 0

]
,

where Id2 is the 2×2 unity matrix and B1, B2 are independent Bernoulli B(1/2)

distributed random variables, bn = 0 and I
(n)
r = n/4 for r = 1, . . . , 4. The second

component of Yn then has the distribution of the worst case complexity in a
binary game tree of corresponding height. The optimality of Snir’s algorithm
is discussed in Saks and Wigderson (1986), an alternative approach via 2-type
Galton Watson processes can be found in Karp and Zhang (1995).

2.2.9 Maxima in right triangles

We consider the number of maxima of n independent, uniformly distributed
points in the right triangle in R2 with vertices (0, 0), (1, 0), (0, 1). A point is
maximal in a set of points, if there is no other point in the set with larger x
and y coordinate. The number of maximal point satisfies recurrence (1) with

d = 1, K = 2, A1(n) = A2(n) = 1, bn = 1 and I
(n)
1 , I

(n)
2 are given as follows

as the first two components of a mixture of trinomial distributions: We denote
by (Un, Vn) the point in the given set of points, that maximizes the sum of its

components. The vector I(n) = (I
(n)
1 , I

(n)
2 , I

(n)
3 ) conditioned on (Un, Vn) = (u, v)

has the trinomial distribution

PI(n) | (Un,Vn)=(u,v) = M

(
n− 1,

u2

(u + v)2
,

v2

(u + v)2
,

2uv

(u + v)2

)
,
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cf. Bai et al. (2001, 2003). The case of the right triangle is crucial as more
general convex polygons “without an upper right vertex” can be reduced to the
case of the right triangle.

2.2.10 Size of critical Galton Watson processes

Yaglom’s (1947) exponential limit law for the size of a critical Galton Watson
process conditioned on surviving of the population can be covered with a vari-
ant of recurrence (1), where instead of K a random number Kn of summands,

depending on n, is used with ((Ar(n))r≥1, bn, I
(n)

, Kn), (Y
(1)
n ), (Y

(2)
n ), . . . being

independent. The size of generation n (conditioned on survival) satisfies this
variant of recurrence (1) with d = 1, A1(n) = A2(n) = · · · = 1 and bn = 0.
Denote Tn the generation of the most recent common ancestor of the n-th popu-
lation. Then Kn is the number of children of this ancestor, which have offspring
that survives until generation n, and we have I

(n)
1 = I

(n)
2 = · · · = n − Tn. This

recursive approach has been developed for the case of finite variance of the off-
spring distribution in Geiger (2000), the case of an offspring distribution being
in the domain of attraction of a α-stable law, 1 < α ≤ 2, (first treated by Slack
(1968) using generating functions), can be found in Kauffmann (2003, section
3.2).

2.2.11 Broadcast communication models

In Chen and Hwang (2003) cost parameters of two algorithms to identify max-
ima in broadcast communication models with n processors are analyzed. The
running time of their algorithm B satisfies recurrence (1) with d = 1, K = 1,

A1(n) = 1, I
(n)
1 uniformly distributed on {0, . . . , n−1} and bn itself is the running

time of another algorithm to solve the “leader election” algorithm. This “leader
election” algorithm has been studied in Prodinger (1993) and Fill, Mahmoud,
and Szpankowski (1996) and can also be covered by recurrence (1).

The number of key comparisons of algorithm A in Chen and Hwang (2003)

satisfies recurrence (1) with d = 1, K = 2, A1(n) = A2(n) = 1, (I
(n)
1 , I

(n)
2 ) has

the distribution

P
(
(I

(n)
1 , I

(n)
2 ) = (j, k)

)
=

{
2−n, (j, k) = (0, 0),(

n−k−1
j−1

)
2−n, k ≥ 0, 1 ≤ j ≤ n− k,

and we have bn = n− I
(n)
1 .

Further parameters of these two algorithms in Chen and Hwang (2003) can
also be covered by recurrence (1).
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2.2.12 Profile of random binary search trees

The profile of random binary search trees can be described with another variant
of recurrence (1), that is given here explicitly. The profile Yn,k, n ≥ 0, 0 ≤ k ≤ n
of random binary search trees with n data is the number of external nodes, that
have distance k to the root of the tree. We have Yn,0 = δn0 with Kronecker’s δ
and

Yn,k
d
= Y

(1)

I
(n)
1 ,k−1

+ Y
(2)

I
(n)
2 ,k−1

, n ≥ 1, 1 ≤ k ≤ n,

where I
(n)
1 is uniformly distributed on {0, . . . , n − 1}, I

(n)
2 = n − 1 − I

(n)
1 and

independence properties as in (1), cf. Chauvin, Drmota and Jabbour-Hattab
(2001), Drmota and Hwang (2005) and Fuchs, Hwang and Neininger (2004).

2.2.13 Further examples

Further important quantities in Computer Science and related areas, that can be
covered by recurrence (1), are parameter of the selection algorithm Quickselect
(also called Find, cf. Grübel and Rösler (1996), Kodaj and Móri (1997), Mah-
moud et al. (1995), Hwang and Tsai (2001) and for further references see the sur-
vey article Rösler (2004)), multiple Quickselect (Mahmoud and Smythe (1998))
and Bucket Selection as well as the sorting algorithm Bucket Sorting (Mahmoud
et al. (2000)), secondary cost measures of Quicksort (number of recursive calls,
stack pushs and pops, cf. Neininger and Hwang (2002)), and variants of Quick-
sort (Chern et al. (2002)) as well as parameters of Quicksort with erroneous key
comparisons (cf. Alonso et al. (2004)), parameters of random skip lists (cf. Pugh
(1989), Papadakis et al. (1990) and Devroye (1992)), algorithms for listing the
ideals of random posets (Janson (2002)), distances (and size of minimal span-
ning trees) in random binary search trees (cf. Mahmoud and Neininger (2003),
Panholzer and Prodinger (2004) and Devroye and Neininger (2004)), number of
occurring patterns in random binary search trees (cf. Devroye (1991) and Fla-
jolet et al. (1997)), the length of a random external branch in a coalescent tree
(Durrett (2002, page 162)), as well as all parameters mentioned before for bi-
nary search trees in other search trees, in particular in random recursive trees
(cf. Smythe and Mahmoud (1995)), quad trees (cf. Flajolet et al. (1995)), m-ary
search trees (cf. Chern and Hwang (2001b)), median of (2t + 1) search trees (cf.
Chern and Hwang (2001a)), simplex trees (cf. Devroye (1999)), Catalan trees
(cf. Flajolet and Odlyzko (1982), Kolchin (1986, chapter 2) and Fill and Kapur
(2004a)) and universal split tree models (cf. Devroye (1999)).
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3 The idea of the contraction method

We rescale the random vector Yn in (1) by

Xn := C−1/2
n (Yn −Mn), n ≥ 0, (2)

where Mn ∈ Rd and Cn is a symmetric, positive-definite d × d matrix. If the
first two moments of Yn are finite, then Mn and Cn are typically of the order
of the expectation and the covariance matrix of Yn respectively. For Xn from
recurrence (1) we obtain the modified recurrence

Xn
d
=

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n0, (3)

with

A(n)
r := C−1/2

n Ar(n)C
1/2

I
(n)
r

, b(n) := C−1/2
n

(
bn −Mn +

K∑
r=1

Ar(n)M
I
(n)
r

)
(4)

and independence properties as in (1).
The contraction method aims to provide assertions of the following type:

Appropriate convergence of the coefficients

A(n)
r → A∗

r, b(n) → b∗, (n →∞) (5)

implies convergence in distribution of the quantities (Xn) to a limit
X. The limit distribution L(X) is characterized by a fixed-point
equation, which is obtained from the modified recurrence by letting
formally n →∞:

X
d
=

K∑
r=1

A∗
rX

(r) + b∗. (6)

Here, (A∗
1, . . . , A

∗
K , b∗), X(1), . . . , X(K) are independent and X(r) d

= X
for r = 1, . . . , K.

To reformulate the fixed-point property, we denote by Md the space of all prob-
ability measures on Rd and by T the measure valued map

T : Md →Md, µ 7→ L
(

K∑
r=1

A∗
rZ

(r) + b∗
)

, (7)
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where (A∗
1, . . . , A

∗
K , b∗), Z(1), . . . , Z(K) are independent and L(Z(r)) = µ for r =

1, . . . , K. Then, X is a solution of the fixed-point equation (6) if and only if its
distribution L(X) is a fixed-point of the map T .

Maps of type (7) often do not have unique fixed-points in the space of all
probability distributions, and the characterization of the set of all fixed-points is
up to a few special cases an open and important problem, cf. section 9.3.

Limit distributions that appear as such fixed-points in the analysis of algo-
rithms are often distinguished by having finite absolute moments of some order.
To make this more precise, we define the following subsets of Md:

Md
s := {µ ∈Md : ‖µ‖s < ∞}, s > 0, (8)

Md
s(M) := {µ ∈Md

s : Eµ = M}, s ≥ 1, (9)

Md
s(M, C) := {µ ∈Md

s(M) : Cov(µ) = C}, s ≥ 2, (10)

where M ∈ Rd and C is a symmetric, positive-definite d× d matrix, and where
‖µ‖s, Eµ and Cov(µ) denote the s-th absolute moment, expectation and covari-
ance matrix of a random variable with distribution µ respectively.

The idea of the contraction method consists of endowing an appropriate sub-
set M∗ ⊂ Md, e.g., on of the sets in (8)–(10), with a complete metric δ, such
that the restriction of T to M∗ is a contraction on the metric space (M∗, δ) in
the sense of Banach’s fixed-point theorem. This implies the existence of a fixed-
point L(X) of T being unique in M∗. In a second step one shows convergence
of the rescaled quantities L(Xn) to L(X) in the metric δ, δ(L(Xn),L(X)) → 0
for n → ∞, based on appropriate convergence of the coefficients as in (5). If δ
is chosen such that convergence in δ implies weak convergence, then the desired
convergence in distribution follows.

4 The L2 realization of the idea

In this section we describe the realization of the idea of the contraction method
using the minimal L2 metric `2. This has been done for the one-dimensional case
in Rösler (1991, 2001) and extends directly to general dimension d. Then, we
come back to the examples from section 2.2 and discuss them as far as they can
be treated with the L2 realization of the contraction method.

4.1 A general L2 convergence theorem

The minimal Lp metrics `p are given for p > 0 by

`p(µ, ν) := inf {‖X − Y ‖p : L(X) = µ, L(Y ) = ν} , µ, ν ∈Md
p,

13



where ‖X‖p := (E ‖X‖p)(1/p)∧1 denotes the Lp norm of a random vector X and
‖X‖ denotes its Euclidean norm.

The spaces (Md
p, `p) for p > 0 as well as (Md

p(M), `p) for M ∈ Rd, p ≥ 1 are
complete metric spaces and convergence in `p is equivalent to weak convergence
plus convergence of the p-th absolute moment. For µ, ν ∈ Md

p there always
exist vectors X, Y on a joint probability space with L(X) = µ, L(Y ) = ν
and `p(µ, ν) = ‖X − Y ‖p. Such vectors are called optimal couplings of µ and
ν. For these and further properties of the minimal Lp metric `p see Dall’Aglio
(1956), Major (1978), Bickel and Freedman (1981), Rachev (1991), and Rachev
and Rüschendorf (1998).

In order to obtain contraction properties of the map (7) we denote by ‖A‖op :=
sup‖x‖=1 ‖Ax‖ the operator norm of a square matrix A and by At the transposed
of the matrix A.

Lemma 4.1 Let (A∗
1, . . . , A

∗
K , b∗) be an L2-integrable vector of random d × d

matrices A∗
1 . . . , A∗

K and a random d-dimensional vector b∗ with E b∗ = 0 and
assume that T is as in (7). Then, the restriction of T to Md

2(0) is Lipschitz
continuous in `2, and for the Lipschitz constant lip(T ) we have

lip(T ) ≤
∥∥∥∥∥E

K∑
r=1

(A∗
r)

tA∗
r

∥∥∥∥∥

1/2

op

. (11)

The proof can be given using optimal couplings, cf. Rösler (1992, 2001) for d = 1,
Burton and Rösler (1995) for K = 1 and Neininger (2001, Lemma 3.1). If the
right hand side of (11) is less than 1 then T has a unique fixed-point in Md

2(0).
The second step of the contraction method is to show convergence in `2 for

sequences (L(Xn)) of form (3). This can be obtained under the following condi-
tions; cf. Rösler (2001, Theorem 3.1) and Neininger (2001, Theorem 4.1).

Satz 4.2 Assume (Xn) is a sequence of centered d-dimensional, L2-integrable
random vectors, satisfying the recurrence (3) with L2-integrable random d × d
matrices and a random L2-integrable centered vector b(n). Assume that we have

(
A

(n)
1 , . . . , A

(n)
K , b(n)

)
L2−→ (A∗

1, . . . , A
∗
K , b∗) , (n →∞), (12)

E
K∑

r=1

∥∥(A∗
r)

tA∗
r

∥∥
op

< 1, (13)

E
[
1{I(n)

r ≤`}∪{I(n)
r =n}

∥∥(A(n)
r )tA(n)

r

∥∥
op

]
→ 0, (n →∞), (14)

for all ` ∈ N and r = 1, . . . , K. Then we have

`2(L(Xn),L(X)) → 0, (n →∞),

where L(X) is the in Md
2(0) unique fixed-point of map T in (7).
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Condition (12) means that the convergence of the coefficients in (5) has to
hold in L2. For this we are allowed to construct (A∗

1, . . . , A
∗
K , b∗) according to

(A
(n)
1 , . . . , A

(n)
K , b(n)) on a joint probability space, i.e., (12) means

`2(L(A
(n)
1 , . . . , A

(n)
K , b(n)),L(A∗

1, . . . , A
∗
K , b∗)) → 0. (15)

Condition (13), by Jensen’s inequality, is stronger than the contraction con-
dition

∥∥∥∥∥E
K∑

r=1

(A∗
r)

tA∗
r

∥∥∥∥∥
op

< 1 (16)

from Lemma 4.1. Whether condition (13) in Theorem 4.2 can be replaced by
the weaker condition (16) is unknown, cf. also the discussion in Neininger and
Rüschendorf (2006).

Condition (14) is a technical condition, which in applications is usually easy
to verify.

For the application of Theorem 4.2 to recursive sequences (Yn) as in (1) one
has to note, that for the scaling in (2) we have to choose Mn = EYn in order to
guarantee the conditions EXn = 0 and E b(n) = 0. Since, on the other hand b(n)

in (4) contains the quantities Mn and in (12) we need to derive a limit for b(n),
this implies that for the application of Theorem 4.2 an asymptotic expansion of
the mean EYn has to be known. In contrast, the covariance matrix Cov(Yn) can
be guessed in its first order asymptotic expansion such that Theorem 4.2 applies.
Since convergence in `2 implies convergence of the second moment, Theorem 4.2
then automatically implies an asymptotic expansion of the covariance matrix
Cov(Yn).

4.2 Applications of the L2 setting

Now, we can discuss a couple of applications from section 2.2. As explained
before in section 4.1, we will need an expansion of the first moment beforehand
to do so.

4.2.1 Quicksort

For the number of key comparisons Yn of Quicksort for the model discussed in
section 2.2.1 we have

EYn = 2(n + 1)Hn − 4n = 2n log n + cpn + o(n), (17)

where Hn =
∑n

k=1 1/k denotes the n-th harmonic number, log the natural loga-
rithm and cp = 2γ − 4 with the Euler-Mascheroni constant γ. This expansion of

15



the expectation is sufficient for the application of Theorem 4.2. After rescaling
and deriving the limits of the coefficients we obtain

Yn − EYn

n

d−→ X,

where the limit equation for X is given by (6) and (7) respectively with A∗
1 = U ,

A∗
2 = 1−U and b∗ = 1+2E(U) with U uniformly distributed on [0, 1] and E(U) :=

U log U + (1 − U) log(1 − U), cf. Rösler (1991), and for alternative approaches
Hennequin (1989, 1991) and Régnier (1989). The number of key exchanges can be
treated analogously and leads to a limit equation, where, compared to the limit
equation for the key comparisons, only b∗ is changed to b∗ = U(1−U)+E(U)/3.

4.2.2 Valuations of random binary search trees

For the valuations Yn of random binary search trees described in section 2.2.2
the application of Theorem 4.2 depends on the order of the toll term bn. If
E bn = nαL(n) + o(nαL(n)) for some α > 1/2 and L a function being slowly
varying at infinity, then the expectation of Yn can be identified sufficiently precise
to apply Theorem 4.2 under weak additionally conditions on bn. This leads to a
limit distribution that depends only on α, cf. Hwang and Neininger (2002). For
smaller toll functions, e.g., with E bn = O(

√
n), Theorem 4.2 cannot be applied,

cf. section 7.2.5.

4.2.3 Wiener index of random binary search trees

For the Wiener index Wn of random binary search trees from section 2.2.3 we
have

EWn = 2n2Hn − 6n2 + 8nHn − 10n + 6Hn = 2n2 log n + cwn2 + o(n2), (18)

with cw = 2γ − 6. This leads, together with the expansion of the mean of
the internal path length in (17), to the applicability of Theorem 4.2 with limit
equation (6) and (7) respectively given by

A∗
1 =

[
(1− U)2 U(1− U)

0 1− U

]
, A∗

2 =

[
(1− U)2 U(1− U)

0 1− U

]
,

b∗ =

(
6U(1− U) + 2 E(U)

1 + 2 E(U)

)
,

where U and E(U) are as in section 4.2.1 , cf. Neininger (2002).
Interestingly, the contraction method can only be applied in this case since

we have the relation cw = cp − 2 for the constants cp and cw from (17) and (18).
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This suggests a similar relation for the corresponding constants for the universal
split tree model in Devroye (1999):

cw = cp − bEV 2

1− bEV 2
, (19)

where b denotes the branching degree and V the splitter (cf. Devroye (1999)).
Relation (19) is conjectured for splitters that are “not too concentrated” and
is motivated in Neininger (2002, page 596 top) by the fact that it is the only
relation that would allow to apply the contraction method. One may be able
to decide the validity of the conjecture in special cases using analytic tools, e.g.,
for random (point) quad trees with the tools in Flajolet et al. (1995), for m-ary
search trees see Chern and Hwang (2001b), and for median of 2t + 1 trees see
Chern and Hwang (2001a).

For the stochastic analysis of the Wiener index in other families of random
trees (the “simply generated random trees”) see Janson (2003).

4.2.4 Randomized game tree evaluation

For Yn arising in the context of the worst case complexity of Snir’s randomized
game tree evaluation algorithm in section 2.2.8 the expectation can be derived
exactly. The second component Yn,2 of Yn describes the worst case complexity
and satisfies

EYn,1 = c1n
α − c2n

β

with

α = log2

1 +
√

33

4
, β = log2

√
33− 1

4
, c1 =

1

2
+

7

2
√

33
, c2 = c1 − 1.

Together with EYn,2 this is sufficient to apply Theorem 4.2, cf. Ali Khan and
Neininger (2004), where mainly tail bounds of Yn,1 are studied.

4.2.5 Size of critical Galton Watson trees

The approach to the size of critical Galton Watson trees (conditioned on sur-
vival) from section 2.2.10 via a variant of recurrence (1) leads in the case of finite
variance of the offspring distribution to the applicability of an appropriate ex-
tension of Theorem 4.2. The exponential distribution (with parameter 1) comes
up in this context as the unique fixed-point in M1

2(1) of map (7) with K = 2,
A∗

1 = A∗
2 = U and b∗ = 0 with U being uniformly distributed on [0, 1], cf. Geiger

(2000), where also the `2 metric is used to show convergence. Offspring distri-
butions, that are in the domain of attraction of an α-stable distribution with
1 < α < 2, cannot be covered by the L2 setting. We will come back to this in
section 7.2.6.

17



5 Limitations of the L2 setting

In this section we consider the univariate case d = 1. The contraction condition
(16) and condition (13) are identical for d = 1:

E
K∑

r=1

(A∗
r)

2 < 1. (20)

Numerous applications lead to limit equations (6) of the form

X
d
=

K∑
r=1

A∗
rX

(r) + b∗,

with

b∗ = 0 and
K∑

r=1

(A∗
r)

2 = 1, (21)

e.g., for the problems discussed in sections 2.2.2, 2.2.5–2.2.7 and 2.2.9. The
coefficients A∗

1, . . . , A
∗
K usually are still random quantities, however the sum of

their squares is almost surely 1.
From the convolution property of the normal distribution follows directly,

that normal distributed random variables are solutions of the limit equation (6)
under (21).

If one excludes the degenerate cases, where the coefficients A∗
1, . . . , A

∗
K do

only have the values 0 and 1, then the set of fixed points of map T in (7) is
exactly the set

F := {N (0, σ2) : σ ≥ 0},
where N (0, σ2) denotes the centered normal distribution with variance σ2. (For
σ = 0 this is interpreted as the Dirac measure in 0.) Since the conditions (20) and
(21) cannot hold simultaneously, Theorem 4.2 cannot directly be applied. This
is a fundamental problem of the contraction method: Fixed-points of a map T
as in (7) with (21) are not unique in M1

2(0), since F ⊂M1
2(0). Hence T cannot

be a contraction on (M1
2(0), δ) for any metric δ on M1

2(0).
For the case of limit equation (6) with (21) it was known for some algorithmic

problems (and proved by different methods) that in fact the normal distribution
is the limit distribution. In section 7.1 we describe how a universal normal
limit law (Corollary 7.5) in this direction can be obtained. For this, the space
M1

2(0) has to be refined in order to guarantee the uniqueness of fixed-points, and
alternative metrics have to be used being ideal of an order larger than 2 so that
contraction properties can be obtained.
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Another problem of the L2 setting consists in the fact that concrete problems
in Computer Science and other fields lead to limit distributions that do not have
a finite second moment. Examples are the profile of random binary search trees
(section 2.2.12) or the size of critical Galton Watson trees conditioned on sur-
vival with an offspring distribution with infinite variance (section 2.2.10). This
problem cannot be surmounted by using instead of the `2 metric a minimal Lp

metric `p with some p < 2, since the corresponding limit maps T have no con-
traction properties in these metrics. The approach developed in section 7.1 based
on ideal metrics is sufficiently flexible to cover applications that have emerged so
far, cf. sections 7.2.6 and 7.2.7.

A further principal problem of the contraction method that is independent
of the metric used are degenerate limit equations. To see this we consider the
simplest case d = 1, K = 1 and A1(n) = 1, which often appears in applications,

cf. for example section 2.2.3. The recurrence (1) for (Yn) now has, with In = I
(n)
1 ,

the form

Yn
d
= YIn + bn, n ≥ n0.

Rescaling Xn := (Yn − µn)/σn as in (2) yields the modified recurrence

Xn
d
=

σIn

σn

XIn + b(n), n ≥ n0,

with

b(n) :=
1

σn

(bn − µn + µIn) .

Typically, with a reasonable choice of µn and σn, the limits of the coefficients
can be derived as

σIn

σn

→ A∗, b(n) → b∗

leading to the limit equation

X
d
= A∗X + b∗,

with (A∗, b∗) and X being independent.
In a series of applications one will be led to the case A∗ = 1 and b∗ = 0, i.e.,

one has the limit equation

X
d
= X. (22)

The degenerate limit equation does not give any information about a potential
limit distribution and the concept of the contraction method needs to be sig-
nificantly extended to deal with such cases. In the analysis of algorithms these
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cases occur naturally when Var(Yn) = L(n) + o(L(n)) with a function L being
slowly varying at infinity. Since we essentially have to choose σn =

√
Var(Yn),

one obtains

σIn

σn

=

√
L(In)

L(n)
+ o(1) → A∗ = 1, (n →∞),

almost surely under fairly general conditions on In. If, furthermore, bn is suffi-
ciently small, then b(n) = 1

σn
(bn − µn + µIn) → 0 almost surely and we are led to

a degenerate limit equation. We discuss in section 8 a universal central limit law
that can be applied to some problems occurring in applications from Computer
Science.

6 Ideal metrics — the Zolotarev metric

A probability metric τ(X, Y ) is defined for random vectors X, Y and depends on
the joint distribution L(X,Y ) of X and Y . A probability metric is called simple,
if τ(X, Y ) = τ(L(X),L(Y )) does only depend on the marginals L(X), L(Y ) of
X and Y .

Simple probability metrics on the space of pairs of random variable induce a
metric on Md or on subspaces, where they are finite. Only such metrics will be
considered subsequently. A simple probability metric τ is called (s, +) ideal (or
ideal of order s > 0), if

τ(X + Z, Y + Z) ≤ τ(X, Y )

for all Z being independent of (X,Y ) and

τ(cX, cY ) = csτ(X,Y ).

for all c > 0.
The following realization of the idea of the contraction method is based on

(s, +) ideal metrics. It turns out that the flexibility in the index s allows to solve
various of the problems described in section 5. Also numerous problems from
Computer Science can universally be treated by these metrics.

Zolotarev (1976) constructed for random vectors X, Y in Rd the probability
metrics

ζs(X, Y ) = sup
f∈Fs

|E [f(X)− f(Y )]| (23)

where s = m + α with 0 < α ≤ 1, m ∈ N0, and

Fs := {f ∈ Cm(Rd,R) : ‖f (m)(x)− f (m)(y)‖ ≤ ‖x− y‖α},
the space of m times continuously differentiable functions from Rd to R such that
the m-th derivative is Hölder continuous of order α. We use the short notation
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ζs(L(X),L(Y )) = ζs(X, Y ). We have that ζs(X, Y ) < ∞, if all mixed moments
of orders 1, . . . ,m of X and Y are equal and if the s-th absolute moments of X
and Y are finite. Furthermore, (Md

s, ζs) for 0 < s ≤ 1, (Md
s(M), ζs) for 1 < s ≤ 2

and (Md
s(M,C), ζs) for 2 < s ≤ 3 are metric spaces with M ∈ Rd and C begin

a symmetric, positive definite d × d matrix. The metric ζs is (s, +) ideal and
convergence in ζs implies weak convergence. For d× d matrices A we have

ζs(AX, AY ) ≤ ‖A‖s
opζs(X, Y ).

For additional properties of the Zolotarev metrics, in particular lower and up-
per bounds, see Zolotarev (1976, 1977), Rachev (1991) and Neininger and
Rüschendorf (2004a).

Subsequently we will exclusively use the Zolotarev metrics since for this met-
ric useful properties are established in the literature. However, crucial for the
approach is that the metric is (s, +) ideal. For this reason we could in principle
use other (s, +) ideal metrics; for examples for the application of alternative ideal
metrics in the context of the analysis of algorithms see Rachev and Rüschendorf
(1995), Cramer (1995) and Hwang and Neininger (2002).

7 The ζs realization of the idea

In this section the idea of the contraction method is developed based on the
Zolotarev metric as developed in Neininger and Rüschendorf (2004a). First,
a general contraction theorem is discussed that later is specified in different
directions. With this, in particular the problem of asymptotic normality as
discussed in section 5 will be resolved. Further examples of section 2.2 will then
be discussed.

7.1 A general contraction theorem in ζs

First we develop conditions for contraction of map T in (7) with respect to the
Zolotarev metric.

Lemma 7.1 Assume that (A∗
1, . . . , A

∗
K , b∗) is an Ls-integrable vector, s > 0, of

random d×d matrices A∗
1 . . . , A∗

K and a random d-dimensional vector b∗. Denote
by T the map given in (7). For µ, ν ∈Md

s with identical mixed moments of orders
1, . . . , m we have

ζs(T (µ), T (ν)) ≤
(
E

K∑
r=1

‖A∗
r‖s

op

)
ζs(µ, ν).
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In order to obtain contraction of T on a metric space (M∗, ζs) withM∗ ⊂Md

we have to ensure that ζs is finite on M∗ and that we have T (M∗) ⊂M∗.
For the finiteness of ζs we note that be the rescaling in (2) we can only control

the first two (mixed) moments. Thus, finiteness of ζs(Xn, X) with a general Xn

as in (2) and a fixed-point L(X) of map T can in general only be achieved for
0 < s ≤ 3.

To show that T maps M∗ into itself we make use of the spaces in (8)–(10)
as in section 6: M∗ = Md

s for 0 < s ≤ 1, M∗ = Md
s(M) for 1 < s ≤ 2

and M∗ = Md
s(M, C) for 2 < s ≤ 3. For the property that T maps M∗ into

itself we then need for the cases 1 < s ≤ 2 and 2 < s ≤ 3 conditions on M ,
C and (A∗

1, . . . , A
∗
K , b∗); cf. Neininger and Rüschendorf (2004a, Lemma 3.2). By

choosing Mn and Cn in (2) appropriately we can always reach the case M = 0
and C = Idd where Idd denotes the d-dimensional unity matrix. Then as a result
of these considerations we obtain the following Lemma on contraction of T in
ζs and the existence of fixed-points of T (Neininger and Rüschendorf (2004a,
Corollary 3.4)):

Lemma 7.2 Assume (A∗
1, . . . , A

∗
K , b∗) and T are as in (7) with Ls-integrable

(A∗
1, . . . , A

∗
K , b∗), 0 < s ≤ 3, and E

∑K
r=1 ‖A∗

r‖s
op < 1. If





E b∗ = 0 for 1 < s ≤ 2,

E b∗ = 0 and E [b∗(b∗)t] + E
K∑

r=1

A∗
r(A

∗
r)

t = Idd for 2 < s ≤ 3,

then T has a fixed-point, which is unique in





Md
s for 0 < s ≤ 1,

Md
s(0) for 1 < s ≤ 2,

Md
s(0, Idd) for 2 < s ≤ 3.

This Lemma reduces in the univariate case for s = 2 to the assertion of Lemma
4.1. The advantage of the additional flexibility in 0 < s ≤ 3 will appear later.

For our convergence result that will extend Theorem 4.2, we consider a se-
quence (Yn) as in (1) with scaled quantities (Xn) as in (2). We have to distinguish
the three cases 0 < s ≤ 1, 1 < s ≤ 2 and 2 < s ≤ 3. For the case 2 < s ≤ 3 we
assume additionally that Yn has a regular covariance matrix for all n ≥ n1 with
an n1 ≥ n0. For the scaling in (2) we assume subsequently that





Cn symmetric, positive definite for 0 < s ≤ 1,

Mn = EYn and Cn symmetric, positive definite for 1 < s ≤ 2,

Mn = EYn and Cn = Cov(Yn) for n ≥ n1 for 2 < s ≤ 3.





(24)

22



Then, the following theorem holds (Neininger and Rüschendorf (2004a, Theorem
4.1)):

Satz 7.3 Assume that 0 < s ≤ 3 and (Yn) is a sequence of Ls-integrable random
vectors as in (1) with all random matrices and vectors there being Ls-integrable.
Assume that (Xn) is the rescaled sequence according to (2) with condition (24)
If

(
A

(n)
1 , . . . , A

(n)
K , b(n)

)
Ls−→

(
A∗

1, . . . , A
∗
K , b∗

)
, (n →∞) (25)

E
K∑

r=1

‖A∗
r‖s

op < 1, (26)

E
[
1{I(n)

r ≤`}∪{I(n)
r =n}‖A(n)

r ‖s
op

]
→ 0, (n →∞) (27)

for all ` ∈ N and r = 1 . . . , K, then we have

ζs(L(Xn),L(X)) → 0, (n →∞),

where L(X) is the in Lemma 7.2 described unique fixed-point of map T in (7).

Condition (25) is meant analogously to condition (12), see (15).
The advantage of Theorem 7.3 is the flexibility in the parameter s. From the

point of view of applications the three cases 0 < s ≤ 1, 1 < s ≤ 2 and 2 < s ≤ 3
are substantially different. In case 2 < s ≤ 3 the condition L(Xn) ∈ Md

s(0, Idd)
requires that the original sequence (Yn) in (2) is scaled with the exact mean and

covariance matrix, cf. (24). In order to obtain the limits of (A
(n)
1 , . . . , A

(n)
K , b(n))

in (25) one has to draw back to the representations of A
(n)
r and b(n) in (4) which

involve the quantities Mn and Cn. Hence, for the application of Theorem 7.3
with 2 < s ≤ 3 expansions of EYn and Cov(Yn) need to be known in advance.
This is different from the cases s ≤ 2. For 1 < s ≤ 2 we only need to ensure
L(Xn) ∈ Md

s(0). This implies that for the application of the theorem only an
expansion of the mean Mn = EYn has to be known in advance. An expansion
of the covariance matrix can be guessed in first order and can be verified by
Theorem 7.3 together with weak convergence. If Theorem 7.3 can be applied
with s ≤ 1 then no information about moments needs to be known in advance.
An appropriate application of the theorem with s = 1 implies an expansion of
the expectation.

To get a first glance of the applicability of Theorem 7.3 we consider in recur-
rence (1) for (Yn) as special case the univariate case d = 1 with A1(n) = · · · =
AK(n) = 1. This case is frequent in applications,

Yn
d
=

K∑
r=1

Y
(r)

I
(n)
r

+ bn, n ≥ n0, (28)
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with conditions as in (1) and Var(Yn) > 0 for all n ≥ n1 ≥ n0. We assume that
there are functions f, g : N0 → R+

0 with g(n) > 0 for all sufficiently large n such
that

(
g(I

(n)
r )

g(n)

)1/2

Ls−→ A∗
r for r = 1, . . . , K with E

K∑
r=1

(A∗
r)

s < 1, (29)

and

1

g1/2(n)

(
bn − f(n) +

K∑
r=1

f(I(n)
r )

)
Ls−→ b∗. (30)

Satz 7.4 Assume that 0 < s ≤ 3 and that (Yn) is a sequence of Ls-integrable
random variables with (28) and bn there is Ls-integrable. Assume that f and g
are functions with (29) and (30). If
{

EYn = f(n) + o(g1/2(n)) for 1 < s ≤ 2,

EYn = f(n) + o(g1/2(n)) and Var(Yn) = g(n) + o(g(n)) for 2 < s ≤ 3,

then

Yn − f(n)

g1/2(n)

d−→ X,

where L(X) is the in Lemma 7.2 described unique fixed-point of map T in (7)

and
d−→ denotes convergence in distribution.

In Theorem 7.4 we see, up to which extent expansions of the moments of Yn are
needed in advance in the cases 2 < s ≤ 3 and 1 < s ≤ 2. A further specialization
yields a solution to one of the problems of the L2 setting in section 5.

Korollar 7.5 Assume that (Yn) is a sequence of Ls-integrable random variables
as in (28) with bn there being Ls-integrable. Assume that we have EYn = f(n)+
o(g1/2(n)) and Var(Yn) = g(n) + o(g(n)) and for some 2 < s ≤ 3

(
g(I

(n)
r )

g(n)

)1/2

Ls−→ A∗
r,

K∑
r=1

(A∗
r)

2 = 1, P

(
K⋂

r=1

{A∗
r ∈ {0, 1}}

)
< 1

and

1

g1/2(n)

(
bn − f(n) +

K∑
r=1

f(I(n)
r )

)
Ls−→ 0.

Then we have

Yn − f(n)

g1/2(n)

d−→ N (0, 1).
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It turns out that a large number of applications in the analysis of algorithms and
random trees that leads to asymptotic normality can be covered by Corollary
7.5, cf. section 7.2. These applications lead in Corollary 7.5 to an application of
the ζs metric for 2 < s ≤ 3. As explained before, this requires that asymptotic
expansions for mean and variance are known in advance. This somehow corre-
sponds to a heuristic principle formulated by Pittel (1999) “Normal convergence
problem? Two moments and a recurrence may be the clues”.

The value of different metrics from the point of view of applications to recur-
rences of type (1) can be measured by the corresponding contraction properties of
the map in (7). In dimension d = 1, e.g., we have for `2 as contraction condition
in Theorem 4.2

E
K∑

r=1

(A∗
r)

2 < 1.

For general `p, p > 0, we could formulate a corresponding result under the
contraction condition

K∑
r=1

‖A∗
r‖p < 1. (31)

It is known that the map in (7) on M1
p(0) also is a contraction with respect to

`p under condition

E
K∑

r=1

|A∗
r|p < 1. (32)

However, it is unknown (but likely) whether this condition also implies a conver-
gence result corresponding to Theorem 4.2.

For the Zolotarev metric ζs we have contraction in the mentioned spaces
under the contraction condition

E
K∑

r=1

|A∗
r|s < 1. (33)

In typical algorithmic applications we have A1(n) = · · · = AK(n) = 1 and
the variance of Yn is often (up to periodic prefactors) monotone increasing. In
these cases this implies that the corresponding limit equation has coefficients
A∗

1, . . . , A
∗
K with 0 ≤ A∗

r ≤ 1 for r = 1, . . . , K. The contraction conditions
(32) and (33) hence are becoming weaker as s and p respectively are increased.
As noted after Theorem 7.3, for more comfortable contraction conditions for
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increasing s we have to pay with information about the moments of Yn that has
to be known in advance to apply the method. Hence, there is a tradeoff between
contraction condition and input of moments. From this perspective the condition
(31) is less useful. The L2 setting of section 4.1 in dimension d = 1 is about a
mighty as Theorem 7.3 with s = 2; for d ≥ 2 however there are differences,
cf. Neininger and Rüschendorf (2003).

An interesting limit equation with coefficients A∗
1, . . . , A

∗
K taking values larger

than 1, will appear in (37) for the profile of random binary search trees in section
7.2.7. The special feature in that recurrence is the presence of a second index k.
In the area of the analysis of algorithms profiles of random split tree models are
the first examples of such limit equations.

7.2 Applications of the ζs setting

With Theorem 7.3 we can discuss further examples from section 7.3. We start
with cases leading to asymptotic normality that are covered by Corollary 7.5.

7.2.1 Size of random m-ary search trees

For the size Yn of random m-ary search trees, expectation and variance satisfy,
for the cases 3 ≤ m ≤ 26, the expansions

EYn =
1

2(Hm − 1)
n + O(1 + nα−1), Var(Yn) = γmn + o(n),

with γm > 0 and α < 3/2 depending on m. Corollary 7.5 can be applied
with f(n) = 1

2(Hm−1)
n and g(n) = γmn. This yields a central limit law first

obtained in Mahmoud and Pittel (1989) and Lew and Mahmoud (1994). For
m > 26 Hwang and Chern (2001) showed, that the exactly rescaled quantities
(Yn − EYn)/

√
Var(Yn) do not converge in distribution at all due to periodic

phenomena, cf. Chauvin and Pouyanne (2004) and Fill and Kapur (2004b).

7.2.2 Size and path length of random tries

For the quantities Yn of random tries described in section 2.2.6 we have

EYn = n$1(log2 n) + O(1), Var(Yn) = n$2(log2 n) + O(1),

where $1, $2 are positive, infinitely differentiable functions with period 1. The
conditions in Corollary 7.5 can be verified by direct computations, cf. Neininger
and Rüschendorf (2004a, pages 403-406). This implies a central limit law due to
Jacquet and Régnier (1986).

A more systematic study of the application of Corollary 7.5 shows that the
properties of the periodic functions $1, $2 needed are only that they are strictly
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positive, that $1 is continuously differentiable and that $2 is continuous. Hence
Corollary 7.5 can also be applied to other parameters of digital structures (i.e.,
tries, digital search trees, Patricia tries), where corresponding periodic functions
appear. In particular the external (resp. internal) path length of tries (external),
digital search trees (internal), where expansions of the first two moments are
of this type can be covered by Corollary 7.5. For different approaches to these
problems see Jacquet and Régnier (1986, 1988) and Schachinger (2001).

7.2.3 Mergesort

For the number of key comparisons of Mergesort discussed in section 2.2.7 we
have the expansions

EYn = n log2 n + n$3(log2 n) + O(1),

Var(Yn) = n$4(log2 n) + o(n),

where $3, $4 are continuous functions with period 1, $4 is strictly positive,
however, $3 is not differentiable. We have

$3(u) = C +
1

log 2

∑

k∈Z\{0}

1 + Ψ(χk)

χk(χk + 1)
e2kπiu, u ∈ R, (34)

with a constant C ∈ R, a complex function Ψ being O(1) on the imaginary line
<(s) = 0 and

χk =
2πik

log 2
, k ∈ Z,

cf. Flajolet and Golin (1994), where also a central limit law for Yn is shown.
Although $3 is not differentiable, we can apply Corollary 7.5 with

f(n) = n log2(n) + n$3(log2 n), g(n) = n$4(log2 n).

For this, the special representation of $3 given in (34) can be exploited,
cf. Neininger and Rüschendorf (2004a, pages 408-409).

7.2.4 Maxima in right triangles

The number of maxima Yn in a random point set in a right triangle as described
in section 2.2.9 satisfies

EYn =
√

π
√

n + O(1), Var(Yn) = σ2
√

n + O(1)

with σ2 = (2 log 2−1)
√

π, cf. Bai et al. (2001). The central limit theorem proven
in Bai et al. (2001) by the method of moments can alternatively be obtained by
verifying the conditions in Corollary 7.5, cf. Neininger and Rüschendorf (2004a,
pages 410–411).
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7.2.5 Valuations of random binary search trees

For the valuations of random binary search trees in section 2.2.2 we obtained in
section 4.2.2 that for toll terms bn with E bn = nαL(n) + o(nαL(n)), α > 1/2
and L slowly varying at infinity the L2 setting can be applied. For smaller toll
terms with E bn = O(

√
n) we are lead to the fixed-point equation (21) with

the problems discussed in section 5. It turns out that for such toll terms mean
and variance on Yn are asymptotically linear with error terms that allow to
apply Corollary 7.5. This leads to asymptotic normality of the scaled quantities,
cf. Hwang and Neininger (2002). An alternative approach to this problem based
on Stein’s method can be found in Devroye (2002/03).

7.2.6 Size of critical Galton Watson trees

In section 4.2.5 cases of the size of critical Galton Watson trees (conditioned on
survival of the n-th generation) were left open, where the offspring distribution
is in the domain of attraction of an α-stable distribution with 1 < α < 2. These
can be treated with a variant of recurrence (1), cf. section 2.2.10 and lead to the
fixed-point equation

X
d
= U1/(α−1)

K∑
r=1

X(r) (35)

with U being uniformly distributed on [0, 1] and K being random but independent
of U and only depending on α. In particular, we have EK = α/(α − 1). The
limit distribution has finite absolute moments only for orders less than α. On the
other hand the fixed-point equation (35) leads to a contraction for all 1 < s < α
on (M1

s(1), ζs) since the Lipschitz constant here is bounded by

E [KU s/(α−1)] =
α

α− 1

α− 1

s + α− 1
< 1.

A generalization of Theorem 7.3 to variants of recurrence (1) with random K,
possibly depending on n, has been developed in Neininger and Rüschendorf
(2004a, section 4.3). For the verification of the conditions corresponding to
(25)–(27) and further details of the approach see Kauffmann (2003, section 3.2).

7.2.7 Profile of random binary search trees

For the profile Yn,k of random binary search trees as described in section 2.2.12
we have

EYn,k =
2k

n!
s(n, k) =

(2 log n)k

Γ(k/ log n)k!n

(
1 + O

(
1

log n

))
, (36)
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where s(n, k) are the (sign-less) Stirling numbers of first kind. For k = α log n +
o(log n) this implies

log EYn,k

log n
→ λ(α) = α− 1− α log(α/2).

It is known that the saturation level and the height of the random binary search
tree are at levels α− log n and α+ log n respectively, cf. Devroye (1986, 1987),
where 0 < α− < 2 < α+ are the solutions of the equation

α log

(
2e

α

)
= 1, α−

.
= 0.373, α+

.
= 4.311.

Hence, the profile Yn,k is asymptotically non-deterministic at most for k =
α log n + o(log n) with α ∈ (α−, α+).

The approach of the contraction method can still be applied. From the as-
ymptotic expansion (36) we obtain for the scaled quantities Yn,k/EYn,k with
k = α log n + o(log n), α ∈ (α−, α+) the limit equation

Xα
d
=

α

2
Uα−1X(1)

α +
α

2
(1− U)α−1X(2)

α , (37)

where U is uniformly distributed on [0, 1].
This equation has a unique solution L(Xα) in the space M1

s(1), where we
have 1 < s < %, and % = %(α) is given by (α − 1)% + 1 = 2(α/2)% for α ∈
(α−, α+) \ [1, 2] and % = ∞ for α ∈ [1, 2]. In particular, we have % < 2 for
α ∈ (α−, α+) \ [2−√2, 2 +

√
2].

The distribution L(Xα) has finite absolute moments of orders less than %,
but there is no finite absolute moment of order % for α ∈ (α−, α+) \ [1, 2]. These
properties indicate the ranges where different methods can be applied. The
method of moments can be applied in the range α ∈ [1, 2]. The L2 setting covers
the range α ∈ [2−√2, 2+

√
2]. With the methods of section 7.1 the whole range

α ∈ (α−, α+) can universally been treated. For details and refined results for the
cases α = 1 and α = 2 cf. Fuchs, Hwang and Neininger (2004), for an earlier
approach via martingales see Chauvin, Drmota and Jabbour-Hattab (2001).

8 Degenerate fixed-point equations

The phenomenon of degenerate fixed-point equations is more frequent than in-
dicated in section 5, where we were only looking at cases with variances being
slowly varying at infinity. Also, the normal distribution is by far not the only
possible limit distribution in this context.

Nevertheless, we discuss a central limit law from Neininger and Rüschendorf
(2004b) that covers typical cases as described in section 5 uniformly.
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8.1 A general central limit law

We consider recurrence (1) for (Yn) with d = 1, K = 1 and A1(n) = 1,

Yn
L
= YIn + bn, n ≥ n0, (38)

with the notation In = I
(n)
1 and the assumption that P(In = n) < 1 for n ≥ n0.

We denote σn =
√

Var(Yn) and µn = EYn, and write logα n := (log n)α for
α > 0 and n ≥ 1. Then we have (Neininger and Rüschendorf (2004b, Theorem
2.1)):

Satz 8.1 Assume the sequence (Yn)n≥0 satisfies (38) with ‖Yn‖3 < ∞ for all
n ≥ 0 and

lim sup
n→∞

E log

(
In ∨ 1

n

)
< 0, sup

n≥1

∥∥∥∥log

(
In ∨ 1

n

)∥∥∥∥
3

< ∞. (39)

Assume that there are numbers α, λ, κ with 0 ≤ λ < 2α, such that expectation
and variance of Yn have the expansions

‖bn − µn + µIn‖3 = O (logκ n) and σ2
n = σ2 log2α n + O(logλ n) (40)

with some constant σ > 0. If

β := 3
2
∧ 3(α− κ) ∧ 3(α− λ/2) ∧ (α− κ + 1) > 1,

then

Yn − EYn

σ logα n

d−→ N (0, 1),

with a rate of convergence in the Zolotarev metric

ζ3

(
Yn − EYn√

Var(Yn)
,N (0, 1)

)
= O

(
1

logβ−1 n

)
.

The first condition in (39) implies, that In is not too large, the second implies,
that In is not too small.

The use of the Zolotarev metric is essential in the proof of the theorem, as it
is not only used that ζ3 is an (3, +) ideal metric. The proof is based in the special
definition (23) of the metric. In particular a Taylor expansion of the functions
in F3 is necessary to obtain tight estimates.

A generalization of Theorem 8.1 to recurrences (1) with K ≥ 2 is given in
Neininger and Rüschendorf (2004b, section 5).
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8.2 Applications

We discuss applications of Theorem 8.1, where the asymptotic normality can
directly be obtained from expansions of the moments as in (40).

8.2.1 Depth of nodes in random binary search trees

For the depth Yn of a random node in a random binary search tree with n internal
nodes as discussed in section 2.2.3 we have

EYn = 2 log n + O(1), Var(Yn) = 2 log n + O(1),

cf. Mahmoud (1992). With the notation on Theorem 8.1 we obtain

‖bn − µn + µIn‖3 = ‖2 log(In/n) + O(1)‖3 = O(1).

Hence, the parameters of Theorem 8.1 are given by α = 1/2, κ = λ = 0 and we
obtain β = 3/2. The technical conditions in (39) are satisfied, since log((In ∨
1)/n) → log U in L3/2 for a random variable U uniformly distributed on [0, 1].
Theorem 8.1 yields a central limit theorem with a rate of convergence in ζ3,
which is optimal as shown in Mahmoud and Neininger (2003, Theorem 1). For a
direct stochastic argument to the asymptotic normality of the depth see Devroye
(1988).

8.2.2 Broadcast communication models

For the time complexity of Algorithm B for finding maxima in broadcast com-
munication models as discussed in section 2.2.11 Chen and Hwang (2003) showed

EYn = µ log2 n + O(log n), Var(Yn) = σ2 log3 n + O(log2 n)

with positive constants µ and σ, as well as a central limit law. A direct calculation
yields

‖bn − µn + µIn‖3 = O(log n).

Hence, in Theorem 8.1 the parameters are α = 3/2, κ = 1, and λ = 2, i.e.,
β = 3/2. We rederive the asymptotic normality.

For the number of key comparisons of the alternative Algorithm A the mean
is asymptotically linear, and we have (see Chen and Hwang (2003))

EYn = n + µ̄ ln n + O(1), Var(Yn) = σ̄2 ln n + O(1),
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with explicitly known constants µ̄, σ̄ > 0. A generalization of Theorem 8.1 can
be applied to this recurrence. The leading linear terms in the mean cancel and
we obtain

‖bn − µn + µ
I
(n)
1

+ µ
I
(n)
2
‖3 = ‖µ̄ ln((I

(n)
1 ∨ 1)/n) + I

(n)
2 + µ̄ ln I

(n)
2 + O(1)‖3

= O(1).

This implies α = 1/2 and κ = λ = 0, thus β = 3/2. We obtain the asymptotic
normality from Chen and Hwang (2003) with an additional rate of convergence.

8.2.3 Further applications

The analysis of further parameters of the algorithms discussed in section 8.2.2
also leads to degenerate limit equations,which can be covered by Theorem 8.1,
cf. Neininger and Rüschendorf (2004b).

In Mahmoud (2003) one-sided recurrences for random binary search trees are
studied. These are quantities that in a recursive formulation only draw back
to one of the two subtrees of the root. Mahmoud (2003) demonstrates, how
Theorem 8.1 can be used to reduce the problem of asymptotic normality to the
calculation of expansions of the first two moments.

In Gnedin, Pitman and Yor (2004) the number of components of a regenera-
tive composition structure are studied. As in Mahmoud (2003), the problem of
asymptotic normality is reduced to the calculation of moments based on Theorem
8.1.

9 Related problems

In this section some selected related problems are mentioned. We illustrate
these issues at the example of the number of key comparisons of the Quicksort
algorithm in section 2.2.1.

9.1 Rates of convergence

For the L2 setting in section 4.1 and for the ζs setting in section 7.1 rates of con-
vergence for the number of key comparisons Yn of Quicksort have been estimated.
Fill and Janson (2002) find for the minimal Lp metrics `p the estimates

`p

(
L

(
Yn − EYn

n

)
,L(X)

)
=

{
O(1/

√
n), p ≥ 1,

Ω(log(n)/n), p ≥ 2,

and for the Kolmogorov metric %

%

(
L

(
Yn − EYn

n

)
,L(X)

)
=

{
O(n−1/2+ε), ε > 0,

Ω(1/n),
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where L(X) is the fixed-point described in section 4.2.1. In Neininger and
Rüschendorf (2002) the rate of convergence for the Zolotarev metric ζ3 could
be identified:

ζ3

(
L

(
Yn − EYn√

Var(Yn)

)
,L(X/σ)

)
= Θ

(
log n

n

)
,

with σ =
√

7− 2π2/3.

It is an open problem whether Θ(log(n)/n) is also the correct rate of conver-
gence for the Kolmogorov metric.

9.2 Large deviations

The study of large deviations from the expectation for quantities of type (1) is
important for Computer Science, as such bounds quantify the probability of bad
behavior of the algorithms. The first bounds for large deviations for the number
of key comparisons for Quicksort going beyond trivial Chebychev-bounds based
on moments, were given in Rösler (1991). There, the modified recurrence (3) and
induction are used to prove a bound for the moment generating function. Then
Chernoff’s bounding technique implies bounds for large deviations.

Better bounds were given in McDiarmid and Hayward (1996) with a more
combinatorial approach using the “method of bounded differences”. These
bounds were later also derived by Rösler’s approach in Fill and Janson (2002),
were estimates for the moment generating function are made explicit.

This inductive approach leads in Rösler (1991) and Fill and Janson (2002) to
a certain function f(K, λ, n), for which bounds are derived by taking multiple
derivatives.

Estimating tail bounds of the worst case complexity of randomized game
tree evaluation as discussed in section 2.2.8 leads to a similar problem in a two-
dimensional setting. For a crucial estimate of the term corresponding to the
function f(K, λ, n) in Ali Khan and Neininger (2002) an idea of Bennett (1962)
was helpful.

9.3 Solutions of fixed-point equations

A difficult problem is the characterization of the set of all fixed-points of a map
(7) in the space Md. For the Quicksort case from section 4.2.1, Fill and Jan-
son (2000b) could completely solve this problem. For general maps of type (7)
see Holley and Liggett (1981), Durrett and Liggett (1983), Liu (1997, 1998),
Alsmeyer and Rösler (2006), Caliebe (2003), Caliebe and Rösler (2003), Biggins
and Kyprianou (2005) and the references in these papers.
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9.4 Properties of fixed-points

In a limit law one wants to use the limit distribution to approximate the distribu-
tions of the finite problem. For many of the limit laws proved by the contraction
method the limit distribution is only (implicitly) given by its fixed-point prop-
erty. For this reason characteristic quantities of these distributions such as the
distribution function or density are not directly amenable. Hence, it is challeng-
ing to derive properties of such fixed-points. For the Quicksort limit distribution
L(X) from section 4.2.1 it is shown in Fill and Janson (2000a) that X has
a bounded, infinitely differentiable Lebesgue-density that is rapidly decreasing.
Furthermore, explicit bounds for the density fX and its derivatives are derived.
It is not known, whether fX is unimodal, although simulations suggest a uni-
modal shape. It is also unknown, whether X is infinitely divisible. In Devroye,
Fill and Neininger (2000) an algorithm for a uniform approximation of fX was
given, that is too slow to approximate the density practically. For analogous
results for more general fixed-point equations see Devroye and Neininger (2002).

9.5 Simulation of fixed-points

For the approximative simulation of distributions given as fixed-points one can
iterate the fixed-point equation to obtain a sequence that converges at geometric
rate to the fixed-point. However, for maps as in (7) with K ≥ 2, also the
complexity is exponential in the number of iterations of the fixed-point equation.

For perfect simulation of such fixed-points for the example of the Quicksort
limit distribution of section 4.2.1 an algorithm was proposed in Devroye, Fill
and Neininger (2000). This algorithm is based on von Neumanns “rejection
sampling”. For the exact simulation of “Perpetuities” related to the selection
algorithm Find, see Devroye (2001); for the exact simulation of a larger class of
fixed-points, see Devroye and Neininger (2002).

9.6 Recurrences with maxima instead of sums

Many worst case parameters (Yn) of recursive algorithms and discrete recursive
structures satisfy recurrence (1), with the sum appearing there for summing the
contributions of the quantities in the sub-structures replaced by a maximum,

Yn
d
=

K∨
r=1

(
Ar(n)Y

(r)

I
(n)
r

+ br(n)
)

, n ≥ n0.

Here, (A1(n), . . . , AK(n), b1(n), . . . , bK(n), I(n)), (Y
(1)
n ), . . . , (Y

(K)
n ) are indepen-

dent, b1(n), . . . , bK(n) are random variables and all remaining quantities are as
in (1) with d = 1. A first convergence result in the style of Theorems 4.2 and 7.3,
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where the minimal Lp metric `p is used, is given in Neininger and Rüschendorf
(2005). The question of the full space of fixed-points of the associated limit
equation is discussed in Jagers and Rösler (2004).
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RAIRO Inform. Théor. Appl. 23, 317–333.

[] Hennequin, P. (1991) Analyse en moyenne d’algorithme, tri rapide et arbres
de recherche, Ph.D. Thesis, École Polytechnique.
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[] Neininger, R. und Rüschendorf, L. (2003) Multivariate aspects of the con-
traction method. Preprint 03-19, Preprintserie des Mathematischen Insti-
tuts, Universität Freiburg.
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[] Neininger, R. und Rüschendorf, L. (2005) Analysis of algorithms by the
contraction method: additive and max-recursive sequences. Interacting
Stochastic Systems, 435–450, Springer, Berlin.

[] Panholzer, A. und Prodinger, H. (2004) Spanning tree size in random bi-
nary search trees. Ann. Appl. Probab. 14, 718–733.

[] Papadakis, T., Munro, J. I. und Poblete, P. (1990) Analysis of the expected
search cost in skip lists. SWAT 90 (Bergen, 1990), 160–172, Lecture Notes
in Comput. Sci., 447, Springer, Berlin.

[] Pittel, B. (1999) Normal convergence problem? Two moments and a re-
currence may be the clues. Ann. Appl. Probab. 9, 1260–1302 (1999).

[] Prodinger, H. (1993) How to select a loser. Discrete Math. 120, 149–159.

[] Pugh, W. (1989) Skip lists: a probabilistic alternative to balanced trees. Al-
gorithms and data structures (Ottawa, ON, 1989), 437–449, Lecture Notes
in Comput. Sci., 382, Springer, Berlin.

42



[] Rachev, S. T. (1991) Probability Metrics and the Stability of Stochastic
Models, John Wiley, New York.
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