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Abstract. In this paper we introduce and study net sets and
limiting net sets. Net sets can be constructed with the help of
substitutions with net matrices which we also introduce here. All
these notions are based on the structure of (t, m, s)-nets, in our
particular case that of (0, 2, 2)-nets in base 2. First we study con-
nectivity properties of net sets and limiting net sets, and then we
find the Lebesgue measure and Hausdorff dimension of limiting
net sets, which in fact are fractal sets that can also be viewed as
random fractals.

1. Introduction

The starting point for the facts presented in this paper are mathe-
matical objects called (t,m, s)-nets. These are sets of points in the
unit cube in R

s which are useful in numerical integration methods, in
particular in quasi-Monte Carlo integration. The essential property of
these sets is their good distribution in the unit cube.

Definition 1. Let b ≥ 2, s ≥ 1 and 0 ≤ t ≤ m be integers. Then
a point set P consisting of bm points in [0, 1)s forms a (t,m, s)-net in
base b, if every cuboid of the form J =

∏s

j=1[ajb
−dj , (aj + 1)b−dj ) of

[0, 1)s with integers dj ≥ 0 and 0 ≤ aj < bdj for 1 ≤ j ≤ s and of
volume bt−m contains exactly bt points of P .

For more details regarding (t,m, s)-nets and uniformly distributed point
sets in the unit cube we refer to Niederreiter [9, 10].
In this paper we construct fractal sets in the unit cube with the help
of (0, 2, 2)-nets in base 2. We call these sets limiting net sets where

Date: May 8, 2007.
2000 Mathematics Subject Classification. 54H05, 28A80, 11K36, 28A78, 28A75.
Key words and phrases. (t, m, s)-nets, substitutions, random fractals, connectiv-

ity, Hausdorff dimension.
∗The author was supported by the Austrian Research Foundation (FWF),

Project S9609, that is part of the Austrian National Research Network “Analytic
Combinatorics and Probabilistic Number Theory”.

1



NET SETS 2

“net” always (except Section 5) refers to (0, 2, 2)-nets in base 2. A
limiting net set is defined as the limit of a decreasing sequence of net
sets, where the sequence is constructed by iteration. The structure of
net sets is given by the configuration of points of (0, 2, 2)-nets. For
example, Figure 1 shows a (0, 2, 2)-net in base 2, while the left net set
in Figure 2 corresponds to the (0, 2, 2)-net in Figure 1. In Section 5 we
refer to net sets corresponding to (t,m, s)-nets in some more general
cases.

Figure 1. The four points of a (0, 2, 2)-net in base 2.

Now we give a short outline of this paper.
In Section 2 we start with the definitions of notions that we use

along the paper: we introduce net sets and the corresponding limit-
ing net sets. Another object and useful instrument are net matrices,
4 × 4 matrices with entries zero or one satisfying certain conditions
corresponding to the structure of (0, 2, 2)-nets in base 2. We show how
one can define and construct net sets with the help of net matrices
and substitutions with net matrices, which we introduce here. We also
introduce some notions of connectivity for net sets and net matrices.

In Section 3 we study connectivity properties of net sets. First, we
take the case of net sets defined by substitutions with connected net
matrices and prove two propositions about how substitutions with con-
nected net matrices “transmit” the strong connectivity along sequences
of net sets. The main part of this section is Subsection 3.2, about prop-
erties of limiting net sets. We introduce the notion of net connectivity
for limiting net sets, which is stronger than connectivity with respect
to the topology induced by the Euclidean metric on R

2. We prove the-
orems regarding the strong connectivity or connectivity (with respect
to the Euclidean topology) of limiting net sets. Theorems 5 and 6 give
sufficient and necessary conditions for the total disconnectivity of a
uniform limiting net set. After establishing the existence of different
“connectivity degrees” for limiting net sets, the question “How large
is the limiting net set?” appears naturally. This is one of the main
motivations of the next section.
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In Section 4 we approach the fractal structure of limiting net sets.
We derive, by using means from fractal geometry, the Hausdorff di-
mension, as well as the 1-dimensional Lebesgue measure of limiting
net sets. We start with the very special case of totally uniform self-
similar net sets and get then to the general case when a limiting net
set is viewed as a random fractal. Of course, we could have started
with the general case, but we had in view mentioning also facts about
self-similar fractals and their connection with special net sets. In the
context of random fractals the question about fractal percolation arises
in a natural way. We define net percolation, which is an analogon of
fractal percolation in the unit cube, and show that it occurs for spe-
cial cases of limiting net sets. For details regarding fractal percolation
in the cube we refer, e.g., to Falconer [5], Chayes [2] or Dekking and
Meester [3]. The section ends with an open problem of net percolation
depending on the probabilities of occurrence of connected and, respec-
tively, disconnected matrices in the construction by net substitutions
of the net sets that define a limiting net set.

In the last section we mention and very briefly discuss some other
cases of (t,m, s)-nets, mainly for s = 2.

The results proven here provide methods for constructing random
fractals with a certain type of uniformity of structure (which is given
by the structure of (t,m, s)-nets) by using net matrices, but also for
constructing percolating fractal sets and sets with certain connectivity
properties.

2. Definitions

2.1. (0, 2, 2)-nets in base 2 and net sets in the unit square.

Throughout this paper we deal with the particluar case of (0, 2, 2)-
nets in base 2. Unless specified differrently, by “net” we mean in all
the considerations to follow a (0, 2, 2)-net in base 2. In order that the
reader gets familiar with such point sets let us remind their definition.

Definition 2. A point set P consisting of 22 points in [0, 1)2 forms a
(0, 2, 2)-net in base 2 in [0, 1)2 if every subinterval J = [a1 2−d1 , (a1 +
1) 2−d1) × [a2 2−d2 , (a2 + 1) 2−d2) of [0, 1)s with integers d1, d2 ≥ 0 and
0 ≤ aj < 2dj for j = 1, 2 and of volume 2−2 contains exactly one point
of P .

In the following we call net squares the sets [a
4
, a+1

4
] × [ b

4
, b+1

4
], with

a, b ∈ {0, 1, 2, 3}. Each such square, with two of its edges subtracted
(the right margins of the intervals in the Cartesian products) occurs in
the definition of the (0, 2, 2)-nets in base 2.
The definition of (0, 2, 2)-nets in base 2 enables us to associate exactly
one net square to each net point: if x is a net point with x ∈ [a

4
, a+1

4
)×

[ b
4
, b+1

4
), with a, b ∈ {0, 1, 2, 3}, then we associate to x the net square

[a
4
, a+1

4
]× [ b

4
, b+1

4
]. For any net we call black net square each net square
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containing a net point and white net squares the rest of the net squares.
Thus, for a given (0, 2, 2)-net in base 2 we have 4 black net squares and
12 white squares associated to the net.

Definition 3. Let P0 be a (0, 2, 2)-net in base 2.
We call net set of level 0 of type P0 the subset E(P0) of the unit square
that is the union of the white squares associated to P0. E0 is the family
of all net sets of level 0.
For any integer k ≥ 1 we inductively define a net set of level k:
We call net set of level k any subset of a net set E ∈ Ek−1 which
is obtained by replacing all squares [ a

22k ,
a+1
22k ] × [ b

22k ,
b+1
22k ], with a, b ∈

{0, 1, . . . 22k − 1}, contained in E by net sets of level 0 scaled by the
factor 2−2k. Ek is the family of all net sets of level k.

The following definition describes a special class of net sets.

Definition 4. A net set E of level k ≥ 1 is called a uniform net set
if at each level j, with 0 ≤ j ≤ k, of the construction of E, all net
squares [ a

22j ,
a+1
22j ] × [ b

22j ,
b+1
22j ], with a, b ∈ {0, 1, . . .22j − 1}, are replaced

by the same scaled net set.

Each net set of level 0 is trivially uniform. Uniformity in net sets plays
a role only starting with level 1. All net sets represented in Figure 3,
4, 5 and 6 are uniform.
In the following we will call for k ≥ 1 the squares [ a

22k ,
a+1
22k ] × [ b

22k ,
b+1
22k ]

occuring in Definition 3 white (k − 1)-squares or white net squares of
level k − 1. Correspondingly, we also have black (k − 1)-squares or
black squares of level k − 1. When we do not specify the colour of a
net square we mean a white net square. Thus, by Definition 3, in the
construction of a net set of level k we replace every white (k−1)-square
by a net set of level 0 scaled by the factor 2−2k.

Figure 2. Strongly connected net sets of level 0.

Remark. Equivalently, a net set of level 0 is obtained by “cutting
out” the black net squares associated to the net and then taking the
topological closure (with respect to the usual Euclidean topology) of
the obtained set. Proceeding inductively as in the above definition one
can define the net sets of level k, with k ≥ 1 with the help of cut
out black l-squares, with l = 0, 1, . . . , k and taking, at each step l, the
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Figure 3. The uniform net set of level 1 based on the
net sets in Figure 2.

topological closure (in the Euclidian topology).
Each net set is a compact set with respect to the topology induced by
the Euclidean metric on R

2.

Definition 5. Let E0 ∈ E0 and {Ek}k≥0, Ek ∈ Ek for k ≥ 0 and
E0 ⊃ E1 ⊃ . . . Ek−1 ⊃ Ek ⊃ . . . be a decreasing sequence of net sets.
We call limiting net set of the sequence {Ek}k≥0 the set

E∞ :=
⋂

k≥0

Ek.

If the sets Ek of the above sequence are uniform net sets, then E∞ is
called a uniform limiting net set.

Remark. Since any decreasing sequence of compact sets in R
2 is con-

vergent, the limiting net set of a decreasing sequence of net sets as
above is always well defined, and nonempty.

Definition 6. Let E ∈ Ek, k ≥ 0. Two net squares (having the same
colour or different colours) of the same level l ≤ k occuring in E are
said to be neighbours (neighbouring net squares) if they share an edge.

Definition 7. A k-path in a set E ∈ Ek, k ≥ 0 is a finite sequence p
of neighbouring (white) k-squares. The union of the net squares of a
path p is called the corridor of the path and is denoted by Γ(p).

Definition 8. Let E ∈ Ek, k ≥ 0. We say that E is strongly connected
if for any k-squares S and T included in E there exists a k-path p =
p(S, T ) in E that connects S and T .

2.2. Net matrices. In the following we work with net matrices defined
by (0, 2, 2)-nets in base 2.

Definition 9. Let A = (ai,j)0≤i,j≤3 be a 4 × 4 matrix with entries in
{0, 1}. We say that A is a net matrix (corresponding to a (0, 2, 2)-net
in base 2) if exactly 4 entries equal 1 and their distribution within the
matrix satisfies the following conditions:
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(1) in each row and each column of A there is exactly one entry
with value 1,

(2) in each submatrix (ai,j) i=k,k+1
j=l,l+1

, where k, l ∈ {0, 2} there is ex-

actly one entry with value 1.

We denote by A the set of all net matrices.
It is easy to see that there are exactly 16 net matrices defined by

(0, 2, 2)-nets in base 2.
Example. The connected net matrices corresponding to the net sets
shown in Figure 2 are

A =









0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0









and B =









0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1









,

respectively.
Remark. It is easy to see that each net matrix corresponds to a net
set of level zero: the “0” entries correspond to white net squares, and
the “1” entries correspond to black net squares. Thus, Definition 6
leads in a natural way to

Definition 10. Two entries of a net matrix are said to be neighbours
(or neighbouring entries) if either their column indices coincide and
their row indices are consecutive integers or their row indices concide
and their column indices are consecutive integers.

Definition 11. A path in a net matrix is a finite sequence of neigh-
bouring “0” entries of the matrix.

Definition 12. A net matrix is said to be connected if its set of “0”
entries is connected, i.e., for any two “0” entries there exists a path
in the matrix that connects them. A net matrix which is not connected
is called disconnected. C is the set of all connected net matrices and
D = A \ C is the set of the disconnected net matrices.

Remark. The last three definitions can be extended in a natural way
to any {0, 1}-valued matrix.
Here we list the disconnected net matrices corresponding to (0, 2, 2)-
nets in base 2:









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0









,









0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1









,









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









,









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0









.

Net matrices are a nice tool for the construction of net sets, as we shall
see in the following subsection.
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2.3. Net sets and substitutions with net matrices. Substitutions
are maps which assign words (concatenations of symbols) to symbols.
They are also a good instrument for describing certain self-similar sets
or generalisations thereof (see, e.g., Dekking and Meester [3], Arnoux
and Ito [1] )˙
Here we consider substitutions from the set of symbols {0, 1} to the set
A ∪ {1}, where 1 denotes the 4 × 4 matrix with all entries “1”.

Definition 13. We call net substitution any mapping σ : (N∪{0})2×
{0, 1} → A∪{1} satisfying the conditions σ(i, j, 1) = 1, and σ(i, j, 0) ∈
A, for all i, j ∈ N ∪ {0}.
If a net substitution σ assigns to all zeroes of a {0, 1}-matrixA the same
net matrix, say B, then we say that σ is a uniform net substitution on
A with the matrix B.
Now we use net substitutions in order to construct net sets.
We introduce the notation Ik

i,j = Ik
i × Ik

j , where Ik
i = [( i

22(k+1) ,
i+1

22(k+1) )],

for 0 ≤ i, j ≤ 22(k+1) − 1 and k ≥ 0.
Let A0 = (a0

i,j)0≤i,j≤3 ∈ A be a net matrix and E0 the corresponding

net set. We have ai,j = 0 if and only if I0
i,j ⊂ E0 (i.e., I0

i,j is a white
net square of E0). Let σ1 be a net substitution. By applying σ1 to A0

we get a 16× 16 matrix A1. Let σ2 be a net substitution. By applying
σ2 to A1 we obtain a 64 × 64 matrix A2. Inductively, after k steps we
have a 22(k+1) × 22(k+1) matrix

Ak = (ak
i,j) =









ak
0,22(k+1)−1

ak
1,22(k+1)−1

. . . ak
22(k+1)−1,22(k+1)−1

. . . . . . . . . . . .
ak

0,1 ak
1,1 . . . ak

22(k+1)−1,1

ak
0,0 ak

1,0 . . . ak
22(k+1)−1,0









.

(2.1)
We chose the indices of the matrix elements in this way in order to
emphasise the correspondence between the matrix element ak

i,j and the

left lower corner of the square Ik
i,j, for k ≥ 0 and 0 ≤ i, j ≤ 22(k+1).

Let Ak denote the set of all {0, 1}-valued 22(k+1) × 22(k+1) matrices
that can be obtained by starting with a net matrix and applying k
times (i.e., in k steps) net substitutions.
For k ≥ 0 and A = (ak

i,j) ∈ Ak we consider the sets

Ek :=

22(k+1)−1
⋃

i,j=0

{Ik
i,j | ak

i,j = 0}.

Remark. It is straightforward to see that each such set Ek is a net
set of Ek. Moreover, there is a one-to-one correspondence between the
elements of Ak and the elements of Ek. Thus sometimes we can use
properties of elements of Ak in order to derive properties of elements
of Ek. We will call the matrices of Ak net matrices of level k, k ≥ 0.
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Definition 14. Let A = (ai,j)0≤i,j≤22(k+1) be a net matrix of level k. A
net substitution on the matrix A is the restriction of a net substitution
σ : (N ∪ {0})2 × {0, 1} → A ∪ {1} to the set {(i, j, ai,j), 0 ≤ i, j ≤
22(k+1)}.

Each net matrix A0 of level 0 can be interpreted as the image of
the 1 × 1 matrix (0) by a net substitution. Moreover, each matrix
satisfying the conditions of Definition 9 is a net matrix of level zero,
i.e., A = A0. If a net substitution σ assigns to all zeroes of a {0, 1}-
matrix A the same net matrix, say B, then we say that σ is a uniform
net substitution on A with the matrix B.

Definition 4 can easily be reformulated in terms of uniform net sub-
stitutions. Thus, a uniform net set Ek = Ek(P0, . . . , Pk) ∈ Ek corre-
sponds to a net matrix Ak = Ak(σ0, . . . , σk) ∈ Ak, where σi is the
uniform substitution applied at the step (level) i of the construction,
0 ≤ i ≤ k.
Remark. From the definitions it follows that each strongly connected
net set of level k ≥ 0 corresponds to a connected net matrix of level k
and vice versa.

3. Connectivity properties of net sets.

3.1. Net sets defined by substitutions with connected net ma-

trices. In this subsection we will show that substitutions with con-
nected net matrices lead to net sets with nice properties.

For k ≥ 1 let AC
k be the set of matrices of Ak that have the property

that they can be obtained by starting with a connected net matrix and
subsequently applying only substitutions with connected net matrices.
For k ≥ 0 we denote by EC

k the set of the corresponding net sets of Ek,
i.e., the set of strongly connected net sets of level k.

Assume that we take an arbitrary net matrix A ∈ C (corresponding
to a connected net set) and apply to it an arbitrary net substitution σ
with connected net matrices. That is, each “0” entry of A is replaced
by some net matrix of C, and each “1” entry by the matrix 1. We get
a matrix A1 ∈ AC

1 . We analyse A1 with respect to its connectivity.
Let us consider two aritrary connected net matrices S, T ∈ C. We
analyse the (4 × 8)- or (8 × 4)-block built by “sticking together” S
and T . Let us take, without loss of generality, the case of a (4 × 8)-
block, with left (4 × 4)- submatrix S and right (4 × 4)- submatrix
T . By Definition 9, the fourth column of S and the first column of
T respectively, contain exactly one entry with value 1. Therefore we
can find at least two and at most three pairs of neighbouring zeroes
in the (4 × 8)-block that have one element in the right column of S
and the other element in the left column of T . This, together with
the connectivity of S and T implies the connectivity of the block. By
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applying this argument for all blocks composed by two images through
the substitution σ of neighbouring zeroes of A, we obtain, since A is
connected, the connectivity of the net matrix A1. As A and σ have
been chosen arbitrarily, it follows by the definition of AC

k , k ≥ 1, that
all matrices of AC

1 are connected.
Example. A connected block constructed with two connected net
matrices:









1 0 0 0 0 0 0 1
0 0 1 0 1 0 0 0
0 1 0 0 0 0 1 0
0 0 0 1 0 1 0 0









.

In particular, by the one-to-one correspondence of the elements of AC
k

and EC
k , for k ≥ 1, we obtain, in the case k = 1, that each element of

EC
1 is a strongly connected net set.

Now we proceed inductively. Assume that all elements of AC
k are con-

nected matrices (and, equivalently, all elements of EC
k are strongly con-

nected). We take an arbitrary Ak ∈ AC
k and apply to it a net sub-

stitution τ which assigns to each “0” entry of Ak some connected net
matrix, such that distinct zeroes of Ak may be mapped into distinct
connected net matrices. We get a matrix Ak+1 ∈ Ak+1. As Ak is con-
nected, we deduce, by the same argument as for the connectivity of A1

above, that Ak+1 is connected. By the definition of AC
k+1 it immedi-

ately follows that all matrices of AC
k+1 are connected, and, equivalently,

all net sets of EC
k+1 are strongly connected.

Thus we have inductively proven the following

Proposition 1. Let E0 ∈ EC
0 be a strongly connected net set with corre-

sponding net matrix A0. By applying substitutions with connected net
matrices we construct the sequence of net matrices A1, A2,. . . , with
Ak ∈ Ak, k ≥ 1. For every k ≥ 1 let Ek be the net set of level k defined
by Ak. Then Ek is strongly connected, for all k ≥ 0.

Proposition 2. Let {Ek}k≥0 be a decreasing sequence of net sets and
n ≥ 0 an arbitrary integer. If En+1 ist strongly connected, then En also
is strongly connected.

Proof. Let Sn, Tn ⊂ En be two arbitrary net squares of level n. Then
one can choose two arbitrary (n + 1)-squares, S, T ⊂ En+1, such that
S ⊂ Sn and T ⊂ Tn. By the strong connectivity of En+1, there exists
an (n+ 1)-path pn+1= pn+1(S, T ) that connects the net squares S and
T . Then, by the construction of net sets, there exists a finite sequence
of net squares of level n, (Bi)i∈J , where J is a set of indices depending
on S and T , such that Γ(pn+1) ⊂

⋃

i∈J Bi. The sequence (Bi)i∈J is a
n-path in En connecting Sn and Tn. �

3.2. Properties of limiting net sets. In the following we analyse
connectivity properties of limiting net sets.
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Definition 15. The limiting set E∞ of a decreasing sequence of net
sets {Ek}k≥0 is net-connected if for each two points x, y ∈ E∞ and for
all k ≥ 0 there exist two k-squares Sk, Tk ⊂ Ek with x ∈ Sk and y ∈ Tk

and a k-path in Ek that connects Sk and Tk.

Proposition 1 leads us to the following result.

Theorem 1. Let {Ek}k≥0, be a decreasing sequence of strongly con-
nected net sets, Ek ∈ EC

k , and E∞ the corresponding limiting net set.
Then E∞ is connected with respect to the topology induced by the Eu-
clidean metric on R

2.

Proof. Let x, y ∈ E∞ be two arbitrary points of the limiting set. Then,
by the definitions of E∞ and Ek, k ≥ 0, there exist two decreasing
sequences of net squares, {Sk}k≥0 and {Tk}k≥0, where k indicates the
level of the square Sk and Tk, such that

x ∈
⋂

k≥0

Sk and y ∈
⋂

k≥0

Tk.

By the strong connectivity of Ek, there exists for every k ≥ 0 a k-path
pk in Ek that connects the net squares Sk and Tk. Moreover, Γ(pk) is
a compact and connected set, for all k ≥ 0. We have the decreasing
sequence of connected sets (with respect to the topology induced by
the Euclidean metric on R

2)

Γ(p0) ⊃ Γ(p1) ⊃ · · · ⊃ Γ(pk) ⊂ Γ(pk+1) ⊃ . . . ,

and x, y ∈ Γ(pk), for all k ≥ 0. Thus x, y ∈ ⋂

k≥0 Γ(pk), which is a
connected set. This completes the proof. �

Proposition 3. Let {Ek}k≥0, be a decreasing sequence of strongly con-
nected net sets, Ek ∈ EC

k , and E∞ the corresponding limiting net set.
Then E∞ is locally connected with respect to the topology induced by
the Euclidean metric on R

2.

Proof. Let k ≥ 0 be arbitrarily fixed and Sk be a net square occuring
in Ek. Let (E ′

l)l≥0 be the decreasing sequence of net sets defined by the
condition E ′

l := φk (Ek+l), where φk is a properly chosen similarity of
factor 22(k+1) and E ′

∞ the limiting netset of (E ′
l)l≥0. Then Sk ∩ E∞ =

ψk (E ′
∞), where ψk is a similarity of factor 2−2(k+1) , i.e., the set Sk∩E∞

can be viewed as the image by a similarity of the limiting net set
of a decreasing sequence of net sets. Then, by Theorem 1 and the
continuity of similarities, Sk∩E∞ is connected. Let now ε > 0 be some
arbitrarily chosen real number, and k ≥ 0 such that 2−2(k+1)

√
2 <

ε. Then each k-square Sk of Ek has diamenter (with respect to the
Euclidian metric) less than ε and, as E∞ = ∪S∈Sk

(S ∩ E∞), where
Sk = {S : S is a k -square of Ek}, it follows that the limiting net set
E∞ is a continuum that can be written as a finite union of connected
sets of diameter less than ε. As ε was chosen arbitrarily, this implies,
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by a theorem of Hahn-Mazurkiewicz-Sierpiński [7, Theorem2, p. 256],
that E∞ is locally connected. �

Hata [6] proved connectivity properties of self-similar sets by using
arguments some of which are related to those used in the proofs of the
last two results.

Proposition 3 and the mentioned Hahn-Mazurkiewicz-Sierpiński the-
orem yield

Corollary 1. The limiting net set E∞ of a decreasing sequence of
strongly connected net sets is a continuous image of an interval. In
particular, E∞ is arcwise connected.

Remark. Using similar arguments as above, one can easily prove that
every strongly connected net set of some level k ≥ 0 is locally con-
nected and arcwise connected.

In the considerations to follow we will restrict ourselves to studying
properties of connectivity and net-connectivity of limiting net sets.
The first part of the proof of Theorem 1 immediately leads to

Theorem 2. Let {Ek}k≥0, be a decreasing sequence of strongly con-
nected net sets, Ek ∈ EC

k , and E∞ the corresponding limiting net set.
Then E∞ is net-connected.

Theorem 3. Let E∞ be the limiting net set of a decreasing sequence of
net sets. If E∞ is net-connected then it is also connected with respect
to the canonical topology of the Euclidean plane.

Proof. The affirmation follows immediately from the definition of E∞,
of net-connectivity and connectivity with respect to the topology in-
duced by the Euclidean metric on R

2. �

For simplicity, in the following, when talking about (limiting) net sets,
by connected we mean connected with respect to the topology induced
by the Euclidean metric.
Remark. In general the limiting set of a decreasing sequence of net
sets is not necessarily net-connected. An example illustrating this is
the case when at a certain level k0 of the construction of the sequence
{Ek}k≥0 the matrix Ak0 corresponding to the net set Ek0 contains a
submatrix of the form shown below























1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
1 0 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1























.
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This occurs when at the corresponding step k0 of the construction of
the sequence {Ek}k≥0 there has been applied a net substitution that re-
places certain “0” entries of the net matrix Ak0−1 by a disconnected net
matrix. In fact, if the above block is a submatrix of Ak0 that contains
one of the elemets a0,22(k0+1)−1 or a22(k0+1)−1,0 of Ak0−1 or, e.g., if it is just
a submatrix of Ak0 , boarded from above by a row (1 1 1 1 t1 t2 t3 t4)
and from the left by a column (1 1 1 1 y1 y2 y3 y4)

T , ti, yi ∈ {0, 1},
i = 1, 2, 3, 4, then we have in Ak0 a set of “0” entries which cannot be
connected by a path to “0” entries outside this set. Thus Ak0 is not
connected and the corresponding net set Ek0 is not strongly connected.

Are the reciprocal affirmations of the last three theorems also true?
The reciprocal of Theorem 1 does not hold, i.e., the fact that the limit-
ing net set of a decreasing net sequence {Ek}k≥0 is connected does not
necessarily imply that Ek is strongly connected, for all k ≥ 0. This is
shown, e.g., by the following simple counterexample. Let

A =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









and B =









0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1









.

We construct a decreasing sequence of net sets by substitutions as
follows. Let E0 be the net set corresponding to the net matrix A. E0 is
connected, but not strongly connected. Let now A1 be the net matrix
that we obtain by applying a uniform net substitution that replaces all
zeroes in A0 by the matrix B, and let E1 be the corresponding net set of
level 1. If we continue the construction with net substitutions, replacing
at each level k ≥ 1 all zeroes of Ak by the matrix B, then the limiting
net set E∞ is connected, but none of the sets Ek, k ≥ 0 is strongly
connected. Still, Ek, for k ≥ 1, is connected. Let us explain this is a
more general case. Suppose we take an arbitrary disconnected matrix
A at the first step (A0 = A) and then at the next steps uniform net
substitutions with a connected net matrix B, chosen with the property:
if (i, j) is the corner position of an “1” entry in A, then the entries of
B at the positions (i, j) and (3 − i, 3 − j) are zeroes. This property
does not let Ek, for k ≥ 1, get disconnected: if the intersection of two
net squares of certain level is a point, then this point remains in the
net set at the next level.
Let us now prove the reciprocal of Theorem 2.

Theorem 4. Let {Ek}k≥0, be a decreasing sequence of net sets, and
E∞ the corresponding limiting net set. If E∞ is net-connected then Ek

is strongly connected, for every k ≥ 0.

Proof. Let E∞ be as above. Suppose there exists a k ≥ 0 such that Ek is
not strongly connected. Then, by the definition of strong connectivity,
there exist two distinct arbitrary net squares of level k, Sk, Tk ⊂ Ek



NET SETS 13

which are not connected by any k-path in Ek. Let now s ∈ Int(Sk)∩E∞

and t ∈ Int(Tk) ∩ E∞ be two points of the limiting net set, where by
Int we denote the interior with respect to the topology induced by
Euclidean metric on R

2. By the net-connectivity of E∞ there exist two
(k+1)-squares S, T ⊂ Ek+1, with s ∈ S and t ∈ T , such that there is a
(k+1)-path in Ek+1, pk+1, connecting S and T . Let us consider a finite
sequence of net squares of level k, (Bi)i∈J , where J is a set of indices
depending on S and T , such that Γ(pk+1) ⊂

⋃

i∈J Bi. It is easy to see
that such a sequence exists and provides a k-path which connects Sk

and Tk in Ek. This contradicts the assumption that Ek is not strongly
connected. �

It is easy to show that the reciprocal of Theorem 3 does not hold.
Suppose the opposite. Let E∞ be the limiting net set of a decreas-
ing sequence of net sets, such that E∞ is connected. Assume that the
reciprocal of Theorem 3 holds. This would imply that E∞ is also net-
connected. Then by Theorem 4 the set Ek is strongly connected, for
all k ≥ 0. This would imply that the reciprocal of Theorem 1 holds,
which, as it was already shown, is false.

Example. It is not difficult to see that consecutively applying sub-
stitutions with the same disconnected net matrix lets the diagonals of
the net squares unchanged, but “splits” the set: at each second step
where we apply such a substitution in the construction of the sequence
{Ek}, the number of connected components of Ek increases. Thus E∞

is disconnected. Actually the disconnectivity of E∞ is already provided
after applying a uniform net substitution with a disconnected net ma-
trix A followed by a (not necessarily uniform) net substitution which
replaces each zero by some net matrix B that satisfies the following
condition: if (i, j) is the “corner” position of a “1” entry in A, then B
has a “1” entry in at least on of the positions (i, j) and (3 − i, 3 − j)
(see also Figure 4). One can find even weaker conditions that provide
the disconnectivity of a net set of some level k and thus also of E∞.

Figure 4. Construction of disconnected net sets of level 1.

Let us now consider the special situation when in the construction
of the decreasing sequence of net sets we apply, starting with a level k,
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with k ≥ 1, only uniform substitutions with one and the same discon-
nected matrix at all levels k+1, k+2,. . . . Thus all (white) net squares
existing at level k are “cut” into “strips” getting at each level thinner,
separated by black squares (see also Figure 5 and 6). E∞ is again dis-
connected. Later on we give sufficient and necessary conditions for the
limiting net set to be disconnected.

Conclusion. There are the following “degrees” of connectivity that a
limiting net set can have:
(a) net-connected,
(b) connected,
(c) disconnected,
(d) totally disconnected,
where (a) and (d) are particular cases of (b), and (c) respectively.

The case when the limiting net set is totally disconnected is approached
in the considerations to follow.

Definition 16. Let A = (ai,j), with 0 ≤ i, j ≤ 3 be a net matrix. A is of
type I if (a0,3−1)(a3,0−1) = 0. A is of type II if (a0,0−1)(a3,3−1) = 0.
We say that two net matrices are from different families when they are
of different type.

Each disconnected net matrix is either of type I or of type II. Some
of the connected net matrices are neither of type I nor of type II.

Remark. Let (Ek)k≥0 be a decreasing sequence of uniform net sets.
Consider some integers l ≥ 0, 0 ≤ m < n and A(m), A(n) two
(not necessarily distinct) disconnected net matrices of same type (say
a ∈ {I, II}) occurring at the m-th and n-th step of the construction of
the sequence by uniform net substitutions, respectively. Let us assume
that A(m) is the (2l + 1)-th matrix of type a that occurs in the con-
struction of the sequence and A(n) be the (2l+ 2)-th matrix of type a
that occurs in the construction of the sequence. Then after applying
the uniform net substitution with the matrix A(n) to the net matrix
An−1 of level n− 1 corresponding to the net set En−1 there are created
new “strips” containing only “1” entries that “cross” the net matrix
An of level n that corresponds to En. For example, the matrix























. . . . . . . . . . . .
1 1

1 1
. . . 1 1 . . .

1 1
1 1

. . . . . . . . . . . .
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corresponds to the case when A(m) and A(n) are disconnected matrices
of type II. Here “strips” constisting only of “1” entries separate regions
of En consisting only of “0” entries. Correspondingly, the union of
the black n-squares corresponding to the “1” entries in these “strips”
separate the net set En into connected components that occur at level
n as strict subsets of the connected components of En−1. Consequently,
these “black strips” in En also separate connected components of E∞.
The above remark is useful in the proofs of the theorems to follow.

Figure 5. Construction of a uniform net set of level 3
by net substitutions with the four disconnected matrices.

Figure 6. The uniform net set of level 3 is constructed
by net substitutions with two disconnected matrices from
different families, and with one and the same discon-
nected matrix, respectively.

Proposition 4. Let E∞ be the limiting net set of a decreasing sequence
of uniform net sets {Ek}k≥0 and, for k ≥ 0, let A0, A1, . . . , Ak denote
the sequence of net matrices that defines the set Ek. For every k ≥ 0
let m1(k) denote the number of disconnected matrices of type I, and
m2(k) the number of disconnected matrices of type II that occur in the
finite sequence A0, A1, . . . , Ak. If Ak is a disconnected matrix for all
k ≥ 0, and

lim
k→∞

m1(k) = ∞ and lim
k→∞

m2(k) = ∞, (3.1)
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then E∞ is totally disconnected with respect to the topology induced by
the Euclidean metric on R

2.

Proof. Let x, y ∈ E∞ be two distinct points of the uniform limiting
net set E∞ mentioned in the theorem. Let d = d(x, y) > 0 be the
Euclidean distance between x and y. As x ∈ E∞, it follows that x lies
in a connected component of Ek, for all k ≥ 0. We consider the open
ball B(x, d

2
) (with respect to the Euclidean metric), centered at x and

with radius d
2
. As y /∈ B(x, d

2
), it is enough to show that there exists

a connected component of E∞ which contains x and is contained in
B(x, d

2
).

Let j, l ≥ 0, 0 ≤ q1 < q2 and 0 ≤ n1 < n2 be integers, A(q1), A(q2) dis-
connected matrices of type I, and A(n1), A(n2) disconnected matrices
such that A(i) occurs in the last step of the construction of the net set
Ei, for i ∈ {q1, q2, n1, n2}. Suppose that l and j have the property that
at the levels q1 and q2 respectively we have the (2j+1)-th and (2j+2)-
th occurance of a disconnected matrix of type I (not necessarily the
same), and that at the levels n1 and n2 we have the (2l + 1)-th and
(2l + 2)-th, respectively, occurrence of a disconnected matrix of type
II in the construction of the sequence of net sets defining E∞. Let
h := max{q2, n2}, and g := min{q1, n1} − 1, if q1 · n1 6= 0 and g := 0 if
q1·n1 = 0. Let δ(Eh) and δ(Eg) be the diameter of the largest connected
component of Eh and of Eg, respectively. Then δ(Eh) <

3
4
·δ(Eg), where

the constant 3
4

can actually be replaced by a smaller one, close to 1
2

(see also Figure 5 and 6). As the optimality of this constant does not
change the essence of things, we will not get into more detail here.
Let now t > 0 and let E(t) be some net set obtained after having al-
ready applied t1 ≥ 2t times substitutions with net matrices of type I
and t2 ≥ 2t times substitutions with net matrices of type II in the
construction of the net set sequence, where at least one of the numbers
t1, t2 equals 2t. Of course, E(t) is not uniquely determined by these
properties, but the existence of such a set is sufficient for our argument.
The diameter δ(E(t)) of the largest connected component of E(t) satis-
fies the inequality δ(E(t)) ≤ (3

4
)t ·δ(E0) =

√
2 ·(3

4
)t. Hence, for t chosen

large enough, δ(E(t)) ≤ d
2

and thus the connected component of E(t)

which contains x is contained in B(x, d
2
). Consequently the connected

component of E∞ which contains x is contained in B(x, d
2
). �

Based on the ideas of the above proof, and taking into account that
the substitutions with connected net matrices do not “cut” already
existing connected components into smaller connected components (see
Theorem 1), one can prove the following more general result.

Theorem 5. Let E∞ be the limiting net set of a decreasing sequence of
uniform net sets {Ek}k≥0 and, for k ≥ 0, let A0, A1, . . . , Ak denote the
sequence of net matrices that defines the set Ek. For every k ≥ 0 let
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m1(k) denote the number of disconnected matrices of type I, and m2(k)
the number of disconnected matrices of type II that occur in the finite
sequence A0, A1, . . . , Ak. If

lim
k→∞

m1(k) = ∞ and lim
k→∞

m2(k) = ∞,

then E∞ is totally disconnected with respect to the topology induced by
the Euclidean metric on R

2.

Suppose we are in the setting of Theorem 5. Then we have the
following

Theorem 6. Condition (3.1) is a necessary condition for a uniform
limiting net set E∞ to be totally disconnected.

Proof. Let E∞ be a totally disconnected uniform limiting net set. Then,
by the facts already shown, the infinite sequence of net matrices A0, A1,
. . . , Ak, . . . contains at least two disconnected matrices of the same
type.
From the configuration of the disconnected net matrices one can in-
fere that the connsecutive occurences of uniform net substitutions with
disconnected net matrices of the same type in the construction of the
sequence {Ek}k≥0 does not change the length of the diameter of the
largest connected component of the net set. This is based on the fact
that disconnected net matrices have only zero entries on exactly one of
their diagonals, where the diagonal with this property is the same for
disconnected net matrices of the same type.
The idea of constructing a totally disconnected uniform limiting net
set is to reduce, along the construction of the sequence of net sets
defining E∞, the diameters of the connected components, such that
limk→∞ δ(Ek) = 0, where δ(Ek) denotes the diameter of the largest
connected component of Ek, for k ≥ 0. See also Figure 6. �

With the same notations as in the above theorems we state two more
results, whose proofs we omit, since they are based on facts that have
already been mentioned here.

Theorem 7. A uniform limiting net set is disconnected, but not totally
disconnected, if and only if there exists a constant M ≥ 0 and an index
j ∈ {1, 2} such that mj(k) < M for all k ≥ 0, and one of the following
conditions is satisfied:

(1) there exists an integer k0 ≥ 1 such that
(

m1(k0) − 2
)(

m2(k0) − 2
)

= 0,

(2) there exists an integer k0 ≥ 0 such that k0 is the first step
in the construction of the sequence {Ek}k≥0 when a uniform
net substitution with a disconnected matrix occurs, say A =
(ai,j)i,j∈{0,...,3}, and an l ≥ 1 such that at step k0 + l a uniform
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net substitution with a matrix B = (bi,j)i,j∈{0,...,3} is applied,
where B has the same type as A.

Let A0, . . . Ak, . . . denote the sequence of net matrices occurring in
the construction of a sequence of uniform net sets · · · ⊂ Ek ⊂ · · · ⊂ E0,
such that Ak occurs at step k of the construction. We denote by m′

1(k)
the number of matrices Al of type I, and m′

2(k) the number of matrices
Al of type II, with l ≥ k.

Theorem 8. A uniform limiting net set is connected (in the usual
Euclidean sense) but not net-connected if and only if there exists an
integer k0 such that m1(k0) + m2(k0) ≥ 1 and if for some k ≥ 0 and
some j ∈ {1, 2} we have mj(k) = 1 then m′

j(n) = 1, for all n ≥ k.

3.3. How “large” is E∞ ?

Proposition 5. Let {Ek}k≥0 be a decreasing sequence of net sets, with
limiting set E∞. Then the 2-dimensional Lebesgue measure of E∞ is
zero.

Proof. Obviously, λ2(E0) = 3
4
. At each step of the construction of a

net set we “cut out” of each (white) square of side length 2−j exactly
four (black) (j + 1)-squares in order to obtain a net set of level j + 1,
hence we inductively get λ2(Ek) := (3

4
)−(k+1), for k ≥ 0. Passing to the

limit for k → ∞ completes the proof. �

In the next section we will show, by using techniques of fractal geom-
etry, that the Lebesgue measure of dimension 1 of E∞ is ∞.

4. net set fractals

Since in the following we study limiting net sets by means of fractal
geometry, we first give a few definitions.
Let | · | denote the Euclidean norm in the space R

n, and, for a subset
U ⊂ R

n, let |U | denote the diameter of U with respect to the Euclidean
metric. A δ-cover of a set F ⊂ R

n is a countable (or finite) collection
of sets {Ui} of diameter at most δ, with F ⊂

⋃∞
i=1 Ui. For F ⊂ R

n and
s ≥ 0 we can define for any δ > 0

Hs
δ(F ) = inf

{

∞
∑

i=1

|Ui|s : {Ui} is a δ-cover of F
}

(4.1)

and, subsequently, the s−dimensional Hausdorff measure of F by

Hs(F ) = lim
δ→0

Hs
δ(F ).

The above limit exists for every Borel set F .
Hs is a monotonically decreasing function in s and there exists a unique
value of s for which Hs ”jumps” from ∞ to 0, namely the Hausdorff
dimension of F

dimH F = inf{s : Hs(F ) = 0} = sup{s : Hs(F ) = ∞}.
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A set F ⊂ R
n is called a fractal set if its Hausdorff dimension is larger

than its topological dimension, which is always an integer.

Definition 17. Let F be a subset of R
n. Then the box counting di-

mension of F is given, if the following limit exists, by

dimB F = lim
δ→0

logNδ(F )

− log δ
, (4.2)

where Nδ(F ) denotes the number of δ-mesh cubes that intersect F .

As we will see, limiting net sets are actually fractals, and thus we call
them net set fractals when we wish to emphasise their fractal structure.
Here the word “net” refers to the fact that the construction of these
sets is based on the structure of (t,m, s)-nets, and here in particular
on (0, 2, 2)-nets in base 2. On the other hand, in literature (see, e.g.,
Falconer [4]) one can find the notion of “net fractals”, where the word
“net” does not refer to (t,m, s)-nets, but to a construction of fractal
sets based on trees, closely related to net measures (see Falconer [4,
Sections 2 and 7], and [5]). Allthough at net set fractals the word net
has the about mentioned meaning, it is worth remarking that one still
can see net set fractals as a particular case of the net fractals studied
by Falconer [4].

For further details regarding fractals, iterated functions systems and
fractals defined by these, the Hausdorff and box counting dimension
and the Hausdorff measure we refer, e.g., to Falconer [5].

4.1. Totally uniform net set fractals. Measures of net set frac-

tals. A uniform net sequence and the corresponding limiting net set
are called totally uniform if throughout the construction of the net sets
E0, E1, . . . , Ek, . . . at all steps the same uniform net substitution is ap-
plied, i.e., all zeroes are replaced, at each arbitrary step, and on the
other hand at all consecutive steps, by the same net matrix.

Proposition 6. Let σ be a uniform net substitution and E∞(σ) the
(totally uniform) limiting net set of the decreasing sequence of totally
uniform net sets constructed with σ. Then E∞(σ) is a self-similar
fractal with Hausdorff and box counting dimensions dimH(E∞(σ)) =
dimB(E∞(σ)) = 1 + log 3/log 4.

Proof. Let A = (ai,j)0≤i,j≤3 be a net matrix. Then applying a uniform
substitution σ with the matrix A to a net matrix Ak of level k, k ≥ 0,
is equivalent to applying to the net set Ek that corresponds to Ak the
similarities (φA

i,j)(i,j)∈JA
, where JA = {(i, j) ∈ {0, . . . , 3}2 | ai,j = 0}

and the similarities (which are in particular contractions) are defined
by the relations:
φA

i,j : [0, 1]2 → [0, 1]2, φA
i,j(x, y) := (x+i

4
, y+j

4
), for all (i, j) ∈ JA. Then

the totally uniform limiting net set E∞(σ) is the attractor of the iter-
ated functions system (φA

i,j)(i,j)∈JA
. By a theorem on the Hausdorff and
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box counting dimensions of a self-similar set defined by a set of simi-
larities verifying the open set condition (see, e.g. Falconer [5, Theorem
9.3]) we obtain the aimed result. �

In the following we call (totally) uniform limiting net sets also (totally)
uniform net set fractals.
Proposition 6 leads us to the following result.

Corollary 2. Let E∞(σ) be the limiting net set of a sequence of totally
uniform net sets, and λ1 the 1-dimensional Lebesgue measure. Then
λ1(E∞(σ)) = ∞.

Proof. By Proposition 6, we have 1 < dimH(E∞(σ)) < 2. The defi-
nition of the Hausdorff dimension implies that H1(E∞(σ)) = ∞ and
H2(E∞(σ)) = 0 (which we have already proven for the general case of
limiting net sets). It is known that for any Borel set F ⊂ R

n we have
Hn(F ) = cnλ

n(F ), where cn is a constant depending only on n (see,
e.g., Falconer [5, Chapter 2]). Taking n = 1 in the previous relation
completes the proof. �

Our next aim is to verify whether the last two results also hold
for the limiting net set E∞ in the general case, when the net sets of
the decreasing sequence {Ek}k≥0 that defines E∞ are constructed by
applying arbitrary net substitutions.

Proposition 7. Let E∞ be the limiting net set of a decreasing sequence
of net sets {Ek}k≥0. Then E∞ is a fractal set with

1 ≤ dimH(E∞) ≤ dimB(E∞) = 1 + log 3/ log 4. (4.3)

Proof. We take δk := 1
4k in (4.2) and s := limk→∞

log Nδk
(E∞)

− log δk
. Since

Nδk
(E∞) = 12k, we get s = 1+log 3/ log 4, which implies dimB(E∞) =

1 + log 3/ log 4 (see Falconer [5, Chapter 3]). The second inequality in
(4.3) is a wellknown relation between the two dimensions (see Falconer
[5, Chapter 2]). We prove the first inequality. Assume dimH(E∞) <
1. This would imply, by the definition of Hausdorff dimension, that
H1(E∞) = 0 and consequently (by an argument already mentioned
above) λ1(E∞) = 0. In particular, this would also hold for the special
case when E∞ is a totally uniform limiting net set, in contradiction
with Corollary 2. �

Unfortunately Proposition 7 does not provide the value of dimH(E∞)
or λ1(E∞). In order to find the Hausdorff dimension of a limiting net
set in the general case, we use other techniques, as it will be shown in
the following considerations.

4.2. Net set fractals as random fractals. Net percolation. In
the previous subsection we have encountered net set fractals and among
them self-similar fractals, namely the totally uniform limiting net sets.
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Limiting net sets, as we have defined them, are also a species of random
fractals.

In the case of random fractals the self-similarity property is often re-
placed by “statistical self-similarity”, in the sense that enlargements of
small parts have the same statistical distribution as the whole set. Ran-
dom fractals look rather irregular and are, thanks to their non-uniform
appearance, closer to natural objects such as coastlines, topographical
surfaces, cloud boundaries. For more details and examples regarding
random fractals we refer, e.g., to Falconer [4, 5].

By their definition, net set fractals show a certain form of “statistical
self-similarity”. In fact, it can be checked that they are a particular
case of random net fractals, introduced by Falconer [4], and thus can
be regarded as random fractals. This will provide tools for the compu-
tation of the Hausdorff dimension of net set fractals.
In the following we approach net set fractals as a species of random net
fractals. Since at each step of the construction by means of net substi-
tutions, each zero entry of the corresponding net matrix is replaced by
a net matrix “with no preferences”, we may assume that each of the
16 net matrices occurs, independently, with the same probability 1

16
,

each time when we apply a net substitution. This approach is somehow
natural and at hand.
Falconer [4] has proven several results regarding the Hausdorff dimen-
sion of random net fractals. The following theorem can be obtained
as a direct consequence of a theorem proven by Falconer [4, Corollary
8.6].

Theorem 9. Let E∞ be a net set fractal. If at each step of the con-
struction of the decreasing sequence of net sets defining E∞ each zero
entry is replaced by a net matrix, such that each of the 16 net matrices
occurs, independently, with the same probability 1

16
, then

dimH(E∞) = 1 + log 3/ log 4, (4.4)

with probability one.

Remark. The above result can also be derived by approaching E∞ as
a net fractal in the sense of the definition given by Falconer [4], namely
by using the corresponding net measures and the results regarding the
relation between the net dimension and the Hausdorff dimension of
net fractals. Here we have prefered to work with random fractals,
as they also occur when studying fractal percolation, but also out of
“didactical” reasons, in order to avoid introducing here net measures
and related matters.
From Theorem 9 we easily get

Corollary 3. Let E∞ be a net set fractal. Then λ1(E∞) = ∞, with
probability one.
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The definition and construction method of limiting net sets leads in a
natural way to the question whether and when there occurs percolation
for net set fractals.
The process of fractal percolation was first described by Mandelbrot in
the 1970’s. Its study has been intensified and extended in the 1980’s.
Fractal percolation has been used as a model for various physical pro-
cesses such as intermittency in turbulence or distribution of galaxies in
the universe (see Mandelbrot [8]).
Let us give the following

Definition 18. Let (Ek)k≥0 be a decreasing sequence of net sets with
limiting net set E∞. We say that net percolation in the unit square
occurs if Ek connects two opposite sides of the unit square, for all k ≥ 0.

Equivalenty, we say that net percolation in the unit square occurs for
a decreasing sequence of net sets (Ek)k≥0 if there exists a path (i.e.,
the image of the interval [0, 1] by a continuous real function) in the
corresponding limiting net set E∞ that connects two opposite sides of
the unit square.

The geometrical structure of net sets, in particular that of strongly
connected net sets, and Theorem 2 immediately yield the following

Proposition 8. If (Ek)k≥0 is a decreasing sequence of strongly con-
nected net sets, then net percolation in the unit square occurs for this
sequence.

The above proposition states a sufficient condition for net percola-
tion. By the counterexample that we gave with respect to the reciprocal
of Theorem 1, the condition in the proposition is not also necessary for
net percolation. The question, whether and when net percolation oc-
curs if we allow in the construction (by means of net substitutions) of
{Ek}k≥0 also disconnected matrices, arises in a natural way. Since the
facts that we have already shown about net sets do not give a complete
answer to this question, we reformulate it in terms of random fractals.

Net percolation can be regarded as a type of fractal percolation in the
unit square (see, e.g., Falconer [5], Chayes [2], Dekking and Meester [3]).
In this context, let p ∈ [0, 1] and q = 1− p. We construct a decreasing
sequence of net sets by means of substitutions with net matrices, such
that the following conditions are fulfilled:

(1) Every time when we replace a zero entry of a net matrix by
some net matrix A, the probability that A is a connected net
matrix is p, for all zero entries, independently.

(2) Any of the 12 connected net matrices occurs with probability
p

12
and each disconnected matrix with probability q

4
.

(3) The net matrix that corresponds to the net set E0 = E0(p)
is with proability p

12
one of the connected matrices and with

probability q

4
one of the disconnected matrices.
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Let E∞(p) denote the limiting net set of the sequence Ek(p) of net sets
introduced above.
In this setting, any limiting net set can be viewed as a random fractal
and thus net percolation becomes a a certain type of fractal percolation
in the unit square. Analogously to the “classical” case of fractal per-
colation in the unit square one can formulate the following questions.

Problem. How does, in terms of probability, the structure of E∞(p)
variate in dependency of the parameter p? Does there exist a critical
value pc, such that for p > pc there is positive probability that E∞(p)
connects opposite sides of the unit square?
Of course, the cases p = 1 and p = 0 are trivial. We have in view the
above problem for 0 < p < 1 for further research.

5. Properties of net sets for other (0, m, s)-nets.

Analogously to (limiting) net sets whose construction is based on
(0, 2, 2)-nets in base 2, one can also define (limiting) net sets corre-
sponding to (0, m, s)-nets in base b for larger values of the parameters
m, s and b, if such (0, m, s)-nets exist. In this section we mention only
a few facts regarding (limiting) net sets associated to (0, m, s)-nets in
base b in more general cases.
Niederreiter [9, 10] has proven that for m ≥ 2 a (0, m, s) net in base b
can only exist for s ≤ b+ 1. In the following we assume this condition
to be fulfilled.
Let us take the case of (0, m, 2)-nets in base b, with m ≥ 2 and b ≥ 2.
The corresponding net sets can be described in terms of net substi-
tutions with net matrices with dimension bm × bm over the set {0, 1}.
One can immediately see that in this case the proportion of ones among
the entries of a net matrix is less or equal to the proportion of ones in
the case of net matrices associated to (0, 2, 2)-nets in base 2, and de-
creases when m or b increase. It is easy to check that in the case when
b > 2 or m > 2 all net matrices are connected and thus all net sets
are strongly connected. Correspondingly to the analogous situations
in the case of (0, 2, 2)-nets we have the following results, whose proofs
can be obtained in a straightforward manner from those presented in
the previous sections.

Proposition 9. Let m ≥ 2 and b ≥ 2. If m > 2 or b > 2, then every
limiting net set defined by a decreasing sequence of net sets correspond-
ing to (0, m, 2)-nets in base b is net-connected.

Theorem 10. Let m ≥ 2 and b ≥ 2. Suppose that in the construc-
tion (with net matrices corresponding to (0, m, 2)-nets in base b) of a
decreasing sequence (Ek)k≥0 of net sets each net matrix appears, in-
dependently, with the same probability. If m > 2 or b > 2, then the
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limiting net set E∞ is a fractal set with

dimH(E∞) = 1 +
log(bm − 1)

log(bm)
, with probability one.

In this case net percolation always occurs, by Proposition 9.
In the case s ≥ 3 one obviously has to replace the substitutions with
net matrices by other tools, suitable for the higher-dimensional case.
We do not study this case here, we just make a few remarks:
For the case of (0, m, s)-nets in base b withm, s ≥ 2 it is straightforward
to find that λd(E∞) = 0, for 2 ≤ d ≤ s, where λd is the d-dimensional
Lebesgue measure. Moreover, in the probabilistic setting corresponding
to that of the above theorem, dimH(E∞) = 1 + log(bm − 1)/ log(bm),
and λ1(E∞) = ∞.
Finally, a remark on (0, 1, 2)-nets in base b. The case b = 2 is trivial.
If b is a prime number, then we have 2b disconnected net matrices, and
b!−2b connected ones. The case when b is neither a prime nor a prime
power becomes more involved and we do not disscuss it here.
We leave further problems regarding net sets and limiting net sets cor-
responding to (0, m, s)-nets in base b as topics of later research.

One could also consider other classes of matrices in order to construct
fractals, analogously as in the construction of net sets. For example,
in the case of (4 × 4)-matrices one could take instead of net matrices
corresponding to (0, 2, 2)-nets in base 2 the larger class of matrices hav-
ing in each line and each column exactly one “1” entry and the rest of
entries equal zero (the permutation matrices). Several results proven
for net matrices hold in this case, for some of the criteria and results
some of the conditions have to be (slightly) changed, in order to make
them hold. Still, net matrices have the nice property of providing a
“well distributed” structure of the fractals, which is due to the good
distribution of the points of (0, 2, 2)-nets in the unit cube. We leave
further questions regarding other classes of matrices for future research.
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