
Efficient calculation of the worst-case error

and (fast) component-by-component construction

of higher order polynomial lattice rules

Jan Baldeaux∗ Josef Dick† Gunther Leobacher‡ Dirk Nuyens§

Friedrich Pillichshammer¶

July 29, 2011

Abstract

We show how to obtain a fast component-by-component construction algorithm for higher
order polynomial lattice rules. Such rules are useful for multivariate quadrature of high-
dimensional smooth functions over the unit cube as they achieve the near optimal order
of convergence. The main problem addressed in this paper is to find an efficient way of
computing the worst-case error. A general algorithm is presented and explicit expressions
for base 2 are given. To obtain an efficient component-by-component construction algorithm
we exploit the structure of the underlying cyclic group.

We compare our new higher order multivariate quadrature rules to existing quadrature
rules based on higher order digital nets by computing their worst-case error. These numer-
ical results show that the higher order polynomial lattice rules improve upon the known
constructions of quasi-Monte Carlo rules based on higher order digital nets.

Keywords: Numerical integration, quasi-Monte Carlo, polynomial lattice rules, digital nets.

2010 Mathematics Subject Classification: 65D30, 65C05.

∗Jan Baldeaux, School of Finance and Economics, The University of Technology, Sydney, NSW 2007, Australia.
jan.baldeaux@uts.edu.au
†Josef Dick, School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW 2052,

Australia. josef.dick@unsw.edu.au J.D. is supported by a Queen Elizabeth 2 Fellowship from the Australian
Research Council.
‡Gunther Leobacher, Institut für Finanzmathematik, Universität Linz, Altenbergerstraße 69, A-4040 Linz,

Austria. gunther.leobacher@jku.at G.L. is partially supported by the Austrian Science Foundation (FWF),
Project P21196.
§Dirk Nuyens, Department of Computer Science, K.U.Leuven, Celestijnenlaan 200A – bus 2402, 3001 Heverlee,

Belgium. dirk.nuyens@cs.kuleuven.be D.N. is a postdoctoral fellow of the Research Foundation Flanders
(FWO).
¶Friedrich Pillichshammer, Institut für Finanzmathematik, Universität Linz, Altenbergerstraße 69, A-4040

Linz, Austria. friedrich.pillichshammer@jku.at F.P. is partially supported by the Austrian Science Foun-
dation (FWF), Project S9609, that is part of the Austrian National Research Network “Analytic Combinatorics
and Probabilistic Number Theory”.

1

mailto:jan.baldeaux@uts.edu.au
mailto:josef.dick@unsw.edu.au
mailto:gunther.leobacher@jku.at
mailto:dirk.nuyens@cs.kuleuven.be
mailto:friedrich.pillichshammer@jku.at

1 Introduction

In this paper we are concerned with quasi-Monte Carlo rules, which are equal weight multivariate
quadrature rules (or cubature rules)

Q(f) :=
1

N

N−1∑
h=0

f(xh), (1)

used to approximate multivariate integrals over the s-dimensional unit cube

I(f) :=

∫
[0,1]s

f(x) dx. (2)

In contrast to the Monte Carlo method, which samples the function f randomly in its domain,
the integration nodes {xh}N−1h=0 used in the quasi-Monte Carlo rule Q are chosen deterministically.
The convergence of the error of the Monte Carlo method is O(N−1/2) (in distribution), while
the worst-case error for quasi-Monte Carlo is O(N−α(logN)sα) [4, 5, 11, 15] and the random-
case error for randomized quasi-Monte Carlo is O(N−α−1/2(logN)s(α+1)) [3, 22]. The latter two
methods require that the integrand has smoothness α ≥ 1 (which means for instance that the
integrand has square integrable partial mixed derivatives up to order α in each variable), whereas
the Monte Carlo method requires only that the integrands have finite variance.

Different types of point sets for quasi-Monte Carlo rules exist. Those of interest here are digital
nets [11, 15]. These can be divided into (classical) digital nets [15], which achieve a convergence
rate of O(N−1(logN)s) [15] for integrands of bounded variation, and their extension called higher
order digital nets [4, 5], which achieve a convergence rate of O(N−α(logN)αs) for integrands
which have square integrable partial mixed derivatives of order α > 1. In [5, Section 4.4] an
explicit method for constructing such higher order digital nets, based on a classical digital net,
can be found. The method in the current paper gives an alternative construction for a higher
order version of a specific type of digital net, namely polynomial lattice point sets, see [15,
Section 4.4] or [11, Chapter 10]. Constructions of classical polynomial lattice point sets based on
a worst-case error criterion have previously been studied in [8]. Note that we call a quasi-Monte
Carlo rule whose underlying quadrature points are polynomial lattice points a polynomial lattice
rule.

Polynomial lattice point sets were generalized in [10] to obtain higher order polynomial lattice
point sets. In [7] existence results on higher order polynomial lattice point sets were compared
to the explicit construction of higher order digital nets [5] in terms of their t-value (a certain
quality measure). For some values of dimension s and/or smoothness parameter α the higher
order polynomial lattice point sets have a better existence bound than the best results which
can currently be obtained using the explicit construction of higher order digital nets from [6].
The same is also true for classical digital nets, see [14, 24]. These findings motivated the quest
for an explicit construction of higher order polynomial lattice rules in [2]. The construction
employed there is an algorithm originally proposed for the construction of (integer) lattice rules,
namely the component-by-component construction algorithm, see, e.g., [12, 13, 25]. The higher
order polynomial lattice rules so constructed achieve nearly optimal rates of convergence. For
analogous results on polynomial lattice point sets see [8] (and also [9] for more background).

Straightforward implementation of the component-by-component (CBC) algorithm is however
very costly with respect to computational time, hence methods for reducing the computational
cost are needed. The fast component-by-component algorithm, introduced in [20], uses fast
Fourier transforms (FFTs) to speed up the calculations. Some notes concerning the application
of the fast algorithm to the construction of polynomial lattice rules were already made in [21],

2

with a more detailed analysis in [19]; see also [11, Section 10.3]. In this paper we will adapt the
fast algorithm for higher order polynomial lattice rules. To do so, we find a closed form for the
worst-case error of our function space (where we consider the worst-case error as a function of
the quadrature points). We show that our algorithm has a computational cost of O(sNαα logN)
operations using O(Nα) memory, compared to O(s2Nα+1) operations for the straightforward
implementation of the algorithm in [2], using the same amount of memory. This speedup makes
it possible to obtain higher order polynomial lattice rules for moderate dimensions and numbers
of points. In the section on numerical results we provide constructions of higher order polynomial
lattice rules in base b = 2 up to dimension 10 and up to 4096 points. These numbers could be
increased with more computational effort, but we have to remark that the search space grows
exponentially with respect to the smoothness parameter α.

The efficient calculation of the worst-case error of our function space is an essential ingredient
in such an algorithm. We show that the kernel function associated with the worst-case error can
be evaluated at a point x in time O(αn), where α is the smoothness of the space and x is a
rational number v/bn, 0 ≤ v < bn. Moreover, in the case of the greatest practical importance,
i.e., where the base equals 2, we show explicit expressions for smoothness 2 and 3 which are exact
for any real x ∈ [0, 1) (see Corollary 1).

We compare the performance of higher order polynomial lattice rules constructed using our
fast component-by-component algorithm to the explicit construction as outlined in [5] and find
that the new algorithm performs better in the cases considered. Finally, for the benefit of the
reader, we present some limited tables of higher order polynomial lattice rules constructed using
the fast component-by-component algorithm, allowing the reader to apply the rules presented in
this paper to problems of interest and to verify implementations of the algorithm.

In the next section we provide the reader with some background, and notation, on Walsh
spaces, digital nets, and the worst-case error. More detailed information can be found in [11]
and [2], where also bounds on the worst-case error for higher order polynomial lattice rules were
proven. In Section 3 we show how to efficiently calculate the worst-case error and how the
construction of higher order polynomial lattice rules can be done using the fast component-by-
component approach of [19, 20].

2 Background

We first introduce some notation. Let N0 = {0, 1, 2, . . .} denote the set of non-negative integers
and N = {1, 2, 3, . . .} the set of positive integers. Further we need to be able to consider a
non-negative integer k ∈ N0 in its unique base b representation:

k = (κa . . . κ0)b =

a∑
i=0

κi b
i, (3)

where κi ∈ {0, . . . , b − 1} are the base b digits of k and κa 6= 0; a = 0 for k = 0. Note that the
base, b, is considered a fixed integer throughout. Moreover, in the further development in this
paper, b will be prime. We will be specifically interested in the non-zero base b digits of k. The
number of non-zero base b digits of an integer k will be denoted by #k; where #0 = 0. We can
then represent k ∈ N0 uniquely as

k =

#k∑
i=1

κai b
ai , (4)

3

where now κai ∈ {1, . . . , b − 1} and we demand a1 > · · · > a#k ≥ 0. Thus κa1 is the most
significant base b digit of k. For real x ∈ [0, 1) we write its base b representation

x = (0.ξ1ξ2 . . .)b =

∞∑
i=1

ξi b
−i, (5)

where ξi ∈ {0, . . . , b − 1}. This representation is unique in the sense that we do not allow an
infinite repetition of the digit b− 1 to the right.

2.1 A function space based on Walsh series

For k ∈ N0 the one-dimensional kth Walsh function in base b, walk : [0, 1)→ C, is defined by

walk(x) := exp(2πi (ξ1κ0 + · · ·+ ξa+1κa)/b), (6)

where we have used the base b digits of k and x as given in (3) and (5). Note that Walsh functions
(in base b) are piecewise constant functions. For dimensions s ≥ 2 and vectors k = (k1, . . . , ks) ∈
Ns0 and x = (x1, . . . , xs) ∈ [0, 1)s we define walk : [0, 1)s → C as

walk(x) :=

s∏
j=1

walkj (xj).

The integrand functions in this paper are assumed to have an absolutely convergent Walsh
series representation

f(x) =
∑
k∈Ns0

f̂k walk(x),

where the Walsh coefficients f̂k are given by

f̂k =

∫
[0,1]s

f(x) walk(x) dx.

Note that the Walsh functions form a complete orthonormal system of L2([0, 1]s). For more
information on Walsh functions and their properties we refer to [11, Chapter 14 and Appendix A].

In the following we define a function space by demanding a certain decay rate of the Walsh
coefficients. To do so, we introduce some further notation. We define, for a fixed integer α > 1
and a fixed sequence of positive weights γ = {γ1, γ2, . . .} (in the sense of [26]),

rα(γ,k) :=
∏
j∈u

γj rα(kj), rα(k) := b−
∑min(#k,α)
i=1 (ai+1), (7)

where for k = (k1, . . . , ks) we set u = {1 ≤ j ≤ s : kj 6= 0} and where we used the first α
positions a1 + 1, . . . , a#k + 1 of the non-zero base b digits of k with the notation defined in (4)
in the one-dimensional definition of rα. For k = 0 = (0, . . . , 0) we set

rα(0) = 1.

We are now ready to specify which functions are in our function spaceWα,s,γ , which was also
used in [2, 5]. For functions f ∈ Wα,s,γ we define the norm

‖f‖Wα,s,γ := sup
k∈Ns0

|f̂k|
rα(γ,k)

. (8)

4

Then Wα,s,γ consists of all functions f ∈ L2([0, 1]s) for which ‖f‖Wα,s,γ < ∞. The Walsh
coefficients of f ∈ Wα,s,γ therefore satisfy a certain decay criterion, namely

|f̂k| ≤ ‖f‖Wα,s,γ rα(γ,k) ∀k ∈ Ns0. (9)

It is clear that larger values of α might increase the norm of a function f , i.e., ‖f‖Wα,s,γ ≤
‖f‖Wα′,s,γ for α ≤ α′. The weights γ1, γ2, . . . are used to describe how anisotropic the space is.
Usually it is assumed that γ1 ≥ γ2 ≥ · · · ≥ 0, meaning that the first dimension is more important
than the second one and so on. Under certain conditions on these weights, it can be shown that
numerical integration is tractable in the number of dimensions, see, e.g., [11, 16, 17].

It is of course important to have an understanding of which functions exactly are in such
a Walsh space Wα,s,γ with smoothness parameter α. This analysis has been done in [4, 5, 6].
Classically, one is interested in (smooth) functions f : [0, 1]s → R for which all mixed partial
derivatives up to order α in each variable are square integrable. This is a Sobolev space of
smoothness α which is often considered for this type of problems. In [5, 6] a continuous embedding
of certain Sobolev spaces into Wα,s,γ was shown. Consequently, the results we are going to
establish in the following for functions in Wα,s,γ also apply automatically to what we normally
consider as “smooth” functions, for instance, functions which have square integrable partial mixed
derivatives up to order α in each variable. One of the simplest type of functions in this space are
multivariate polynomials which make up nice testing examples for computer implementations.

2.2 Higher order digital nets

Higher order digital nets were introduced in [5]. Higher order polynomial lattice point sets, which
are the focal point of this paper, are a special class of higher order digital nets. For that reason
and since we will compare the explicit construction for higher order digital nets from [5] with the
construction given in this paper, we will review the necessary details here. For more information
we refer to [11, Chapter 15].

For a prime number b we always identify Fb, the finite field with b elements, with Zb =
{0, . . . , b− 1} endowed with the usual arithmetic operations modulo b.

First we define higher order digital nets using the digital construction scheme. As we will need
to be able to identify integers with vectors over a finite field by using its base b representation,
and then later have to be able to consider vectors of integers as well, we will denote a vector over
a finite field Fb by ~h, in contrast to vectors over Z or R, which will be denoted by h.

Definition 1 (Digital construction scheme of a digital net over Fb). Let b be a prime and let
n,m, s ≥ 1 be integers, where n ≥ m. Let C1, . . . , Cs be n×m matrices over the finite field Fb
of order b. Now we construct bm points in [0, 1)s: for 0 ≤ h < bm, identify each h =

∑m−1
i=0 hi b

i

with a vector over the finite field

~h := (h0, . . . , hm−1)> ∈ Fmb .

For 1 ≤ j ≤ s multiply the matrix Cj by ~h using arithmetic over Fb to obtain a vector ~yh,j ∈ Fnb :

Cj ~h =: ~yh,j = (yh,j,1, . . . , yh,j,n)> ∈ Fnb , (10)

from which the hth point xh of the digital net is found by interpreting the coordinates of ~yh,j as
the base b digits of xh,j :

xh,j :=

n∑
i=1

yh,j,i b
−i ∈ [0, 1).

5

Now set xh = (xh,1, . . . , xh,s)
> ∈ [0, 1)s to be the hth point. The set {x0, . . . ,xbm−1} is called

a digital net over Fb with generating matrices C1, . . . , Cs.

This definition of a digital net generalizes the classical construction scheme, e.g., [15], on
which classical digital (t,m, s)-nets are based upon, by allowing for generating matrices which
are not necessarily square. The generating matrices Cj are of size n×m, and so, the number of
rows n determines the resolution at which the points of the net are placed in the unit cube, i.e.,
all base b digits after position n are zero. The integration error then behaves like O(b−kkαs), see
[5], where α is the smoothness of the integrand and k is the strength of the net (in accordance
with the respective property of classical nets). The strength of the net is defined via linear
independence properties of the rows of the generating matrices, see [4, 5]. For higher order nets
one can achieve k ≈ min(αm,n) and hence, provided that n ≥ αm, one obtains a convergence
order of b−αm(αm)αs � N−α(logN)αs, where N = bm is the number of quadrature points.

We now explain the explicit construction of a higher order digital net in s dimensions for
a maximum smoothness d as described in [5]. The explicit construction starts from a given
(t′,m, sd)-net in base b, that is, a classical digital net in sd dimensions for which the generating
matrices C1, . . . , Csd ∈ Fm×mb are known.

From these sd given matrices, s new generating matrices C
(d)
j are constructed of size dm×m

by vertically stacking the first rows from the group of d consecutive matrices C(j−1)d+1, . . . , Cjd,
then the second rows of the same d matrices and so on, until all dm rows have been stacked.
More precisely, let Cj = (c>j,1 . . . c

>
j,m)>, where c>j,k denotes the kth row of the matrix Cj . Then

C
(d)
j = (c>(j−1)d+1,1 . . . c

>
jd,1 . . . c

>
(j−1)d+1,m . . . c

>
jd,m)>. For more information on these higher

order digital nets we refer the reader to [5] and [11, Chapter 15].
An important concept for the error analysis in the next section is the dual net. It defines the

set of Walsh coefficients which are not integrated exactly by the digital net and can therefore be
used to write down the integration error.

Definition 2 (Dual net). For a digital net over Fb with generating matrices C1, . . . , Cs ∈ Fn×mb

we define its dual net by

D(C1, . . . , Cs) :=
{
k ∈ Ns0 : C>1

~k1 + · · ·+ C>s
~ks = ~0

}
,

where for a scalar component k =
∑∞
i=0 κi b

i in k we define an associated vector over the finite

field ~k = (κ0, . . . , κn−1)> ∈ Fnb .

2.3 The worst-case error

We define the worst-case error of numerical integration using a cubature rule Q for functions in
a Banach space F by

e(Q,F) := sup
f∈F
‖f‖F≤1

|I(f)−Q(f)|.

We now assume the cubature rule Q to be a quasi-Monte Carlo rule (1) using a (higher order)
digital net as its node set and denote it by Qnet. For any f having an absolutely convergent
Walsh series representation we can write the integration error for Qnet as a sum over the dual
net to obtain

|I(f)−Qnet(f)| =

∣∣∣∣∣∣
∑

0 6=k∈D

f̂k

∣∣∣∣∣∣ ≤
∑

06=k∈D

|f̂k|. (11)

6

For f ∈ Wα,s,γ we can now use (9) to obtain

|I(f)−Qnet(f)| ≤ ‖f‖Wα,s,γ

∑
0 6=k∈D

rα(γ,k). (12)

Since we can obtain equality for a worst-case function ζ ∈ Wα,s,γ having Walsh series represen-
tation

ζ(x) =
∑
k∈Ns0

rα(γ,k) walk(x),

we find the following expression for the worst-case error in Wα,s,γ for a quasi-Monte Carlo rule
Qnet based on a higher order digital net in base b:

e(Qnet,Wα,s,γ) =
∑

0 6=k∈D

rα(γ,k). (13)

The cubature rules in this paper will be constructed in such a way that they have a worst-case
error which is near optimal for the given function space Wα,s,γ . For a given value of α > 1
the worst-case error behaves like O(N−α(logN)αs) for N integration nodes (see [5]) which is
essentially best possible according to a lower bound from Šarygin [29].

2.4 Higher order polynomial lattice rules

In [10] the classical polynomial lattice rules [15] were generalized to form higher order polynomial
lattice rules. Just like classical polynomial lattice point sets are a special class of digital nets,
higher order polynomial lattice point sets are a special class of higher order digital nets. For
simplicity, we define the (higher order) polynomial lattice rules over a finite field Fb of prime
order b only. The main object for the construction of polynomial lattice rules are formal Laurent
series, i.e., expressions of the form

∑∞
i=` wiX

−i, where ` ∈ Z and wi ∈ Fb. We denote the set of
formal Laurent series by Fb((X−1)). These Laurent series then need to be mapped to integration
nodes over the unit interval [0, 1). Define the map vn : Fb((X−1))→ [0, 1) by

vn

(∞∑
i=`

wiX
−i

)
:=

n∑
i=max(`,1)

wi b
−i. (14)

Similar to the case for digital nets, we now need to be able to identify an integer h with a
polynomial in Fb[X] by considering h in its base b representation, the associated polynomial will
be denoted by h(X). The details are given in the following definition.

Definition 3 (Polynomial lattice rule). Let b be prime and 1 ≤ m ≤ n. For a given dimension
s ≥ 1, choose p(X) ∈ Fb[X] with deg(p) = n ≥ 1 and let q1(X), . . . , qs(X) ∈ Fb[X]. Now we

construct bm points in [0, 1)s: for 0 ≤ h < bm, identify each h =
∑m−1
i=0 hi b

i with a polynomial
over Fb

h(X) :=

m−1∑
i=0

hiX
i ∈ Fb[X].

Then the hth point is obtained by setting

xh :=

(
vn

(
h(X) q1(X)

p(X)

)
, . . . , vn

(
h(X) qs(X)

p(X)

))
∈ [0, 1)s.

A quasi-Monte Carlo rule using this point set is called a polynomial lattice rule.

7

One obtains classical polynomial lattice rules from Definition 3 by taking n = m. For sim-
plicity we will assume that p(X) is irreducible over Fb, though this assumption could be removed
by a more intricate analysis. We define

Gb,n = {v(X) ∈ Fb[X] \ {0} : deg(v) < n},

which will be the set from which we will select the generating polynomials qj(X). Clearly, as
p(X) is irreducible and deg(p) = n, this equals the multiplicative group

Gb,n = (Fb[X]/p(X))× = {g(X)β : 0 ≤ β < bn − 1},

where g(X) is a generator for the multiplicative group (Fb[X]/p(X))×, e.g., we can take g(X) =
X when p(X) is primitive.

Since a polynomial lattice point set is a special case of a digital net, we can find the generating
matrices C1, . . . , Cs ∈ Fn×mb from the generating vector q(X) = (q1(X), . . . , qs(X)). For 1 ≤ j ≤
s consider the Laurent expansions

qj(X)

p(X)
=

∞∑
i=`j

u
(j)
i X−i ∈ Fb((X−1)).

Then the elements c
(j)
k,` of the n×m generating matrix Cj over Fb are given by

c
(j)
k,` = u

(j)
k+`, (15)

for 1 ≤ k ≤ n, 0 ≤ ` ≤ m− 1; see, e.g., [11, Section 10.1].
In (13) we used the dual net to obtain the worst-case error. In the case of a polynomial lattice

rule the dual is given in the next definition. (We use the convention deg(0) = −∞.)

Definition 4 (Dual polynomial lattice). A polynomial lattice with generating vector q(X) =
(q1(X), . . . , qs(X)) ∈ (Fb[X])s modulo p(X) ∈ Fb[X] has a dual polynomial lattice

D(q(X), p(X)) :=

k ∈ Ns0 :

s∑
j=1

kj(X) qj(X) ≡ a(X) (mod p(X)) with deg(a) < n−m

 .

A proof for the equivalence of Definition 2 and Definition 4 for polynomial lattices follows
from [11, Lemma 15.25].

Specifically for a polynomial lattice rule with generating vector q(X) = (q1(X), . . . , qs(X))
modulo p(X) having bm points, it follows from (13) that its worst-case error in Wα,s,γ satisfies

ebm,α(q(X), p(X)) =
∑

0 6=k∈D

rα(γ,k), (16)

with D the dual polynomial lattice.

2.5 The component-by-component construction of higher order poly-
nomial lattice rules

The component-by-component construction algorithm was introduced by Korobov [12], see also
[13, Theorem 18, p. 120], and later re-invented in [25] to construct the generating vector of an
integer lattice rule. This algorithm first finds the optimal one-dimensional generating vector,

8

which is subsequently extended in an optimal way to a two-dimensional generating vector and so
on. Algorithm 1 spells out the details for the construction in the case of higher order polynomial
lattice rules.

Algorithm 1 General form of CBC construction of higher order polynomial lattice rules

Input: base b a prime, number of dimensions s, number of points bm, smoothness α > 1, and
weights γ = (γj)j≥1
Output: Generating vector q(X) = (q1(X), . . . , qs(X)) ∈ Gsb,n
Choose an irreducible polynomial p(X) ∈ Fb[X], with deg(p) = n and n = αm
for d = 1to s do

Set qd(X) ∈ Gb,n by minimizing ebm,α((q1(X), . . . , qd(X)), p(X)) as a function of qd(X)
end for
return q(X) = (q1(X), . . . , qs(X))

The analysis of the component-by-component algorithm adjusted to the case of higher order
polynomial lattice rule was done in [2]. The following theorem shows that Algorithm 1 achieves
almost optimal rates of convergence. For a proof we refer to [2].

Theorem 1. Let b be prime, s, n ∈ N and p(X) ∈ Fb[X] be irreducible with deg(p) = n = αm,
α > 1. Suppose (q1(X), . . . , qs(X)) ∈ Gsb,n is constructed using Algorithm 1. Then for all
d = 1, . . . , s we have a bound on the worst-case error as follows:

ebm,α((q1(X), . . . , qd(X)), p(X)) ≤ 1

bτm

d∏
j=1

(
1 + 3γ

1/τ
j Cb,α,τ

)τ
, ∀ 1 ≤ τ < α,

where

Cb,α,τ :=
(b− 1)α

bα/τ − b

α−1∏
i=1

1

bi/τ − 1
+

α− 1 if τ = 1,

(b− 1)((b− 1)α−1 − (b1/τ − 1)α−1)

(b− b1/τ)(b1/τ − 1)α−1
if τ > 1.

Formula (16) for the worst-case error is not in a usable form for computation due to the
infinite sum. The next lemma shows how to obtain a closed-form expression which resembles
the formula for the worst-case error as it appears when the space of integrands is a reproducing
kernel Hilbert space, see [1].

Lemma 1. The worst-case integration error in Wα,s,γ , α > 1, associated with a polynomial
lattice rule with generating vector q(X) = (q1(X), . . . , qs(X)) modulo p(X) having bm points
satisfies

ebm,α((q1(X), . . . , qs(X)), p(X)) = −1 +
1

bm

bm−1∑
h=0

s∏
j=1

(1 + γj ωα(xh,j)), (17)

where, using (7),

ωα(x) :=

∞∑
k=1

rα(k) walk(x). (18)

9

Proof. We make use of the character property of digital nets (see [11, Lemma 4.75]). When

{xh}b
m−1
h=0 are the points of a digital net (or a polynomial lattice rule) and D is its dual net, then

1

bm

bm−1∑
h=0

walk(xh) =

{
1 if k ∈ D,
0 otherwise.

Thus, starting from (16), we obtain

ebm,α((q1(X), . . . , qs(X)), p(X)) =
∑

06=k∈Ns0

rα(γ,k)
1

bm

bm−1∑
h=0

walk(xh)

= −1 +
1

bm

bm−1∑
h=0

∑
k∈Ns0

rα(γ,k) walk(xh)

= −1 +
1

bm

bm−1∑
h=0

s∏
j=1

(1 + γj ωα(xh,j)).

As in [20] we can now do a basic operation count for the computational cost of Algorithm 1.
In comparison to [20], the analysis is a little bit more involved here as the evaluation of (17)
involves calculating

ωα

(
vn

(
h(X) q(X)

p(X)

))
for h = 0, . . . , bm − 1 and all q(X) ∈ Gb,n, (19)

in each iteration. Assuming cω = cω(α, n) to be the cost of evaluating ωα(x) and cv = cv(n)
the cost of mapping and calculating the Laurent expansion as well as calculation the polynomial
product, the cost of a straightforward implementation of Algorithm 1 is O(s2bnbm(cω+cv)) where
n = αm. However, calculating ωα(vn(h(X) q(X)/p(X))) efficiently for given h(X) and q(X) is
an important issue which is solved in the next section and in practice it would be inefficient to
calculate these values on the fly whenever needed. To that end we model the algorithm into a
more tangible form using the techniques from [20, 21] to obtain a fast component-by-component
algorithm that makes use of a circular convolution which can be calculated by means of fast
Fourier transforms (FFTs).

3 Fast construction of higher order polynomial lattice rules

The exposition here mainly follows the techniques from [20, 21], but, as mentioned in the previous
section, the analysis is more complicated due to the need to calculate (19). The derivation
of the fast algorithm is kept concise by relying as quickly as possible on the structure of the
underlying multiplicative group, but we need to take into consideration the cost cv of working
with polynomials over finite fields. In Section 4 we will give efficient methods to calculate ωα.

The product over j in Lemma 1 can be reused and extended from the previous iteration. We
store this product in a vector Pd = (Pd(0), . . . , Pd(b

m − 1)) of length bm, where

Pd(h) :=

d∏
j=1

(1 + γj ωα(xh,j)) = Pd−1(h)

(
1 + γj ωα

(
vn

(
h(X) qd(X)

p(X)

)))
,

10

for all 0 ≤ h < bm and P0(h) = 1. Thus Pd can be calculated using the stored value for Pd−1.
Hereby we reduce the construction cost by a factor of s at the cost of O(bm) memory.

The computations of ωα(vn(h(X) q(X)/p(X))) could be done in the initialization of the al-
gorithm. Since vn only depends on the negative powers of X we in fact have

vn

(
h(X) q(X)

p(X)

)
= vn

(
h(X) q(X)

p(X)
mod 1(X)

)
= vn

(
h(X) q(X) mod p(X)

p(X)

)
.

So, for fixed p(X), we can think of vn as being a function from Fb[X]/p(X) = {w(X) ∈
Fb[X] : deg(w) < n} to [0, 1). We can precompute these bn values giving a construction cost of
O(sbnbmcv + bn(cω + cv)) at a cost of O(bm + bn) memory. However, the cost cv is presumably
dominating cω (most certainly so for the ωα expressions we will derive in Corollary 1). It is
standard practice to use a lookup table based on a generator when doing multiplications over a
finite field. Making this change the construction cost becomes O(sbnbm + bn(cω + c̃v)) at a cost
of O(bm+ 2bn) memory (we have explicitly written the constant for clarity: there is a O(bn) cost
for the values of ωα and a O(bn) cost for the lookup table). Here, c̃v is a lot cheaper than cv as
one has to multiply only by the same generator to construct the table. We do note however that
the O(bn) memory cost grows exponentially with α as n = αm.

For the lookup table we made use of the fact that there exists a generator g(X) for the
multiplicative group for which

(Fb[X]/p(X))× := {g(X)β mod p(X) : 0 ≤ β < bn − 1} = Fb[X]/(p(X)) \ {0},

since we assumed p(X) to be irreducible over Fb[X]. For brevity we define the auxiliary function
ω to make use of the indices w.r.t. the generator g(X):

ω : Zbn−1 → [0, 1) : ω(β − δ) = ω(β − δ mod (bn − 1))

:= ωα

(
vn

(
h(X) q(X) mod p(X)

p(X)

))
= ωα

(
vn

(
g(X)β g(X)−δ mod p(X)

p(X)

))
= ωα

(
vn

(
g(X)β−δ mod p(X)

p(X)

))
,

where h(X) and q(X) are such that h(X) = g(X)β mod p(X) and q(X) = g(X)−δ mod p(X).
Now consider the worst-case error explicitly in terms of qd(X) as Ed(qd(X)). Then we can

write the worst-case error iteratively in the form

Ed(qd(X)) := ebm,α((q1(X), . . . , qd(X)), p(X))

= −1 +
1

bm

bm−1∑
h=0

Pd(h)

= −1 +
1

bm

bm−1∑
h=0

Pd−1(h) +
γd
bm

bm−1∑
h=0

Pd−1(h)ωα(vn(h(X) qd(X)/p(X)))

= ebm,α((q1(X), . . . , qd−1(X)), p(X)) +
γd
bm

bm−1∑
h=0

Pd−1(h)ωα(vn(h(X) qd(X)/p(X)))

= ebm,α((q1(X), . . . , qd−1(X)), p(X))

11

+
γd
bm

ωα(0) +
γd
bm

bm−1∑
h=1

Pd−1(h)ωα(vn(h(X) qd(X)/p(X))),

where the worst-case error for the zero-dimensional rule is 0. The main computational burden
is now hidden in calculating the last sum which we can write in terms of the auxiliary function
ω as an extended sum:

bm−1∑
h=1

ωα(vn(h(X) qd(X)/p(X)))Pd−1(h) =

bn−2∑
β=0

ω(β − δ)Qd−1(β) (20)

where δ is such that qd(X) = g(X)−δ mod p(X) and

Qd−1(β) :=

{
Pd−1(g(X)β mod p(X)) if deg(g(X)β mod p(X)) < m,

0 otherwise.

Let Qd = (Qd(0), . . . , Qd(b
n − 2)), then we have Qd = Π>g(X)−1Pd, where

Π>g(X)−1 = (au,v)0≤u≤bn−2,1≤v<bm

and

au,v =

{
1 v(X) ≡ g(X)u mod p(X),
0 otherwise.

Thus Qd is obtained by permuting the elements of the vector (Pd,0) ∈ Rbn−1.
This extended sum (20), calculated for all possible choices of qd(X) = g(X)−δ mod p(X) ∈

(Fb[X]/p(X))×, i.e., 0 ≤ δ < bn − 1, is in fact a circular convolution of length bn − 1

Sd(δ) :=

bn−2∑
β=0

ω(β − δ mod (bn − 1))Qd−1(β)

=

bn−2∑
β=0

ω(β)Qd−1(β + δ mod (bn − 1)). (21)

Calculating this convolution in the Fourier domain by the use of fast Fourier transforms (FFTs)
takes time O(bn log bn), see [18] for a general reference. We obtain a construction cost for the
fast component-by-component algorithm using FFTs of O(sbn log bn + bn(cω + c̃v)) using O(bn)
memory. In other words, as n = αm, the factor bm in the original complexity has been reduced
to α log bm. Asymptotically this is always faster for increasing m.

We end this section with an overview of the complexities and their memory trade of:

Construction cost
Algorithm = s{iteration cost}+ {initialization cost} Memory cost

Straightforward s2bnbm(cω + cv)
Cache Pd vector sbnbm(cω + cv) bm

Precalculate ω sbnbm + bn(cω + c̃v) bn

Fast convolution sbn log bn + bn(cω + c̃v) bn

All these algorithms, except the fast convolution algorithm, have iteration times of O(bnbm) and
so they will all be asymptotically slower than the fast convolution algorithm. Timings on a real

12

machine for b = 2 show the break even point to be at m = 5 for α = 2 and m = 6 for α = 3.
The fast component-by-component algorithm based on fast convolution is given in Algorithm 2.

Algorithm 2 Fast CBC construction of higher order polynomial lattice rules

Input: base b a prime, number of dimensions s, number of points bm, smoothness α > 1, and
weights γ = (γj)j≥1
Output: Generating vector q(X) = (q1(X), . . . , qs(X)) ∈ Gsb,n
Choose an irreducible polynomial p(X) ∈ Fb[X], deg(p) = n and n = αm and generator g(X)

Set e0 = 0, Q0 = Π>g(X)−1

(
1bm×1

0(bn−bm)×1

)
and ω =

(
ωα(vn(g(X)δ (mod p(X))/p(X)))

)
δ=0,...,bn−2

for d = 1 to s do
Sd = ω ~Qd−1 (by (fast) circular convolution)
δ = argmin

0≤δ<bn−1
Sd(δ)

Set qd(X) = g(X)δ (mod p(X))

Update/set Qd and ed = ed−1 +
γd
bm

ωα(0) +
γd
bm

Sd(δ)

end for
return q(X) = (q1(X), . . . , qs(X))

4 Calculation of the worst-case error

In this section we show how to calculate the infinite sum (18) which appears in the worst-case
error formula from Lemma 1. In Theorem 2 we show that if x can be represented exactly with
n digit precision in base b, then ωα(x) can be computed in O(αn) operations. Following that,
in Section 4.2, Theorem 3 will state explicit forms for general x ∈ [0, 1). More importantly, for
b = 2, Corollary 1 gives explicit forms to compute ωα(x) exactly for arbitrary x and α = 2 and 3
using elementary computer operations.

4.1 Technical definitions

Before we can show how to compute ωα(x) we need to introduce some technical notation which
will be used in the proofs in the next section. To motivate the notation we first look at ωα after
expanding the definitions of walk(x) and rα(k), see (6) and (7), and using the non-zero digit

expansion, (4), of k =
∑#k
i=1 κai b

ai , where all κai 6= 0:

ωα(x) =

∞∑
k=1

rα(k) walk(x)

=

∞∑
k=1

k=
∑#k
i=1 κai b

ai

min(α,#k)∏
i=1

b−(ai+1) exp(2πi κaiξai+1/b)

#k∏
i=α+1

exp(2πi κaiξai+1/b)︸ ︷︷ ︸
walk′ (x)

. (22)

Due to definition (4) we have a1 > · · · > a#k ≥ 0, i.e., κa1 is the most significant base b
digit of k, etc. The second product in (22) can be seen as walk′(x) where k′ is defined by

13

k′ = k −
∑min(α,#k)
i=1 κai b

ai and thus 0 ≤ k′ < bamin(α,#k) . Now observe that the sum over all
k ≥ 1 can be expanded into multiple sums over all possible digit expansions for all k’s with r
digits for r ≥ 1. That is, #k sums for the ai together with companioning sums for the κai from 1
to b− 1, i.e.,

∞∑
k=1

k=
∑#k
i=1 κai b

ai

G(k, x) =

∞∑
r=1

∞∑
a1=r−1

· · ·
ar−1−1∑
ar=0︸ ︷︷ ︸

r sums s.t.
∞>a1>···>ar≥0

b−1∑
κa1=1

· · ·
b−1∑
κar=1︸ ︷︷ ︸

r independent sums

G

(
r∑
i=1

κai b
ai , x

)
, (23)

where G(k, x) = rα(k) walk(x).
To simplify notation and stress the structure in what follows, we define the following triangular

sum operator which sums over all M ≥ a1 > · · · > ar ≥ m:

TMm (r)(g) :=

M∑
a1=m+r−1

a1−1∑
a2=m+r−2

· · ·
ar−1−1∑
ar=m︸ ︷︷ ︸

r sums

g(a1, . . . , ar), (24)

and formally set the zero index sum, i.e., no sums to be taken, to be the identity mapping,

TMm (0)(g) := g.

Define the concatenation of two such operators as putting the sums next to each other:

(TMm (t)TM
′

m′ (r − t))(g) :=

M∑
a1=m+t−1

· · ·
at−1−1∑
at=m︸ ︷︷ ︸

t sums

M ′∑
at+1=m′+(r−t)−1

· · ·
ar−1−1∑
ar=m′︸ ︷︷ ︸

(r − t) sums︸ ︷︷ ︸
r sums

g(a1, . . . , ar),

i.e., having two independent ranges M ≥ a1 > · · · > at ≥ m and M ′ ≥ at+1 > · · · > ar ≥ m′. We
remark that although these sums might look haggardly, the interpretation of the sum operator
by their summation range is a natural way to reason about it as the following lemma shows.

Lemma 2. For any M ≥ n > m we can split TMm (r) into r + 1 sets of two independent ranges:

TMm (r) =

r∑
t=0

TMn (t)Tn−1m (r − t).

Proof. Applying TMm (r) to a function g(a1, . . . , ar) can be interpreted combinatorially as having
to distribute r objects in M − m + 1 different positions, numbered from m to M , which can
each hold at most one object and then accumulating the result of applying the function g to this
ensemble. It is trivial to note that we can split the range in two non-overlapping ranges and
consider all partitions of r to distribute the objects over the two ranges.

Specifically we find the following expansions of this summation operator for r = 1, 2, 3:

T∞0 (1) = Tn−10 (1) + T∞n (1), (25a)

T∞0 (2) = Tn−10 (2) + T∞n (1)Tn−10 (1) + T∞n (2), (25b)

T∞0 (3) = Tn−10 (3) + T∞n (1)Tn−10 (2) + T∞n (2)Tn−10 (1) + T∞n (3). (25c)

As we will apply Lemma 2 to a product function, g(a1, . . . , ar) = g(a1) · · · g(ar) it is useful
to obtain the following result.

14

Lemma 3. If the function g(a1, . . . , ar) is of product form g1(a1) · · · gr(ar), then Tn−10 (r)(g),
with n finite, can be calculated in O(nr) operations.

The proof of the lemma follows from the number of operations needed in Algorithm 3.

Algorithm 3 Compute S1 = Tn−10 (r)(g1(a1) · · · gr(ar)) in O(nr) operations

Initialize S1 = 0, . . . , Sr = 0
for ar = 0 to n− r do
Sr = Sr + gr(ar)
for t = 1 to r − 1 do
Sr−t = Sr−t + Sr−t+1 gr−t(ar + t)

end for
end for
return S1

At the end of this algorithm for t = 1, . . . , r we have the post conditions:

St =

n−r∑
ar=0

gr(ar)

n−r+1∑
ar−1=ar+1

gr−1(ar−1) · · ·
n−t−1∑

at+1=at+2+1

gt+1(at+1)

n−t∑
at=at+1+1

gt(at)

=

n−t∑
at=r−t

gt(at)

at−1∑
at+1=r−t−1

gt+1(at+1) · · ·
ar−2−1∑
ar−1=1

gr−1(ar−1)

ar−1−1∑
ar=0

gr(ar)

= Tn−t0 (r − t+ 1)

(
r∏
i=t

gi(ai)

)
.

With a slight modification we can calculate all values of

St = Tn−10 (r − t+ 1)

(
r∏
i=t

gi(ai)

)
, for t = 1, . . . , r. (26)

For this we just let the outer loop run up to n− 1 and make a modification in the inner loop to
only conditionally update the value of Sr−t as long as ar < n − t. The modified algorithm can
be found in Algorithm 4. This algorithm is still O(nr).

Algorithm 4 Compute all St = Tn−10 (r − t + 1)(gt(at) · · · gr(ar)), for t = 1, . . . , r, in O(nr)
operations

Initialize S1 = 0, . . . , Sr = 0
for ar = 0 to n− 1 do
Sr = Sr + gr(ar)
for t = 1 to min(r, n− ar)− 1 do
Sr−t = Sr−t + Sr−t+1 gr−t(ar + t)

end for
end for
return (S1, . . . , Sr)

15

4.2 A general algorithm for x having a fixed base b precision of n

We now consider calculating ωα(x) in base b for x ∈ [0, 1) which can be represented exactly
with n digit precision in base b: x = (0.ξ1ξ2 . . . ξn)b =

∑n
i=1 ξi b

−i. That is, x is actually a
rational number v/bn, 0 ≤ v < bn. This is exactly the situation that occurs in the component-
by-component construction of Section 2.5, as the vn function (14) exactly maps the Laurent
series over Fb((X−1)) to rationals v/bn with 0 ≤ v < bn.

Theorem 2. Let α, b ≥ 2 be integers. Then for any x = vb−n with n ≥ 1 and 0 ≤ v < bn, the
value of ωα(vb−n) can be computed in at most O(αn) operations as follows: for x = (0.ξ1ξ2 . . . ξn)b
and

z(x, ai) :=

{
b− 1 if ξai+1 = 0,

−1 if ξai+1 6= 0,
and β(x) = −blogb(x)c ,

calculate the vectors

T (x) = (Tα−1, . . . , T1)

:=

(
Tn−10 (α− 1)

(
α−1∏
i=1

b−(ai+1)z(x, ai)

)
, . . . , Tn−10 (1)(b−(aα−1+1)z(x, aα−1))

)
,

T̃ (x) = (T̃α, . . . , T̃1)

:=

(
Tn−10 (α)

(
baα [aα < β(x)− 1]

α∏
i=1

b−(ai+1)z(x, ai)

)
, . . . ,

Tn−10 (1)
(
baα [aα < β(x)− 1]b−(aα+1)z(x, aα)

))
,

where

[aα < β(x)− 1] :=

{
1 if aα < β(x)− 1,

0 otherwise.

The vectors T and T̃ can both be computed by Algorithm 4. Now set

C = (C0, . . . , Cα−1) :=

(
b−nt

t∏
i=1

b− 1

bi − 1

)
t=0,...,α−1

,

C̄ = (C̄0, C̄1, . . . , C̄α−1) := (C0, C0 + C1, . . . , C0 + · · ·+ Cα−1),

where C0 = C̄0 = 1, then for 0 ≤ v < bn

ωα(vb−n) =

C̄0:α−2 · T (vb−n) + (C̄α−1 − 1) +C · T̃ (vb−n) if 0 < v < bn,

α−1∑
r=1

r∏
i=1

b− 1

bi − 1
+

b− 1

bα − b

α−1∏
i=1

b− 1

bi − 1
if v = 0,

here a · b denotes the dot product and C̄0:α−2 is a vector of the first α− 1 components of C̄.

Proof. We start from expression (22). For ease of manipulation we consider two different cases
of the base b expansions for integer k > 0:

16

1. Integers k which have between 1 and (α− 1) non-zero digits in base b:

k =

#k∑
i=1

κai b
ai , where 1 ≤ #k ≤ α− 1.

2. Integers k which have α or more non-zero digits in base b:

k =

#k∑
i=1

κai b
ai =

α∑
i=1

κai b
ai + k′, where #k ≥ α and 0 ≤ k′ < baα .

As such we consider, for 0 < x < 1,

ωα(x) =

∞∑
k=1

#k<α

k=
∑#k
i=1 κai b

ai

#k∏
i=1

b−(ai+1) exp(2πi κaiξai+1/b)

+

∞∑
k=1

#k≥α
k=

∑α
i=1 κai b

ai+k′

0≤k′<baα

walk′(x)

α∏
i=1

b−(ai+1) exp(2πi κaiξai+1/b).

We will now expand these outer sums as in (23), but first note

z(x, ai) =

b−1∑
κai=1

exp(2πi κaiξai+1/b) =

{
b− 1 if ξai+1 = 0,

−1 if ξai+1 6= 0,
(27)

to move all the independent κai sums, cf. (23), into the product function. Further, denote by
β(x) the power of b−1 of the first non-zero digit in the base b expansion of x ∈ [0, 1), then the
sum over k′ for case 2 becomes

baα−1∑
k′=0

walk′(x) =

baα if aα < β(x)− 1, i.e., x = (0. 0 0︸ ︷︷ ︸

at least aα

∗ ∗ ∗ . . .)b,

0 otherwise

=: baα [aα < β(x)− 1],

where the last line uses Iverson notation. Introducing the sum operator (24) we obtain

ωα(x) =
α−1∑
r=1

T∞0 (r)

(
r∏
i=1

b−(ai+1)z(x, ai)

)
+ T∞0 (α)

(
baα [aα < β(x)− 1]

α∏
i=1

b−(ai+1)z(x, ai)

)
.

Since our function is a product function, it is convenient to only deal with the operators, which
then shortens the notation.

We now deal with the two cases separately. For case 1, 1 ≤ r ≤ α − 1, we apply Lemma 2
and manipulate the following expression

α−1∑
r=1

T∞0 (r) =

α−1∑
r=1

r∑
t=0

T∞n (r − t)Tn−10 (t) =

α−1∑
t=1

(
α−1∑
r=t

T∞n (r − t)

)
Tn−10 (t) +

α−1∑
r=1

T∞n (r).

17

By assumption of the n digit base b precision of x the T∞n sums do not depend on x. As we
show next, they can be calculated off line in closed form. That means we are left to deal with
the Tn−10 (t)(gr−t+1(ar−t+1) · · · gr(ar)) for t = 1, . . . , α − 1. We can use Algorithm 3 for each of
these terms, but as they are nested, we can use Algorithm 4 to calculate them all at once in time
O(αn) upon calculating Tn−10 (α− 1). The T∞n sums are given by:

T∞n (t)

(
t∏
i=1

b−(ai+1)(b− 1)

)
= (b− 1)tb−t

∞∑
a1=n+t−1

b−a1
a1−1∑

a2=n+t−2
b−a2 · · ·

at−1−1∑
at=n

b−at

= (b− 1)tb−t
∞∑

at=n

b−at · · ·
∞∑

a2=a3+1

b−a2
∞∑

a1=a2+1

b−a1

= b−nt
t∏
i=1

b− 1

bi − 1
. (28)

For case 2, #k ≥ α, we can also apply Lemma 2 to obtain

T∞0 (α) =

α∑
t=0

T∞n (t)Tn−10 (α− t)

= Tn−10 (α) + T∞n (1)Tn−10 (α− 1) + · · ·+ T∞n (α− 1)Tn−10 (1) + T∞n (α),

which is applied to the function

baα [aα < β(x)− 1]

(
α∏
i=1

b−(ai+1)z(x, ai)

)
.

The T∞n sums here become

T∞n (t)

(
t∏
i=1

b−(ai+1)(b− 1)

)
= b−nt

t∏
i=1

b− 1

bi − 1
, for t < α,

and T∞n (α)

(
baα [aα < β(x)− 1]

α∏
i=1

b−(ai+1)(b− 1)

)
= 0.

For x 6= 0 the condition [aα < β(x)− 1] makes it such that T∞n (α) = 0 as aα ≥ n (and β(x) ≤ n
by assumption). The other T∞n values are the same as for case 1, and we can use the closed
form (28). Also here we use Algorithm 4 to calculate all the sums Tn−10 (α − t) in O(αn) upon
calculating Tn−10 (α).

When x = 0 there is no need to consider splitting at a given n. To obtain T∞0 (α) we can use
a similar derivation as for (28) to obtain a closed form:

T∞0 (α)

(
baα

α∏
i=1

b−(ai+1)(b− 1)

)
=

∞∑
aα=0

b−1(b− 1) T∞aα+1(α− 1)

(
α−1∏
i=1

b−(ai+1)(b− 1)

)

=

∞∑
aα=0

b−1(b− 1) b−(aα+1)(α−1)
α−1∏
i=1

b− 1

bi − 1

=
b− 1

bα − b

α−1∏
i=1

b− 1

bi − 1
.

Again (28) can be used to calculate the T∞0 (r) for r = 1, . . . , α−1. This completes the proof.

18

4.3 Explicit forms for arbitrary x and small α

Theorem 2 uses the fact that at most the first n digits of the coordinates of the polynomial
lattice rule can be non-zero; it is hence not surprising that the resulting computational complexity
depends on n. Here we take a similar approach, but explicitly look at the non-zero digits of x; this
will turn out to be a favorable approach in case of b = 2, for which we find explicit expressions
in Corollary 1. We will use the following similar notation as was set up in the beginning of
Section 2: Let the non-zero digits base b expansion of x = (0.ξ1ξ2 . . .)b ∈ [0, 1) be given by

x =

#x∑
i=1

ξaib
−ai ,

where 1 ≤ a1 < · · · < a#x, ξai ∈ {1, . . . , b− 1}. In particular, we will see that the power of b−1

for the most significant digit of x, i.e., a1, plays a pivotal role. For x = 0 we set a1 = ∞ and
#x = 0.

Theorem 3. For x ∈ [0, 1) with non-zero digit base b expansion

x =

#x∑
i=1

ξaib
−ai , 1 ≤ a1 < · · · < a#x, ξai ∈ {1, . . . , b− 1},

we have

ω2(x) = s1(x) + s̃2(x),

ω3(x) = s1(x) + s2(x) + s̃3(x),

where

s1(x) := 1− b
#x∑
j=1

b−aj ,

s2(x) :=
1

b+ 1
− b(b− 2)

1

2

#x∑
j=1

b−aj

#x∑
j=1

b−aj

− #x∑
j=1

b−2aj

− b(b− 1)

 1

b− 1
−

#x∑
j=1

b−aj

#x∑
j=1

b−aj

 ,

and for x 6= 0 we have

s̃2(x) := b−1 − 2b−a1 − b−(a1+1) − (a1b− a1 − b)
#x∑
j=1

b−aj ,

s̃3(x) := (b+ 1)−2b−1b−2a1((a1 − 2)b2 − (a1 − 1)b4 + b2a1)

− b−a1((a1 − 2)b− (a1 − 1)b2 + ba1)

#x∑
j=1

b−aj

− b−1(b− 1)(a1 − 1)b−2a1s1(ba1x− 1)

+ b−1((b− 1)(a1 − 1)− 1)b−2a1s2(ba1x− 1).

For x = 0 we set s̃2(0) = b−1 and s̃3(0) = b−1(b+ 1)−2.

19

Proof. We start in exactly the same way as in Theorem 2, that is, we split ωα(x) into α parts
(cf. the α− 1 parts in case 1 plus the case 2 case in the proof of Theorem 2):

ωα(x) =

∞∑
k=1

rα(k) walk(x) =

α−1∑
r=1

sr(x) + s̃α(x),

where sr(x) contains all k with exactly r digits non-zero and s̃α(x) contains all k with at least
α digits non-zero. We only show the derivation of the formulae for s1 and s2 as examples. The
ones for s̃2 and s̃3 can be obtained similarly. With z as in (27) we find

s1(x) =

∞∑
`=0

b−(`+1)z(x, `)

= (b− 1)

∞∑
`=0

b−(`+1) + (−(b− 1) + (−1))

∞∑
`=0

b−(`+1)[ξ`+1 6= 0]

= 1− b
#x∑
j=1

b−aj .

Likewise for s2:

s2(x) =

∞∑
`′=0

b−(`
′+1)z(x, `′)

∞∑
`=`′+1

b−(`+1)z(x, `)

=
1

b+ 1

− b(b− 2)

∞∑
`′=0

b−(`
′+1)[ξ`′+1 6= 0]

∞∑
`=`′+1

b−(`+1)[ξ`+1 6= 0] (*)

− b(b− 1)

∞∑
`′=0

b−(`
′+1)[ξ`′+1 6= 0]

∞∑
`=`′+1

b−(`+1)[ξ`+1 = 0] (**)

− b(b− 1)

∞∑
`′=0

b−(`
′+1)[ξ`′+1 = 0]

∞∑
`=`′+1

b−(`+1)[ξ`+1 6= 0]. (**)

This is a combinatorial formulation in terms of the possibilities for the digits of x. The two last
lines, marked by (**), can be combined and interpreted as summing over all possible pairs of
digits of x of which exactly one is non-zero. This then simplifies to two decoupled sums since a
digit cannot be at the same time zero and non-zero:

∞∑
`′=0

b−(`
′+1)[ξ`′+1 = 0]

∞∑
`=0

b−(`+1)[ξ`+1 6= 0] =

 ∞∑
`′=0

b−(`
′+1) −

#x∑
j=1

b−aj

#x∑
j=1

b−aj

=

 1

b− 1
−

#x∑
j=1

b−aj

#x∑
j=1

b−aj

 .

The other double sum, marked by (*), can also be interpreted combinatorially: the sum is taken
over all ordered pairs of non-zero digits of x. We can write:

∞∑
`′=0

b−(`
′+1)[ξ`′+1 6= 0]

∞∑
`=`′+1

b−(`+1)[ξ`+1 6= 0] =

#x∑
j=1

b−aj
#x∑

j′=j+1

b−aj′

20

=
1

2

#x∑
j=1

b−aj

#x∑
j=1

b−aj

− #x∑
j=1

b−2aj

 .

Thus

s2(x) =
1

b+ 1

− b(b− 2)
1

2

#x∑
j=1

b−aj

#x∑
j=1

b−aj

− #x∑
j=1

b−2aj

− b(b− 1)

 1

b− 1
−

#x∑
j=1

b−aj

#x∑
j=1

b−aj

 .

The case where b equals 2 is of greatest practical importance, since in that case the matrix-
vector product (10) over Fb to generate the nodes of the QMC rule can be calculated most
efficiently by using the bitwise operations of the computer. Additionally

#x∑
j=1

b−aj = x when b = 2.

By specializing the previous result to b = 2 we obtain the following explicit formulae.

Corollary 1. For base b = 2 we obtain the following explicit results:

ω2(x) = s1(x) + s̃2(x),

ω3(x) = s1(x) + s2(x) + s̃3(x),

where

s1(x) = 1− 2x, s2(x) = 1/3− 2(1− x)x,

s̃2(x) = (1− 5t1)/2− (a1 − 2)x, s̃3(x) = (1− 43t2)/18 + (5t1 − 1)x+ (a1 − 2)x2,

with, for 0 < x < 1,

a1 = −blog2(x)c , t1 := 2−a1 , t2 := 2−2a1 ,

and a1 = 0, t1 = 0 and t2 = 0 when x = 0.

5 Numerical tests

We compare the explicit construction from [5], with the CBC algorithm based on (fast) circular
convolution presented in this paper, i.e., Algorithm 2. From [5] we note that, to obtain higher
order digital nets of high quality, the underlying point sets in the construction should have small
values of t. Consequently, we use Niederreiter-Xing points generated by Pirsic’s implementation,
see [23], to obtain the digital (t′,m, sd)-nets. In Table 1 we present a typical result for b = 2,
α = 2 and s = 5 and two choices of weights γj = 0.9j and γj = j−2. For the CBC construction

21

γj = 0.9j eCBC eexplicit
m = 5 0.9291 1.0930
m = 6 0.4085 0.4259
m = 7 0.1778 0.1984
m = 8 0.0747 0.0980
m = 9 0.0312 0.0403
m = 10 0.0128 0.0168
m = 11 0.0052 0.0071
m = 12 0.0020 0.0027

γj = j−2 eCBC eexplicit
m = 5 0.028917 0.096254
m = 6 0.009912 0.014542
m = 7 0.003427 0.005895
m = 8 0.001175 0.002356
m = 9 0.000406 0.000827
m = 10 0.000139 0.000290
m = 11 0.000046 0.000091
m = 12 0.000014 0.000034

Table 1: Comparison of the worst-case errors of CBC construction and explicit construction for
b = 2, s = 5, α = 2

b = 2, m = 10, α = 2: n = 20, p = 1179649

j 1 2 3 4 5
qj 453270 920860 324514 394664 106142
e 2.14e-6 4.55e-5 6.27e-4 3.75e-3 1.30e-2

j 6 7 8 9 10
qj 587632 279628 676057 626366 856775
e 3.39e-2 7.45e-2 1.43e-1 2.51e-1 4.08e-1

b = 2, m = 12, α = 2: n = 24, p = 28311553

j 1 2 3 4 5
qj 2028384 13051202 839202 14647583 6874738
e 1.34e-7 3.44e-6 6.58e-5 4.72e-4 2.02e-3

j 6 7 8 9 10
qj 6522492 13569662 9821234 10570369 406897
e 6.09e-3 1.45e-2 2.97e-2 5.46e-2 9.19e-2

Table 2: Higher order rules up to 10 dimensions for b = 2, γj = 0.9j and α = 2

we used the primitive polynomials from [27]. The numerical data in all our tests shows that the
new construction produces better results.

For reference we conclude the paper with tables showing the generating vectors and worst case
errors of higher order polynomial lattice rules in base 2 constructed using the new algorithm. All
polynomials are given by their canonical integer representation which is the polynomial evaluated
at X = b = 2 (note that these are different polynomials than those from [27]). The results can
be found in Table 2 and Table 3 for α = 2 and α = 3 respectively.

References

[1] J. Baldeaux and J. Dick. QMC rules of arbitrary high order: Reproducing kernel Hilbert
space approach. Constr. Approx., 30(3):495–527, 2009.

[2] J. Baldeaux, J. Dick, J. Greslehner, and F. Pillichshammer. Construction algorithms for
higher order polynomial lattice rules. J. Complexity, 27(3–4):281–299, 2011.

[3] J. Dick. Higher order scrambled digital nets achieve the optimal rate of the root mean
square error for smooth integrands. Ann. Statist., 39(3):1372–1398, 2011.

22

b = 2, m = 7, α = 3: n = 21, p = 2621441

j 1 2 3 4 5
qj 1492861 1022044 1785216 215936 1978368
e 2.02e-6 5.24e-4 8.20e-3 4.05e-2 1.22e-1

j 6 7 8 9 10
qj 1197580 1837814 485609 1636853 48810
e 2.82e-1 5.54e-1 9.80e-1 1.60 2.48

b = 2, m = 8, α = 3: n = 24, p = 28311553

j 1 2 3 4 5
qj 10844342 2604270 5720893 8141702 3831799
e 2.51e-7 8.85e-5 2.43e-3 1.45e-2 4.95e-2

j 6 7 8 9 10
qj 3616803 15701694 7750425 2240926 493873
e 1.21e-1 2.49e-1 4.54e-1 7.59e-1 1.19

Table 3: Higher order rules up to 10 dimensions for b = 2, γj = 0.9j and α = 3

[4] J. Dick. Explicit constructions of quasi-Monte Carlo rules for the numerical integration of
high dimensional periodic functions. SIAM J. Numer. Anal., 45:2141–2176, 2007.

[5] J. Dick. Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary
high order. SIAM J. Numer. Anal., 46(3):1519–1553, 2008.

[6] J. Dick. The decay of the Walsh coefficients of smooth functions. Bull. Austral. Math. Soc.,
80:430–453, 2009.

[7] J. Dick, P. Kritzer, F. Pillichshammer, and W. C. Schmid. On the existence of higher order
polynomial lattices based on a generalized figure of merit. J. Complexity, 23(4–6):581–593,
2007.

[8] J. Dick, F. Y. Kuo, F. Pillichshammer, and I. H. Sloan. Construction algorithms for poly-
nomial lattice rules for multivariate integration. Math. Comp., 74(252):1895–1921, 2005.

[9] J. Dick and F. Pillichshammer. Multivariate integration in weighted Hilbert spaces based
on Walsh functions and weighted Sobolev spaces. J. Complexity, 21(2):149–195, 2005.

[10] J. Dick and F. Pillichshammer. Strong tractability of multivariate integration of arbitrary
high order using digitally shifted polynomial lattice rules. J. Complexity, 23(4–6):436–453,
2007.

[11] J. Dick and F. Pillichshammer. Digital Nets and Sequences: Discrepancy Theory and Quasi-
Monte Carlo Integration. Cambridge University Press, 2010.

[12] N. M. Korobov. The approximate computation of multiple integrals / Approximate eval-
uation of repeated integrals. Dokl. Akad. Nauk SSSR, 124:1207–1210, 1959. In Russian.
English translation of the theorems in Mathematical Reviews by Stroud.

[13] N. M. Korobov. Number-Theoretic Methods in Approximate Analysis. Goz. Izdat. Fiz.-
Math., 1963. In Russian. English translation of results on optimal coefficients in [28].

[14] G. Larcher, A. Lauss, H. Niederreiter, and W. C. Schmid. Optimal polynomials for (t,m, s)-
nets and numerical integration of multivariate Walsh series. SIAM J. Numer. Anal.,
33(6):2239–2253, 1996.

23

[15] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. Number 63
in Regional Conference Series in Applied Mathematics. SIAM, 1992.

[16] E. Novak and H. Woźniakowski. Tractability of Multivariate Problems — Volume I: Linear
Information, volume 6 of EMS Tracts in Mathematics. European Mathematical Society
Publishing House, 2008.

[17] E. Novak and H. Woźniakowski. Tractability of Multivariate Problems — Volume II: Stan-
dard Information for Functionals, volume 12 of EMS Tracts in Mathematics. European
Mathematical Society Publishing House, 2010.

[18] H. J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer-Verlag,
2nd edition, 1982.

[19] D. Nuyens. Fast Construction of Good Lattice Rules. PhD thesis, Dept. of Computer Science,
K.U.Leuven, 2007.

[20] D. Nuyens and R. Cools. Fast algorithms for component-by-component construction of
rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comp.,
75(254):903–920, 2006.

[21] D. Nuyens and R. Cools. Fast component-by-component construction, a reprise for different
kernels. In H. Niederreiter and D. Talay, editors, Monte Carlo and Quasi-Monte Carlo
Methods 2004, pages 371–385. Springer-Verlag, 2006.

[22] A. B. Owen. Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal.,
34(5):pp. 1884–1910, 1997.

[23] G. Pirsic. A software implementation of Niederreiter-Xing sequences. In K. T. Fang, F. J.
Hickernell, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2000,
pages 434–445. Springer-Verlag, 2002.

[24] W. C. Schmid. Improvements and extensions of the “Salzburg Tables” by using irreducible
polynomials. In H. Niederreiter and J. Spanier, editors, Monte Carlo and Quasi-Monte
Carlo Methods 1998, pages 436–447, Berlin, 2000. Springer-Verlag.

[25] I. H. Sloan and A. V. Reztsov. Component-by-component construction of good lattice rules.
Math. Comp., 71(237):263–273, 2002.

[26] I. H. Sloan and H. Woźniakowski. When are quasi-Monte Carlo algorithms efficient for high
dimensional integrals? J. Complexity, 14(1):1–33, 1998.

[27] W. Stahnke. Primitive binary polynomials. Math. Comp., 27(124):977–980, 1973.

[28] A. H. Stroud. Approximate Calculation of Multiple Integrals. Automatic Computation.
Prentice-Hall, 1971.

[29] I. F. Šarygin. Lower bounds for the error of quadrature formulas on classes of functions.
U.S.S.R. Comput. Math. and Math. Phys., 3:489–497, 1965. Translation from Russian Zh.
Vychisl. Mat. Mat. Fiz., 3:370–376, 1963.

24

	Introduction
	Background
	A function space based on Walsh series
	Higher order digital nets
	The worst-case error
	Higher order polynomial lattice rules
	The component-by-component construction of higher order polynomial lattice rules

	Fast construction of higher order polynomial lattice rules
	Calculation of the worst-case error
	Technical definitions
	A general algorithm for x having a fixed base b precision of n
	Explicit forms for arbitrary x and small

	Numerical tests

