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Abstract Polynomial lattice point sets are special types of digital (t,m, s)-
nets as introduced by H. Niederreiter in the 1980s. Quasi-Monte Carlo rules
using them as underlying nodes are called polynomial lattice rules. In its
overall structure polynomial lattice rules are very similar to usual lattice
rules due to E. Hlawka and N. M. Korobov. The main difference is that here
one uses polynomial arithmetic over a finite field instead of the usual integer
arithmetic. In this overview paper we review the research on polynomial
lattice rules during the last decade. We touch topics like extensible polynomial
lattice rules, higher order polynomial lattice rules, the weighted discrepancy
of polynomial lattice point sets, etc. Furthermore we compare polynomial
lattice rules with lattice rules and show what results for polynomial lattice
rules also have an analogue for usual lattice rules and vice versa.

1 Introduction

Assume we are interested in the approximation of multivariate integrals of
the form Is(f) =

∫
[0,1]s

f(x) dx using a quasi-Monte Carlo (QMC) rule of the

form QN,s(f) = (1/N)
∑N−1
n=0 f(xn) where x0, . . . ,xN−1 are fixed sample

nodes from the unit-cube [0, 1)s. On first sight this approach looks quite
simple but the crux of this method is the choice of underlying nodes to
obtain good approximations for large classes of functions.

Generally spoken it turned out that point sets with good uniform distribu-
tion properties yield a small absolute integration error. This is, for example,
reflected in the Koksma-Hlawka inequality which states that
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|Is(f)−QN,s(f)| ≤ V (f)D∗N (P)

where V (f) is the variation of f in the sense of Hardy and Krause and where
D∗N denotes the star discrepancy of the point set P = {x0, . . . ,xN−1}, which
can be defined as follows: given a point set P = {x0, . . . ,xN−1} of N elements
in [0, 1)s the discrepancy function of P is defined by

∆P(z) :=
#{0 ≤ n < N : xn ∈ [0, z)}

N
− λs([0, z)) for z ∈ (0, 1]s,

where λs is the s-dimensional Lebesgue measure. The star discrepancy of P
is then the L∞-norm of ∆P , i.e.,

D∗N (P) = sup
z∈(0,1]s

|∆P(z)|.

This is a quantitative measure for the deviation of P from uniform distribu-
tion modulo one. For more information on Koksma-Hlawka inequality and
star discrepancy we refer to one of the books [17, 21, 34, 42].

For any point set P consistion of N points in [0, 1)s it is known that

D∗N (P) ≥ cs(logN)κs/N

with a positive cs independent of P and where κ2 = 1 (see [3, 52]) and
κs ≥ (s− 1)/2 for s ≥ 3 which follows from a result of Roth [49]. (For s ≥ 3
the lower bound on κs has recently been improved to κs ≥ (s− 1)/2 + δs for
some unknown 0 < δs < 1/2; see [4].)

On the other hand, a point set P whose star discrepancy satisfies an upper
bound of the form D∗N (P) ≤ Cs(logN)αs/N with a positive cs independent
of P and where αs ≥ 0, is informally called a low discrepancy point set. There
are several methods to construct low discrepancy point sets:

• Hammersley point sets which are based on the infinite van der Corput
sequence (see, e.g., [17, 42]);

• lattice point sets which where introduced independently by Korobov [29]
and Hlawka [27] and which are well explained in the books of Niederre-
iter [42] and of Sloan and Joe [53];

• (t,m, s)-nets in base b which have been introduced by Niederreiter [40, 42]
and which are the main topic of the recent book [17]. Very special examples
of such nets go back to constructions of Sobol’ [58] and Faure [22].

In this article we are concerned with a sub-class of (t,m, s)-nets which has
a close relation to lattice point sets. Before we give its definition we recall
the definition of (t,m, s)-nets in base b according to Niederreiter [40].

Definition 1. A point set P consisting of bm points in [0, 1)s is called
(t,m, s)-net in base b if every so-called b-adic elementary interval of the form
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s∏
i=1

[
ai
bdi

,
ai + 1
bdi

)
⊆ [0, 1)s

of volume bt−m contains exactly bt points of P.

Some remarks on the definition of (t,m, s)-nets in base b are in order (for
more information see [17, 42]).

Remark 1. 1. Definition 1 says that for every b-adic elementary interval J
volume bt−m we have #{x ∈ P : x ∈ J} − bmλs(J) = 0.

2. The uniform distribution quality depends on the so-called quality parame-
ter t ∈ {0, . . . ,m}. A small t implies good uniform distribution. This is also
reflected in Niederreiter’s bound on the star discrepancy of a (t,m, s)-net
P in base b which states that

D∗N (P) = Os,b(bt(logN)s−1/N) (1)

where N = bm; see [17, 40, 42].
3. The optimal value t = 0 is only possible if the parameters b and s satisfy
s ≤ b + 1. On the other hand, any point set consisting of bm elements in
[0, 1)s is a (m,m, s)-net in base b since this choice of parameters makes
Definition 1 trivial (and also the discrepancy bound (1)).

In this article we are concerned with a sub-class of (t,m, s)-nets. Intro-
duced by Niederreiter [41, 42], today this sub-class is known as polynomial
lattice point sets. This name has its origin in a close relation with ordinary
lattice point sets. In fact, the research on polynomial lattice point sets and
on ordinary lattice point sets often follows two parallel tracks and bears a
lot of similarities. It is the aim of this overview to review the, in the author’s
opinion, most important results on polynomial lattice point sets during the
last decade and to demonstrate which of these results have counterparts for
lattice point sets or not.

In the following two sections the basic definitions of (polynomial) lattice
point sets and their duals are provided. In Section 4–9 we present the results
on polynomial lattice point sets and point out their analogs for lattice point
sets. The paper closes with a short summary in Section 10.

Notation: Throughout the paper we assume that b is a prime number. By Zb
we denote the finite field with b elements and with Zb[x] the set of polynomials
over Zb. Define Gb,m := {h ∈ Zb[x] : deg(h) < m}. We have |Gb,m| = bm.

The field of formal Laurent series over Zb is denoted by Zb((x−1)). Ele-
ments of Zb((x−1)) are of the form

L =
∞∑
`=w

t`x
−` where w ∈ Z and all t` ∈ Zb.

For n ∈ N let νn : Zb((x−1))→ [0, 1) be defined by νn(L) =
∑n
`=max(1,w) t`b

−`.
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In many results which we are going to present in the following sections
there appear constants c which are assumed to be different from case to
case. Optionally these constant may depend on the dimension s, on b or on
other quantities which are then indicated as sub-scripts. In most cases these
constants could be given explicitly.

2 Polynomial lattice point sets

On account of their close relation to polynomial lattice point sets first we
recall the maybe more familiar concept of lattice point sets:

Definition 2. For an integer N ≥ 2 and for g ∈ Zs the point set P(g, N)
consisting of the N elements

xn =
{ n
N
g
}

for all 0 ≤ n < N

is called a lattice point set (l.p.s.). A QMC rule using P(g, N) as underlying
node set is called a lattice rule.

Polynomial lattice point sets are in their overall structure very similar to
l.p.s. The main difference is that l.p.s. are based on number theoretic con-
cepts whereas polynomial lattice point sets are based on algebraic methods
(polynomial arithmetic over a finite field). For simplicity we only discuss
polynomial lattice point sets in prime base b. For the more general case of
prime-power bases we refer to [17, 42].

Definition 3. For s,m ∈ N, p ∈ Zb[x], with deg(p) = m, and q ∈ Zb[x]s the
point set P(q, p) consisting of the bm elements

xh = νm

(
h(x)
p(x)

q(x)
)

for all h ∈ Gb,m

is called a polynomial lattice point set (p.l.p.s.). A QMC rule using P(q, p)
as underlying node set is called a polynomial lattice rule.

The structural similarity between Definition 2 and Definition 3 is evident.
Hence let us compare the two concepts by means of some pictures.

The l.p.s. P(g, N) shown in the left part of Fig. 1 shows a very regular lat-
tice structure. Such a geometric structure cannot be observed for the p.l.p.s.
P(q, p) shown in the right part of Fig. 1. However also this point set has
some inherent structure, namely the (t,m, s)-net structure. In fact, for this
example every 2-adic elementary interval of area 2−4 contains exactly one
element of the point set P(q, p) and hence we have a (0, 4, 2)-net in base 2;
cf. Fig. 2.

A further example of a l.p.s. and a p.l.p.s. is shown in Fig. 3.
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Fig. 1 left: P(g, N) with N = 13 and g = (1, 8); right: P(q, p) with p(x) = x4+x2+1
and q = (1, x3) over Z2.

Fig. 2 P(q, p) from Fig. 1 as (0, 4, 2)-net in base 2; every 2-adic elementary interval
of area 2−4 contains exactly one point.

3 The dual net

For l.p.s. one has the notion of dual lattice which plays a crucial role in the
quality analysis of such point sets.

Definition 4. The dual lattice of the l.p.s. P(g, N) from Definition 2 is de-
fined as

Lg,N = {h ∈ Zs : h · g ≡ 0 (mod N)}.

An important property of l.p.s. is that



6 Friedrich Pillichshammer

Fig. 3 left: P(g, N) with N = 987 and g = (1, 610); right: P(q, p) with p(x) =
x10 + x8 + x4 + x2 + 1 and q = (1, x9 + x5 + x) over Z2[x].

∑
x∈P(g,N)

ek(x) =
{
N if k ∈ Lg,N ,
0 otherwise,

where ek(x) = exp(2πik ·x). This relation is the reason why for the analysis
of the integration error of lattice rules it is most convenient to consider one-
periodic functions; see [42, 53].

The corresponding definition for p.l.p.s. leads to the notion of a dual net.

Definition 5. The dual net of the p.l.p.s. P(q, p) from Definition 3 is defined
as

Dq,p = {k ∈ Gsb,m : k · q ≡ 0 (mod p)}.

An important property of p.l.p.s. is that∑
x∈P(q,p)

bwalk(x) =
{
bm if k ∈ Dq,p,
0 otherwise,

where bwalk(x) is the kth b-adic Walsh function defined by bwalk(x) :=∏s
i=1 bwalki(xi) for k = (k1, . . . , ks) ∈ Ns0 and x = (x1, . . . , xs) ∈ [0, 1)s.

The one-dimensional kth b-adic Walsh function is defined by bwalk(x) :=
exp(2πi(ξ1κ0 + · · · + ξa+1κa)/b) for k = κ0 + κ1b + · · · + κab

a with κi ∈
{0, . . . , b−1} and x = ξ1b

−1+ξ2b−2+· · · with infinitely many digits ξi 6= b−1.
Many properties of Walsh functions are summarized in [17, Appendix A].

The above relation is the reason why for the analysis of the integration
error of polynomial lattice rules it is most convenient to consider Walsh series.
We will come back to this issue in Section 6.
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4 Quality measures and existence results

Based on the dual net one can introduce two quality measures for p.l.p.s. (see
[42, Chapter 4] or [17, Chapter 10]): for p ∈ Zb[x] and q ∈ Zb[x]s define

ρ(q, p) = s− 1 + min
h∈Dq,p\{0}

s∑
i=1

deg(hi)

and

Rb(q, p) =
∑

h∈Dq,p\{0}

s∏
i=1

rb(hi),

where rb(0) = 1 and rb(h) = b−r−1 sin−2(πκr/b) for h ∈ Gb,m of the form
h = κ0 + κ1b+ · · ·+ κrx

r, κr 6= 0.
We remark here that analogous quality measures also exist for l.p.s.; see

[42, Chapter 5]. Based on these quality measures Niederreiter [42] proved the
following results:

Theorem 1. The p.l.p.s. P(q, p) is a (t,m, s)-net in base b with m = deg(p),
t = m− ρ(q, p) and

D∗bm(P(q, p)) ≤ s

bm
+Rb(q, p).

For example for p = x4 + x2 + 1 and q = (1, x3) over Z2 the “minimal”
element of Dq,p is (h1, h2) = (x2 + 1, x) and hence ρ(q, p) = 4 in this case.
Theorem 1 then shows that P(q, p) is a (0, 4, 2)-net in base 2; cf. Fig. 2.
Theorem 1 also gives a bound on the star discrepancy of p.l.p.s. which is
easier to handle then D∗bm itself. For an analogous discrepancy bound for l.p.s.
we refer to [42, Chapter 5] or [17, Proposition 3.49]. Based on Theorem 1 one
can use averaging arguments to obtain the following existence results:

Theorem 2. Let p ∈ Zb[x] with deg(p) = m.

1. If p is irreducible, then there exists q ∈ Gsb,m such that

t ≤ (s− 1) logbm− (s− 2)− logb
(s− 1)!

(b− 1)s−1
.

Hence D∗bm(P(q, p)) = Os,b
(
m2s−2b−m

)
.

2. For 0 ≤ ε < 1 there are more than ε|Gsb,m| vectors q ∈ Gsb,m with

D∗bm(P(q, p)) ≤ s

bm
+Rb(q, p) = Os,b,ε

(
ms

bm

)
.

Part 1 of Theorem 2 for b = 2 has been shown by Larcher et al. [38];
see also [51] or [17, Chapter 10] for general b. Part 2 has been shown by
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Niederreiter [42, Chapter 4] and also by Dick et al. [10] and [13]. For an
analogous discrepancy bound for l.p.s. we refer to [42, Chapter 5] or [17,
Theorem 3.51].

The bound on Rb in Theorem 2 is best possible in the order of magni-
tude in m. This was shown recently by Kritzer and the author in [33]. (A
corresponding result for l.p.s. has been shown by Larcher [36].)

Theorem 3. There exists cs,b > 0 such that for any p ∈ Zb[x] with deg(p) =
m and any q ∈ Gsb,m, qi 6= 0, 1 ≤ i ≤ s, we have

Rb(q, p) ≥ cs,bbdeg(δs)
(m− deg(δs))s

bm
where δs := gcd(q1, . . . , qs, p).

On the other hand, the bound on D∗bm in Theorem 2 is not best possible
in the order of magnitude in m. For example, in dimension s = 2 the so-
called Fibonacci p.l.p.s. has a star discrepancy of order Ob(mb−m); see [42,
Chapter 4] or [17, Chapter 10]. For arbitrary dimension s it was shown by
Larcher [37] that for any m ≥ 2 there exists q ∈ Gsb,m with

D∗bm(P(q, xm)) = Os,b
(
ms−1(logm)b−m

)
.

This result has no counterpart for l.p.s.

5 CBC construction of polynomial lattice point sets

According to Theorem 2 for any given irreducible polynomial p ∈ Zb[x] there
exist a sufficiently large number of good vectors q of polynomials which yield
p.l.p.s. with reasonably low star discrepancy. Now one aims to find such vec-
tors by computer search. Unfortunately a full search is not possible (except
maybe for small values of m, s) since one has to check bms vectors of polyno-
mials.

At this point one gets a cue from the analogy between p.l.p.s. and l.p.s.
where the component-by-component (CBC) construction approach works
very well. This approach was introduced by Korobov [30] for l.p.s. and later
it was re-invented by Sloan and Reztsov [54]. The same idea applies for
p.l.p.s. Here we use the more general weighted star discrepancy as intro-
duced by Sloan and Woźniakowski [55] as underlying quality criterion: let
γ = (γ1, γ2, . . .) be a sequence of weights in R+. Let Is = {1, . . . , s} and for
u ⊆ Is let γu =

∏
i∈u γi. The weighted star discrepancy of an N -element point

set P in [0, 1)s is given by

D∗N,γ(P) = sup
z∈(0,1]s

max
∅6=u⊆Is

γu|∆P((zu, 1))|.



Polynomial Lattice Point Sets 9

The weights γ are additional parameters which model the importance of
the different coordinate projections. For the weights γ = 1 =: (1, 1, . . .) one
has D∗N,γ(P) = D∗N (P) for any point set P. In the weighted setting the
CBC construction has the advantage that the quadrature points P can be
optimized with respect to γ.

The weighted Koksma-Hlawka inequality then states that

|Is(f)−QN,s(f)| ≤ D∗N,γ(P)‖f‖s,γ

with a certain norm ‖ · ‖s,γ ; see [55, 28] or [17, Chapter 2] for details.
Let p ∈ Zb[x] with deg(p) = m and let q ∈ Gsb,m. Then it can be shown

(see [17, Corollary 10.16]) that

D∗bm,γ(P(q, p)) ≤
∑
∅6=u⊆Is

γu

(
1−

(
1− 1

bm

)|u|)
+Rb,γ(q, p),

where

Rb,γ(q, p) =
∑

h∈Dq,p\{0}

s∏
i=1

rb(hi, γi)

and where for h ∈ Gb,m we put rb(0, γ) = 1 + γ and rb(h, γ) = γrb(h) if
h 6= 0, where rb(h) is as in Section 4. An analogous bound for the weighted
star discrepancy of l.p.s. can be found in [28].

Now we deal with the quantity Rb,γ(q, p) which can be computed in
O(bms) operations (see [17, Proposition 10.20]).

Algorithm 1 CBC-algorithm
Require: b a prime, s,m ∈ N, p ∈ Zb[x], with deg(p) = m, and weights γ = (γi)i≥1.
1: Choose q1 = 1.
2: for d = 2 to s do
3: find qd ∈ G∗b,m which minimises the quantity Rb,γ((q1, . . . , qd−1, z), p) as a

function of z.
4: end for
5: return q = (q1, . . . , qs).

Theorem 4. Let p be irreducible. If q ∈ Gsb,m is constructed with Algo-
rithm 1, then

Rb,γ(q, p) ≤ 1
bm − 1

s∏
i=1

(
1 + γi

(
1 +m

b2 − 1
3b

))
,

A proof can be found in [13]. A similar result for not necessarily irre-
ducible p has been shown in [10] and a corresponding result for l.p.s. is [28,
Theorem 3].
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Using an argument from [14, Section 7] one can deduce the following result
from Theorem 4; see also [17, Corollary 10.30].

Corollary 1. Let p be irreducible. If
∑∞
i=0 γi <∞, then for any δ > 0 there

exists cγ,δ > 0, such that for q ∈ Gsb,m constructed with Algorithm 1 we have

D∗bm,γ(P(q, p)) ≤ cγ,δb−m(1−δ).

Let N ∈ N with 2-adic expansion N = 2m1 + · · · + 2mk , where 0 ≤
m1 < m2 < . . . < mk. For 1 ≤ j ≤ k choose p(j) ∈ Z2[x] irreducible
with deg(p(j)) = mj and construct P(q(j), p(j)) with Algorithm 1. Then set
PN = P(q(1), p(1)) ∪ . . . ∪ P(q(k), p(k)). In [26] the following is shown:

Corollary 2. If
∑∞
i=0 γi <∞, then for any δ > 0 there exists Cγ,δ > 0, such

that

D∗N,γ(PN ) ≤ Cγ,δN−1+δ for any N ∈ N.

The weighted star discrepancy is strongly polynomial tractable with ε-exponent
equal to one.

The cost for the CBC-algorithm is of O(b2ms2) operations. This is com-
parable with the CBC construction cost of l.p.s.; cf. [28, Section 3]. However,
in this form the CBC-algorithm can only be used for not too large cardinal-
ity bm. A breakthrough for this problem was obtained by Nuyens and Cools
[46, 47] when they introduced — first for l.p.s. and then for p.l.p.s. — the Fast
CBC construction with a significant reduction of cost to O(smbm) operations
with O(bm) memory space. Only through this reduction of the construction
cost does the CBC-algorithm become applicable for the generation of p.l.p.s.
(and of l.p.s.) with reasonably large cardinality. See also [17, Section 10.3].

6 Integration of Walsh series

As already mentioned in Section 3 it is most convenient for the error analysis
to consider Walsh series. Let α > 1 and let Hwal,s,α,γ be the weighted Hilbert
function space with reproducing kernel given by

Kwal,s,α,γ(x,y) =
∑
k∈Ns0

ρα(k,γ) bwalk(x) bwalk(y),

where for k = (k1, . . . , ks) ∈ Ns0 we put ρα(k,γ) =
∏s
j=1 ρα(kj , γj) with

ρα(0, γ) = 1 and ρα(k, γ) = γb−αv if bv ≤ k < bv+1 for v ∈ N0. The norm in
this function space is given by

‖f‖Hwal,s,α,γ =
∑
k∈Ns0

ρα(k,γ)−1|f̂wal(k)|2
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where f̂wal(k) =
∫
[0,1]s

f(x) bwalk(x) dx. For more information on Hwal,s,α,γ

we refer to [15]. The counterpart to the function space Hwal,s,α,γ for the anal-
ysis of l.p.s. is the so-called Korobov space ([20, 56] or [45, Appendix A.1])
whose reproducing kernel looks similar to Kwal,s,α,γ but with the main differ-
ence that the Walsh function system is replaced by the trigonometric function
system and Walsh coefficients are replaced by Fourier coefficients.

The worst-case integration error of a QMC rule is defined as the worst per-
formance of the QMC algorithm over the unit ball of the function space under
consideration, i.e., in our case e(Hwal,s,α,γ ,P) := sup‖f‖Hwal,s,α,γ≤1 |Is(f) −
Qbm,s(f)|. For p.l.p.s. it can be shown that

e2(q, p) := e2(Hwal,s,α,γ ,P(q, p)) =
∑

k∈Ns0\{0}
trum(k)(x)∈Dq,p

ρα(k,γ)

where trum(k) :≡ k (mod bm) (component-wise) and where

k = κ0 + κ1b+ · · ·+ κm−1b
m−1 ∈ N0

is identified with

k(x) = κ0 + κ1x+ · · ·+ κm−1x
m−1 ∈ Zb[x].

For the worst-case integration error of a polynomial lattice rule for integra-
tion in Hwal,s,α,γ we have the following result which was first proved in [11]
for irreducible p and later generalized in [32] to not necessarily irreducible p.
The corresponding result for l.p.s. was shown by Kuo [35].

Theorem 5. For any p ∈ Zb[x] with deg(p) = m one can construct CBC
q ∈ Gsb,m such that (with N = bm)

e(q, p) ≤ cs,α,γ,δN−α/2+δ for all 0 < δ ≤ α−1
2 .

If
∑∞
i=1 γ

1/(α−2δ)
i < ∞, then cs,α,γ,δ ≤ c∞,α,γ,δ < ∞, i.e., the above bound

can be made independent of the dimension s.

7 Extensible polynomial lattice point sets

A disadvantage of the CBC-algorithm is that the generated vectors q depend
on p and hence on N = bdeg(p). If one changes p, then one has to construct a
new vector q ∈ Zb[x]s. This means that an extension in the number of points
is not possible with the CBC approach. For this reason Niederreiter [43]
introduced the notion of extensible p.l.p.s. whose definition will be presented
below. For the corresponding notion of extensible l.p.s. we refer to [25].
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For p ∈ Zb[x] with m = deg(p) ≥ 1, let Yp be the set of all p-adic poly-
nomials

∑∞
n=0 anp

n with deg(an) < m. Then Yp/(pn) = Gb,nm. Let Q ∈ Y sp
and for n ∈ N let qn ≡ Q (mod pn). Then

P(q1, p) ⊆ P(q2, p
2) ⊆ P(q3, p

3) ⊆ . . . .

Definition 6. An extensible p.l.p.s. is defined as

P(Q, p) := P(q1, p) ∪ P(q2, p
2) ∪ P(q3, p

3) ∪ . . . .

For P(qn, pn) only the first n “digits” in p-adic expansion of each compo-
nent of Q are important. This observation is used in the following construc-
tion algorithm which uses ideas from Korobov [31] for l.p.s.

Algorithm 2 Construction of extensible p.l.p.s.
Require: b a prime, s,m ∈ N, p ∈ Zb[x] monic and irreducible with deg(p) = m,

and weights γ = (γi)i≥1.
1: Find q1 := q by minimizing e2(q, p) over all q ∈ Gsb,m.
2: for n = 2, 3, . . . do
3: find qn := qn−1 + pn−1q by minimizing e2(qn−1 + pn−1q, pn) over all q ∈

Gsb,m.
4: return qn.
5: end for

Theorem 6. If qn ∈ Gsb,m is constructed according to Algorithm 2, then

e2(qn, p
n) ≤ cs,b,γ,αb−nm.

If
∑∞
i=1 γi < ∞, then cs,α,γ,δ ≤ c∞,α,γ,δ < ∞, i.e., the above bound can be

made independent of the dimension s.

A proof of this result and also a corresponding result for l.p.s. can be
found in [44]; see also [17]. A disadvantage of the above error bound is that
the worst-case error converges only with order O(N−1/2).

There exists another algorithm — first introduced for l.p.s. in [18] and
then for p.l.p.s. in [8] — which is called CBC sieve algorithm (see [17, Sec-
tion 10.4]) and which yields better error bounds, but with the disadvantage
that the generated p.l.p.s. (and l.p.s. respectively) are only finitely extensi-
ble. In this context one also speaks about embedded p.l.p.s. (and embedded
l.p.s. respectively). For embedded l.p.s. we also refer to [6]. A pure existence
result for extensible p.l.p.s. with small star discrepancy is due to Niederre-
iter [43]. For existence results for extensible l.p.s. we refer to Hickernell and
Niederreiter [25].
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8 Integration in Sobolev spaces

For x = x1b
−1 + x2b

−2 + · · · and σ = σ1b
−1 + σ2b

−2 + · · · with xi, σi ∈
{0, . . . , b − 1} the digitally shifted point y = x ⊕ σ is given by y = y1b

−1 +
y2b
−2 + · · · , where yi = xi + σi (mod b). For vectors x and σ we define the

digitally shifted point y = x ⊕ σ component wise. This digital shift can be
used to randomize a p.l.p.s.

Definition 7. For σ ∈ [0, 1)s the point set Pσ(q, p) := P(q, p)⊕ σ is called
a digitally shifted p.l.p.s..

In the context of l.p.s. one often uses a “geometric” shift instead of the
digital shift to randomize the point set and speaks then about shifted l.p.s.

Similar results to those from Section 6 hold for the mean square worst-
case error of digitally shifted polynomial lattices for integration in the Sobolev
space H

(1)
sob,s,γ with reproducing kernel

K
(1)
sob,s,γ(x,y) =

s∏
i=1

(
1 + γiB1(xi)B1(yi) +

γi
2
B2(|xi − yi|)

)
.

The function space H
(1)

sob,s,γ contains all functions f : [0, 1]s → R whose mixed
partial derivatives up to order one in each variable are square integrable. See
[19, 57] and [45, Appendix A.2.3.] for more information on H

(1)
sob,s,γ .

The mean square worst-case error of digitally shifted p.l.p.s. for integration
in H

(1)
sob,s,γ is defined by

ê2(q, p) =
∫

[0,1]s
e2(H (1)

sob,s,γ ,Pσ(q, p)) dσ.

We have the following result whose proof can be found in [17, Theo-
rem 12.14]; see also [11]. The corresponding result for shifted l.p.s. was shown
by Kuo [35].

Theorem 7. For any p ∈ Zb[x] with deg(p) = m we can construct CBC
q ∈ Gsb,m such that (with N = bm)

ê(q, p) ≤ cs,b,γ,εN−1+ε for all 0 < ε ≤ 1/2.

If
∑s
i=1 γ

1/(2(1−ε))
i < ∞, then cs,b,γ,ε ≤ c∞,b,γ,ε < ∞, i.e., the above bound

can be made independent of the dimension s.

Remark 2. Baldeaux and Dick [1] showed that in the randomized setting one
can obtain an improved error bound by using Owen’s scrambling (see [48] or
[17, Chapter 13]). For scrambled p.l.p.s. one has

E
[
|Is(f)−QN,s(f)|2

]
≤ cs,b,γ,εN−3+ε for ε > 0
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where N = bm and where the expectation is with respect to all random
scrambles of a p.l.p.s. Such a result is not known for l.p.s.

Now we assume more smoothness for integrands. Consider the Sobolev
space H

(2)
sob,s,γ with reproducing kernel

K
(2)
sob,s,γ(x,y) =
s∏
i=1

(
1 + γiB1(xi)B1(yi) +

γ2
i

4
B2(xi)B2(yi)−

γ2
i

24
B4(|xi − yi|)

)
.

The function space H
(2)

sob,s,γ contains all functions f : [0, 1]s → R whose mixed
partial derivatives up to order two in each variable are square integrable. See
[17, Section 14.6] for more information.

Using an idea from Hickernell [24] we use the tent transformation φ(x) =
1− |2x− 1|. For vectors x we apply φ component-wise and for a point set P,
φ(P) means that the tent transformation is applied the every element of P.
We call φ(P) the folded point set P. Define the mean square worst-case error
of folded digitally shifted p.l.p.s. by

ê2φ(q, p) =
∫

[0,1]s
e2(H (2)

sob,s,γ , φ(Pσ(q, p))) dσ.

The following result, proved in [5], shows that one can obtain an improved
convergence rate for the mean square worst-case error of folded digitally
shifted p.l.p.s. for functions f ∈ H

(2)
sob,s,γ . A corresponding result for l.p.s.

has been shown by Hickernell [24].

Theorem 8. For any p ∈ Z2[x] with deg(p) = m we can construct CBC
q ∈ Gs2,m such that (with N = 2m)

êφ(q, p) ≤ cs,γ,εN−2+ε for all 0 < ε ≤ 3/2.

If
∑s
i=1 γ

1/(2(2−ε))
i <∞, then cs,γ,ε ≤ c∞,γ,ε <∞, i.e., the above bound can

be made independent of the dimension s.

9 Higher order polynomial lattice rules

Now we go a step further and consider functions with arbitrary smoothness
for integrands. For a more detailed definition of the functions spaces under
consideration we need some notation:

For k = κ1b
a1−1 +κ2b

a2−1 + · · ·+κvb
av−1, where 1 ≤ av < · · · < a1, v ∈ N

and κ1, . . . , κv ∈ {1, . . . , b− 1}, and for α ≥ 1 define

µα(k) := a1 + · · ·+ amin(v,α).
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Furthermore, for γ > 0 put rα(0, γ) = 1 and rα(k, γ) = b−µα(k) for k ∈ N. For
k = (k1, . . . , ks) ∈ Ns0 and γ = (γ!, γ2, . . .), set rα(k,γ) :=

∏s
i=1 rα(ki, γi).

Let Wα,s,γ ⊆ L2([0, 1]s) be the space consisting of all Walsh series f =∑
k∈Ns0

f̂wal(k) bwalk for which

‖f‖Wα,s,γ
:= sup

k∈Ns0

|f̂wal(k)|
rα(k,γ)

<∞

For α ≥ 2 the function space Wα,s,γ contains all functions f : [0, 1]s → R
whose mixed partial derivatives up to order α in each variable are square
integrable; see [9]. We call α the smoothness parameter of the function space.

Of course one would expect that the higher smoothness of integrands is
reflected in the convergence rate of the integration error. Higher smoothness
should lead to improved convergence rates. However, it turned out that this
is not the case when the concept of (digitally shifted) p.l.p.s. as introduce in
Definition 3 is used as underlying nodes. For this reason the following suitable
generalization has been introduced in [16]; see also [17, Section 15.7].

Definition 8. For s,m, n ∈ N, m ≤ n, p ∈ Zb[x], with deg(p) = n, and
q ∈ Zb[x]s the point set Pm,n(q, p) consisting of the bm points

xh = νn

(
h(x)
p(x)

q(x)
)

for all h ∈ Gb,m

is called a polynomial lattice point set (p.l.p.s.). A QMC rule using Pm,n(q, p)
is called a polynomial lattice rule.

Remark 3. For m = n we have Pm,m(q, p) = P(q, p).

Definition 9. The dual net of the p.l.p.s. Pm,n(q, p) from Definition 8 is
defined as

Dq,p = {k ∈ Gsb,n : k · q ≡ u (mod p) with deg(u) < n−m}.

For α ≥ 2 the worst-case error for integration in Wα,s,γ using Pm,n(q, p)
is given by (see [2, Proposition 2.1])

e2α(q, p) := e2α(Wα,s,γ ,Pm,n(q, p)) =
∑

k∈Ns0\{0}
trun(k)(x)∈Dq,p

rα(k,γ).

The following result has been shown in [2].

Theorem 9. For any irreducible p ∈ Zb[x] with deg(p) = n we can construct
CBC q ∈ Gsb,n such that

eα(q, p) ≤ cs,α,γ,τ b−min(τm,n) for all 1 ≤ τ < α.



16 Friedrich Pillichshammer

If
∑∞
i=1 γ

1/τ
i < ∞ then cs,α,γ,τ ≤ cs,α,γ,τ < ∞, i.e., the above bound can be

made independent of the dimension s.

Remark 4. Choosing n large we obtain a convergence order of N−α+ε for
ε > 0 where N = bm. By a result of Šarygin [50] this convergence rate is
essentially best possible.

The result from Theorem 9 holds for a fixed smoothness parameter α ≥ 2.
However, in practical applications the smoothness parameter is in general
not known a priori. Hence it is reasonable to ask for constructions of p.l.p.s.
which achieve almost optimal convergence rates for a range of smoothness
parameters and which adjust themselves to the smoothness of a given inte-
grand.

The basic idea in [2] can be roughly explained as follows: given p ∈ Zb[x].
If there exists a large enough amount of p.l.p.s. P(q, p) which do well for the
smoothness parameter α and if there exists a large enough amount of p.l.p.s.
P(q, p) which do well for the smoothness parameter α′, then there must be
a p.l.p.s. P(q, p) which does well for both smoothness parameters α and α′.
The underlying mathematical argument is the following “sieve principle”: let
X be some finite set and A,B ⊆ X. If |A|, |B| > |X|/2, then |A ∩B| > 0.

Algorithm 3 Sieve Algorithm
Require: b a prime, s,m, β ∈ N, β ≥ 2, p ∈ Zb[x] irreducible with deg(p) = m,

weights γ = (γi)i≥1,
1: Set n = βm.
2: Find b(1− β−1)bβmsc+ 1 vectors q in Gsb,βm which satisfy

e2(q, p) ≤ cs,b,γ,s,m,β,2,τ2b
−τ2m for all 1 ≤ τ2 < 2,

and label this set T2.
3: for α = 3, . . . , β do
4: find b(1− (α− 1)β−1)bβmsc+ 1 vectors q in Tα−1 which satisfy

eα(q, p) ≤ cs,b,γ,s,m,β,α,ταb
−ταm for all 1 ≤ τα < α

and label this set Tα.
5: end for
6: return Select q∗ to be any vector from Tβ .

Algorithm 3 only presents the basic idea of a construction for p.l.p.s. which
do well for a range of smoothness parameters. In practice this algorithm would
not be applicable since it is much to time consuming. However, in [2, Algo-
rithm 2] it has been show how Algorithm 3 can be combined with the CBC
approach. This leads then to the following result which is [2, Theorem 4.2]:

Theorem 10. Let s,m, β ∈ N, β ≥ 2, then one can construct a vector q ∈
Gsb,βm such that
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eα(q, p) ≤ cs,b,α,β,γ,ταb−ταm for all 1 ≤ τα < α

and for all 2 ≤ α ≤ β.
If
∑∞
i=1 γ

1/τα
i < ∞, then cs,b,α,β,γ,τα ≤ c∞,b,α,β,γ,τα < ∞, i.e., the above

bound can be made independent of the dimension s.

Until now there exists no counterpart of the results from this section for
l.p.s.

10 Summary and further comments

In this paper we reviewed the main progress in the analysis of p.l.p.s. over
the last decade and we pointed out several connections to the theory of l.p.s.

For both concepts we have comparable discrepancy bounds and tractabil-
ity properties, and the worst-case error analysis in several reproducing kernel
Hilbert spaces follows parallel tracks. P.l.p.s. and l.p.s. can both be con-
structed with the (Fast) CBC approach and both can be made extensible in
the number of elements. The tent transformation together with a suitable
randomization leads in both cases to improved error bounds for smoother
integrands.

However, there are also some differences. For example, with a slight gen-
eralization of the concept of p.l.p.s. one can achieve almost optimal conver-
gence rates for smooth integrands (even with varying smoothness from a finite
range) together with strong tractability which means that the error bound is
independent of the dimension. Such a result is not known for l.p.s. until now.
(But it is known that with l.p.s. one can obtain almost optimal convergence
rates together with strong tractability for smooth periodic functions.)

A further difference is that for p.l.p.s. it makes sense to apply Owen’s
scrambling scheme since this preserves the (t,m, s)-net structure of a point
set but not the geometric lattice structure. This leads to an improved error
bound in the randomized setting, a result which is not known for l.p.s.

Also the consideration of the quality parameter t of l.p.s. makes in general
little sense since these point sets are not constructed to have a good (t,m, s)-
net structure. Nevertheless, the analog of the quality measure ρ(q, p) = m− t
from Section 4 has some interpretation, namely it is the enhanced trigonomet-
ric degree of a lattice rule [7, 39]. A cubature rule of enhanced trigonometric
degree δ is one that integrates all trigonometric polynomials of degree less
then δ exactly. However, in this vein ρ(q, p) = m− t from Section 4 can also
be interpreted as the enhanced Walsh degree of a polynomial lattice rule since
any (t,m, s)-net in base b integrates all Walsh polynomials of degree ≤ m− t
exactly (this follows from [23, Lemma 1]).

A further point which was not discussed so far but which is worth to be
mentioned is that with l.p.s. one can even obtain exponential convergence for
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the worst-case error of infinitely times differentiable periodic functions; see
[12]. Such a result in turn is not known for p.l.p.s. until now.
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56. Sloan, I. H. and Woźniakowski, H.: Tractability of multivariate integration for

weighted Korobov classes. J. Complexity 17: 697–721, 2001.
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