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Abstract. For r ∈ Rd define the function τr : Zd → Zd in the following way:

τr : Zd → Zd,a = (a1, . . . , ad) 7→ (a2, . . . , ad,−brac).
τr is called a shift radix system (SRS) if ∀a ∈ Zd ∃k > 0 : τk

r (a) = 0. In this paper we deal with
new results concerning the characterisation of the set D0

d :=
{
r ∈ Rd |τr is an SRS

}
, especially

for d = 2. For this purpose we adapt and generalise several results and methods presented in

earlier papers.

1. Introduction

Let r ∈ Rd and

τr :Zd → Zd,

a = (a1, . . . , ad) 7→ (a2, . . . , ad,−brac).

τr is called a shift radix system, short SRS, if

∀a ∈ Zd ∃k ∈ N : τk
r = 0.

Further define the sets

Dd :=
{
r ∈ Rd

∣∣∀x ∈ Zd ∃n, l ∈ N : τk
r (x) = τk+l

r (x) ∀k ≥ n
}

and

D0
d :=

{
r ∈ Rd |τr is an SRS

}
.

Shift radix systems were first introduced by Akiyama et al. in [1]. There the basic properties
have been analysed, as well as the close relation to β-expansions [1, 8, 10] and canonical number
systems (CNS) [1, 9] were studied. It is easy to see that Dd ⊃ D0

d. The set Dd is, except for the
boundary, easy to describe. For an r = {r1, . . . , rd} ∈ Rd let

R(r) :=



0 1 0 · · · 0
... 0

. . . . . .
...

...
...

. . . 1 0
0 0 · · · 0 1
−r1 −r2 · · · −rd−1 −rd


and Ed :=

{
s ∈ Rd|ρ(R(s)) < 1

}
, where ρ(·) denotes the spectral radius. Then we have Ed ⊂ Dd ⊂

Ed. Note that Ed is compact and thus Dd and D0
d are bounded. For a more detailed treatment

of Dd, see [1, Section 4] and, for d = 2, see [3, Section 2] or [2]. According to [3, Corollary 2.5]
we have D0

2 ⊂ E2. D0
d can be gained by cutting out polyhedra from Dd in the following way: An

element r of Dd does not belong to D0
d if there exists a sequence a0, . . . , al−1, l ≥ d of integers, not
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all equal to zero, such that for the points

v0 =(a0, . . . , ad−1),

v1 =(a1, . . . , ad),
...

vl−1 =(al−1, al, . . . , al+d−2),

(1.1)

where the indices of a have to be taken modulo l, we have that τr(v0) = v1, . . . , τr(vl−2) =
vl−1, τr(vl−1) = v0. According to [1] we write (a0, . . . , ad−1); ad, . . . , al−1 for the chain of mappings
v0 7→ v1 7→ · · · 7→ vl−1 7→ v0 and say that it is a period (of length l) of τr and generally a period
of Dd. Observe that for a period the order of elements is important, but it is invariant concerning
rotations. Further the sequences a0, . . . , al−1 and a0, . . . , al−1, a0, . . . , . . . , al−1 describe the same
period. In this manner we can enlarge the length of a sequence to ensure that it is bigger than d.
For a given period π = (a0, . . . , ad−1); ad, . . . , al−1 we set P (π) := {r ∈ Rd |π is a period of τr }.
By the definition of τr this set consists of all the points r = (r1, . . . , rd) satisfying the system of
inequalities

(1.2)

0 ≤ a0r1 + a1r2 + · · · + ad−1rd + ad < 1,
...

...
...

...
...

...
0 ≤ al−1r1 + alr2 + · · · + al+d−2rd + al+d−1 < 1

(again with the indices of a taken modulo l), which describes a polyhedron. This polyhedron
is not necessarily a d-dimensional figure, in many cases it is degenerated or even equal to the
empty set. According to [1] we call π a non-degenerated period, if P (π) is a non-degenerated
d-dimensional polyhedron and we call it empty, if P (π) is the empty set. By the Lifting The-
orem [1, Theorem 6.2] for the non-degenerated period π = (a0, . . . , ad−1); ad, . . . , al−1 the lift
l(π) = (a0, . . . , ad); ad+1, . . . , al−1 to a higher dimension is also non-degenerated.

Now it is easy to see that
D0

d = Dd \
⋃

π period
P (π),

which is the representation of D0
d by cutting out polyhedra from Dd. We will refer to these

polyhedra as cutout polyhedra. The difficulty of the characterisation of D0
d is now clear: the set

of all periods is a priori infinite and we will see in section 4 that infinitely many of them are not
empty. Therefore this representation is only a theoretical one.

The paper is organised as follows: in Section 2 we deal with an algorithm that was originally
presented by Brunotte in [4] (see also [1]). With its aid we can construct a finite set ΠQ of periods
pi with P (π) ∩Q 6= ∅ for a closed convex set Q ⊂ Ed, such that

Q ∩ D0
d = Dd \

⋃
π∈ΠQ

P (π).

We will use this algorithm to extend the existing analysis of D0
2 given in [3]. But note that it can

only be used for areas away from the boundary of D2. For sets near this boundary other ways
are needed. For characterising an area near the upper boundary of D2 we will improve a method
which was presented by Akiyama et al. in [3]. This is also stated in Section 2.

A small area near the point (1, 1) will be treated in Section 3. The set

P :=
{

(1− T, 1 + δT ) | 0 < T <
1
30

, 0 ≤ δ ≤ 1
}

cannot be investigated with the above mentioned algorithm, because it ”touches” the right bound-
ary of D2. We will look directly at the orbits of τr and find out that P belongs to D0

2.
Figure 1 shows the set D2. The black parts are cutouts, the white areas are already known to

be subsets of D0
2. In Sections 2 and 3 all the light grey areas are investigated in the mentioned

theorems. The sets where cutouts are found are shown in the subscribed figures. Only the thin
dark grey regions near the upper boundary of the trapezian in Figure 1 are still not analysed.
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Figure 1. An overview of D2

As we have seen, D0
2 can be explained as set D2 with a number of polygons cut out. In this

representation we walk through all possible periods, which are of course infinitely many. But
not all of them give nonempty polygons. In [1, section 6] was already shown that there are no
upper bounds neither for the length nor for the size of the entries of a period π to ensure that
P (π) 6= ∅. Section 4 is dedicated to infinite families of non-degenerated periods. We will complete
the analysis of such a family, which was already described in [1] and we will present a new one.
With the aid of this result we will conclude that the point K ′

d = (0, . . . , 0, 1, 1) ∈ Rd is a critical
point in the sense of [1, Definition 7.1], i.e., any neighbourhood of K ′

d cannot be described by
using only finitely many cutout polyhedra.

2. Algorithmic Solutions

2.1. The set of witnesses V(Q) and the graph G(V, Q). For Q ⊂ Rd, V ⊂ Zd,x ∈ Zd let

τQ(x) = {τr(x) | r ∈ Q} and

τQ(V ) = {τr(v) | r ∈ Q,v ∈ V } .

Definition 2.1 (cf. [1]). For a closed convex set Q ⊂ intDd, the smallest set V(Q) ⊂ Zd with the
properties

(V1) ±(δ1i, δ2i . . . , δdi) ∈ V(Q), i = 1, . . . , d,
(V2) x ∈ V(Q)⇒ τQ(x) ∪ −τQ(−x) ⊂ V(Q),

where δij denotes the Kronecker delta, is called the set of witnesses of the set Q. Additionally,
for a finite set W ⊂ Zd and a closed convex set Q ⊂ Dd, we define G(W, Q) = V × E to be the
smallest directed graph with vertices V ⊂ Zd and edges E ⊂ Zd × Zd, with

(G1) W ⊆ V ,
(G2) x ∈ V ⇒ τQ(x) ⊂ V ,
(G3) E = {(x, τr(x))|x ∈ V, r ∈ Q}.

The original idea of a set of witnesses comes from Brunotte [4], who defined an analogue in
context with canonical number systems. The term set of witnesses for SRS was used for the first
time by Akiyama et al. [1]. The present definition is modified in that effect, that in [1] any set
which fulfils (V1)-(V2) is called a set of witnesses.

What are the requirements to ensure that V(Q) is finite? Let A ∈ Rd×d. For a δ > ρ(A) choose
a vector norm ‖ · ‖A,δ with

∀x ∈ Rd : ‖Ax‖A,δ ≤ δ‖x‖A,δ.

Denote also by ‖ · ‖A,δ a compatible matrix norm, i.e.

∀x ∈ Rd ∀B ∈ Rd×d : ‖Bx‖A,δ ≤ ‖B‖A,δ‖x‖A,δ.

Such a norm always exists and is explicitly constructed for instance in [6, Equation (3.2)]. Choose
a vector r ∈ Ed and a δ with 1 > δ > ρ(R(r)). Further, for ε > 0, set

Uε(r, δ) :=
{
s ∈ Rd

∣∣‖R(s)−R(r)‖R(r),δ < ε
}

.
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Lemma 2.2. V(Q) is finite for Q ⊂ Uε(r, δ) with ε < 1− δ.

Proof. It suffices to prove that there is a finite set V ′(Q) that satisfies (V1) and (V2) in Defini-
tion 2.1. Then V(Q) ⊆ V ′(Q), which implies that V(Q) is finite, too. Let

N = max
i=1,...,d

‖ ± (δ1i, . . . , δdi)‖R(r),δ.

We will show that the finite set V ′(Q) := {x ∈ Zd|‖x‖R(r),δ ≤ N
1−δ−ε} fulfils the requirements.

Because N < N
1−δ−ε it includes the canonical base vectors ((V1) is satisfied). For x ∈ V ′(Q), s ∈ Q

the functions τs(x) and −τs(−x) can be written as R(s)x + (0, . . . , 0, ν) with |ν| < 1. Thus
‖R(s)x + (0, . . . , 0, ν)‖R(r),δ ≤‖(R(s)−R(r) + R(r))x‖R(r),δ + ‖(0, . . . , 0, ν)‖R(r),δ

< ‖R(s)−R(r)‖R(r),δ ‖x‖R(r),δ + ‖R(r)x‖R(r),δ + N

≤ε ‖x‖R(r),δ + δ ‖x‖R(r),δ + N ≤ N(ε + δ)
1− ε− δ

+ N =
N

1− ε− δ
.

This proves that τQ(V ′(Q)) ∪ −τQ(−V ′(Q)) ⊆ V ′(Q), satisfying (V2). �

The lemma shows that V(Q) is finite for sufficiently small Q. For our further proceeding it is
sufficient to know this. We will avoid to calculate the maximal size of some set Q by using norms
we do not know explicitly. Algorithm 1 shows how a calculation of the set of witnesses could look
like. The algorithm starts with

Algorithm 1 Calculation of V(Q).

Input: Q, p
Output: V set of witnesses of the set Q
1: V ← {±(δ1j , . . . , δdj)|j = 1, . . . , d}
2: M ← ∅
3: while V 6= M do
4: if #V > p then
5: Return(Overflow)
6: end if
7: N ← V \M
8: M ← V
9: for all (x1, . . . , xd) ∈ N do

10: i← min(r1,...,rd)∈Qb−
∑d

k=1 xkrkc
11: j ← max(r1,...,rd)∈Q−b

∑d
k=1 xkrkc

12: V ← V ∪ {(x2, . . . , xd, k)|k = i, . . . , j}
13: end for
14: end while

(2.1) V0(Q) := {±(δ1i, δ2i . . . , δdi)|i = 1, . . . , d}
and calculates inductively V1(Q),V2(Q), . . . by applying the rule

(2.2) Vi+1(Q) := τQ(Vi(Q)) ∪ −τQ(−Vi(Q)) ∪ Vi(Q).

For all i we have Vi(Q) ⊆ V(Q). Hence, for a finite set V(Q), there is a j ∈ N such that
Vj+1(Q) = Vj(Q) = V(Q). To avoid problems with the possible infiniteness of the set, we use an
additional input parameter p. If the size of the set of witnesses exceeds p, the process stops and the
algorithm returns an overflow. We will deal with this later. At the moment it is more interesting,
how the minima and maxima can be calculated. This depends on the way, how the algorithm is
implemented. Mathematica R©, for instance, offers the possibility to minimize or maximize a given
function under some conditions. Hence it suffices to let Mathematica R© search for the maximum
and minimum of the function rx under the condition r ∈ Q. Without this possibility, we have
other methods to get the maximum and minimum. Define Qx ⊂ Q to be the set of those r, where
rx is extreme. Because rx is linear and Q is closed, we have Qx ⊂ ∂Q for each x. The easiest



SHIFT RADIX SYSTEMS 5

case is, when Q is a polygon. Then Qx consists of its vertices. But also for nonpolygonial Q with
differentiable curves as boundaries, it should be no problem to calculate Qx. With the usage of
Qx, the rule of calculating Vi+1(Q) from Vi(Q) changes to

(2.3) Vi+1(Q) :=
⋃

x∈Vi(Q)

{
(x2, . . . , xd, j)

∣∣∣∣j = min
r∈Qx

b−rxc, . . . , max
r∈Qx

−brxc
}
∪ Vi(Q),

where x = (x1, . . . , xd). The construction of the graph G(W, Q) = V × E for a set W ⊂ Zd runs
analogously, at least the calculation of the set of vertices V . For this purpose we have to modify
algorithm 1 only little. At first replace all V by V because we have the set of vertices V as output.
Besides the input of the additional parameter W replace line 1 by

V ←W
and line 10 by

i← min(r1,...,rd)∈Q−b
∑d

k=1 xkrkc.
Again the algorithm builds up V inductively by starting with

(2.4) V0 =W
and observing the rule

(2.5) Vi+1 =
⋃

x∈Vi

{
(x2, . . . , xd, j)

∣∣∣∣j = min
r∈Qx

−brxc, . . . , max
r∈Qx

−brxc
}
∪ Vi

with x denoting the vector (x1, . . . , xd). As soon as Vi+1 = Vi we set V = Vi. Of course, all
remarks about the extremes of the function rx for r ∈ Q are also valid in this context. For each
vertex it is not hard to get the list of outgoing edges. We omit an explicit calculation here. It
depends on the later process whether it is needed or not.

Let us make a few remarks on the finiteness of G(W, Q). It is an easy exercise to prove it in an
analogous way as in Lemma 2.2 for a sufficiently small closed convex set Q ⊂ Ed and a finite set
W. As in Definition 2.1 Condition (V2) obviously is stronger than Condition (G2), we can expect
that there are weaker requirements for G(W, Q) to be finite. In the further proceeding we are
going to calculate this graph with Q ⊂ D2 and Q∩ ∂D2 6= ∅ and (fortunately) it is finite there. It
is an interesting but up to now unsolved question what the exact conditions are. However, it is not
obsolete to keep a (generously) bound p while calculating G(V, Q) to ensure that the algorithm
stops even if the graph were infinite.

The cyclic structure of G(W, Q) is very important. In order to get an uniform nomenclature,
we give a short summary of basic graph theoretical definitions. For a graph with set of vertices V
and set of edges E ⊂ V ×V , we call a sequence v0 → v2 → . . .→ vl−1 → vl with vi ∈ V, i = 0 . . . , l
and (vi, vi+1) ∈ E, i = 0, . . . , l−1 a path. A path with vl = v0 is said to be a closed path. A closed
path is a cycle if all vi are distinct (except v0 and vl). A closed path which is no cycle obviously
includes (at least two) cycles. For a closed path v0 → v2 → . . .→ vl−1 → v0 of G(W, Q) we may
ask if there is an r with τr : v0 7→ v2 7→ . . . 7→ vl−1 7→ v0, hence if the closed path induces a period
of length l of τr for some r. It is easy to see that this is only possible for cycles otherwise we would
have edges vm → vm+1 and vn → vn+1 for some m,n ≤ l − 1 with vm = vn and vm+1 6= vn+1.
A function τr which had a period deduced from this closed path would have to map vm = vn

onto the two different points vm+1 and vn+1, which is impossible. Thus only cycles can induce
nonempty periods. The set of all these r is the solution of the system of inequalities (1.2) induced
by the cycle. In many cases G(W, Q) contains only the trivial cycle, i.e., the self-loop 0→ 0.

Lemma 2.3. Suppose the graph G(W, Q) = V × E has n cycles without the self-loop 0 → 0.
These cycles induce n periods π1, . . . , πn. Then

∀r ∈

(
Q \

n⋃
i=1

P (πi)

)
∀x ∈ V (⊇ W)∃k ∈ N : τk

r (x) = 0.

In particular, if G(W, Q) contains no cycle except the trivial one then

∀r ∈ Q∀x ∈ V ∃k ∈ N : τk
r (x) = 0.
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Proof. From the definition of G(W, Q) and the monotonicity of the floor-function it is easy to see
that ∀r ∈ Q,∀x ∈ V,∀k ∈ N : τk

r (x) ∈ V and ∀r ∈ Q,∀x ∈ V : (x, τr(x)) ∈ E. Hence each r with
τr having a period with elements in V produces a cycle in G(W, Q). Therefore, if we remove these
r from Q, the remaining part has no cycles and so fulfils the stated condition. �

The lemma is similar to [3, Lemma 4.7]. Note that if we find such a period π with nonempty
set P (π), the sets P (π) and D0

d are disjoint. Then π is a period of D0
d as it is described in the

introduction. With the above lemma we can find some areas within a convex set, which are not
in D0

d, but we cannot be sure that the rest is. But the lemma provides a base for other methods.

2.2. Brunotte’s Theorem. The next theorem is an algorithm based on Brunotte. For proofs,
exact background and adaption for SRS, see [4] and [1, Section 5]. Here we will present only
the important facts and state them in a somewhat different way. This helps us to generalise the
existing results in order to give an improved analysis of D0

2.

Theorem 2.4. Let Q ⊂ D0
d be a sufficiently small, closed, convex set. Then G(V(Q), Q) = V ×E

is finite. Furthermore we have Q ⊂ D0
d if for all r ∈ Q,x ∈ V(Q) there exists a k ∈ N with τk

r = 0.
Otherwise

D0
d ⊃ Q \

⋃
π∈ΠQ

P (π),

where ΠQ is the set of all periods which are described by the nontrivial cycles of G(V(Q), Q).

Proof. Obviously V = V(Q) and, according to Lemma 2.2, V(Q) is finite for sufficiently small sets
Q. The remaining part of the proof runs exactly as in [1, Theorem 5.2] �

[1, Theorem 5.2] treated only the case that Q is a polyhedron. Indeed, it is easier to handle
this case, but as mentioned above we do not have to restrict on it. The theorem can be used to
determine whether a given area is in D0

d or not. If it is not, we get a set of periods Π(Q), whose
corresponding cutout polyhedra completely describe D0

d ∩Q in the sense that

D0
d ⊃ Q \

⋃
π∈ΠQ

P (π).

Note that Π can contain periods whose cutout polyhedra are empty or do not intersect with
Q. Further Π in general does not contain all periods that have polyhedra intersecting with Q.
Algorithm 2 shows a scheme of a corresponding algorithm. We bypass the problem of the eventually

Algorithm 2 Search for the periods describing Q ∩ D0
d (recursively).

Input: Q
Output: ΠQ list of cycles
1: p← suitable bound
2: calculate V(Q) (algorithm 1 with boundary p)
3: if ¬(overflow) then
4: E ← set of edges of G(V(Q), Q)
5: ΠQ ← ΠQ∪ all cycles of G(V(Q), Q)
6: else
7: Split Q into sets Q1, Q2

8: Search for the periods describing Q1 ∩ D0
d (algorithm 2)

9: Search for the periods describing Q2 ∩ D0
d (algorithm 2)

10: end if

infiniteness of the set of witnesses by giving a bound for its size. If it gets bigger the calculation
stops and Q is divided into two parts and the algorithm is applied on each of them separately.
The only way of division to keep convexity is by a line. We know that the set of witnesses is finite
for sufficiently small sets. We only have to pay attention on the choice of p. Since it is difficult
to extract from Lemma 2.2 the exact size of the set of witnesses, it turned out to be the best to
increase p whenever Q is split. Using this way, we can ensure that eventually the procedure will
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terminate. Concrete values for p depend on the location of Q relatively to the boundary of D0
d

(trial and error).
We have to make a few remarks on finding cycles in a directed graph. In general our graph

will have only few edges compared to the number of vertices. Cycles can only occur within the
strongly connected components. They can be found with the aid of an algorithm of Tarjan [12].
Its requirements in time and space is linear to the size of V and E. Once the strongly connected
components are found, we can extract the cycles from each such component.

Each cycle we find forms a system of inequalities which describes a polyhedron. We may also
find cycles, where the corresponding polyhedron is the empty set. Thus we need an algorithm,
which identifies these empty cycles and transforms the other ones into polyhedra. Such an algo-
rithm was implemented by Fukuda and is available, beside other algorithms concerning polyhedral
computation, as cdd/cdd+ on the homepage [5]. For our purpose the version working with rational
arithmetics is needed. The program is based on the Double Description Method of Motzkin at al.
[7]. For further information consult the documentation, which also can be found at [5].

We now consider the two dimensional case and D0
2. Write Br(Q) for the application of al-

gorithm 2 on the set Q. As environment define m1 := max(x,y)∈Q{x} − min(x,y)∈Q{x}, m2 :=
max(x,y)∈Q{y} −min(x,y)∈Q{y}, p := 20

max(m1,m2)
and the split of the set Q into Q1 and Q2 by

Q1 =


{

(x, y) ∈ Q
∣∣∣x ≤ max(x,y)∈Q{x}+min(x,y)∈Q{x}

2

}
m1 > m2{

(x, y) ∈ Q
∣∣∣y ≤ max(x,y)∈Q{y}+min(x,y)∈Q{y}

2

}
otherwise

,

Q2 =


{

(x, y) ∈ Q
∣∣∣x ≥ max(x,y)∈Q{x}+min(x,y)∈Q{x}

2

}
m1 > m2{

(x, y) ∈ Q
∣∣∣y ≥ max(x,y)∈Q{y}+min(x,y)∈Q{y}

2

}
otherwise

.

Hence we halve the set in x-direction when its x-expanse is bigger than its y-expanse, otherwise
we halve the set in y-direction.

With this we have the following results:

Theorem 2.5. Br(QA) terminates for

QA :=
{

(x, y) ∈ R2

∣∣∣∣56 ≤ x ≤ 99
100
∧ −x

2
≤ y ≤ x− 1

}
yielding 402 nonempty periods.

Theorem 2.6. Br(QB) terminates for

QB :=
{

(x, y) ∈ R2

∣∣∣∣56 ≤ x ≤ 99
100
∧ −x + 1 ≤ y ≤ x

}
yielding 1010 nonempty periods.

Theorem 2.7. Br(QC) terminates for

QC :=
{

(x, y) ∈ R2

∣∣∣∣56 ≤ x ≤ 99
100
∧ −x + 2 ≤ y ≤ 1 +

x

2

}
yielding 787 nonempty periods.

The sets QA, QB , QA have a minimum distance of 0.01 from the boundary of D2. Figures 2-4
show all found cutout polyhedra located in the sets in black. To save space, the axes have been
reversed. The white spaces are in D0

2, the dark grey ones are still unknown. Note that only
those parts of the polygons are shown that intersect with D2, e.g. the parts where x ≤ 1 and
that there may be cutouts totally overlaid by others. For computational processing, the lists of
all periods are available in the internet, as well as an implementation in Mathematica R© of the
presented algorithms (2 dimensional case) [11].

We will use Br(Q) for the last time with modified p := 200
max(d1,d2)

.
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Figure 2. Cutouts of the set QA

Figure 3. Cutouts of the set QB

Figure 4. Cutouts of the set QC

Theorem 2.8. Let x0 = 5
6 , x1 = 17

20 , x2 = 9
10 , x3 = 19

20 and

QDi
:=
{

(x, y) ∈ R2

∣∣∣∣x ≥ y2

4
∧ y ≥ 2x ∧ xi−1 ≤ x ≤ xi

}
.

Then, for i = 1, 2, 3 the algorithm Br(QDi
) terminates yielding that QD :=

⋃3
i=1 QDi

⊂ D0
2.

The choice of QD is not arbitrary, we will understand it in the further context.

2.3. A lemma of Akiyama et al. In [3], Akiyama et al. presented a way of analysing an area
near the upper boundary of D2. Let

R :=
{
r ∈ R2

∣∣∣∣x > 0 ∧ y < x + 1 ∧ x <
y2

4

}
.

Further, for κ ∈ (0, 1) and q ∈ N, define

Rκ :=
{
r ∈ R

∣∣x < κy − κ2
}

and

Aκ,q :=
{

(a, b) ∈ Z2

∣∣∣∣|a| < q,− κ

1− κ2
− q + 1 < b <

1
1− κ2

+ q − 1
}

.

Following [3, section 4.1] we have
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Lemma 2.9. Let γq be the positive root of the polynomial qt3+qt2−qt−q+1 and 0 < κ ≤ γq < 1.
Then, for r ∈ Rκ,

r ∈ D0
2 ⇔ ∀x ∈ Aκ,q∃k : τk

r (x) = 0.

For the proof see [3, Lemma 4.3]. In view of Lemma 2.3 this motivates the following

Lemma 2.10. Let γq be the positive root of the polynomial qt3 + qt2 − qt− q + 1, 0 < κ ≤ γq < 1
and let ΠQ be the set of all periods induced by the nontrivial cycles of the graph G(Aκ,q, Q). Then

(Q ∩
⋃

0<ι≤κ

Rι) \
⋃

π∈ΠQ

P (π) ⊂ D0
2.

Proof. It follows immediately from Lemma 2.3 and Lemma 2.9 that

(Rι ∩Q) \
⋃

π∈ΠQ

P (π) ⊂ D0
2

for ι = κ. Because Aι ⊂ Aκ for ι < κ the statement is true for all ι ≤ κ. �

This lemma provides a powerful tool for determining which areas of R are contained in D0
2.

Because of the concavity of R it may happen that Q is not fully contained in R. Whenever
parts of the line y = x + 1 are included in Q, G(Aκ,q, Q) will contain a lot of cycles of the form
(a,−a)T → (−a, a)T → (a,−a)T . These cycles induce the period ρ = (a,−a) that corresponds
exactly to the line y = x + 1 which we already know not to be part of D0

2 (see [3, Lemma 2.3]).
Based on this considerations we can specify Algorithm 3. Line 4 is only of importance if Q contains

Algorithm 3 Search for all periods within an area Q ∩
⋃

0<ι<γq
Rι.

Input: Q, q
Output: ΠQ list of cycles
1: calculate the set of vertices V of G(Aγq,q, Q) (modified algorithm 1)
2: calculate the set of edges E of G(Aγq,q, Q)
3: ΠQ ← all cycles of G(Aγq,q, Q)
4: remove all cycles of the shape (a,−a)→ (−a, a)→ (a,−a) from ΠQ

parts of the line y = x + 1. Referring to the remarks on the finiteness of the graph, its size should
be bounded during the calculation in Line 1. We omitted such a bound here, because the graphs
we need are all finite. Denote the application of algorithm 3 with parameters Q and q by Ak(Q, q).

In [3, section 4.1] the set R was analysed for x ≤ 5/6 without having found any cutout.
Additionally the sets Rγi

for i = 3, . . . , 6 have also been recognised not to have cutouts ([3,
Theorem 4.8]). It is possible to continue this series. For i = 3, . . . , 11 fix rational numbers γ′i
with γ′i < γi and |γ′i − γi| < 10−6 and for j = 4, . . . , 11 fix rational numbers γ′′j with γ′′j > γj and
|γ′′j − γj | < 10−6.

Theorem 2.11. Ak(Rγ′′i
\Rγ′i−1

, i) terminates for i = 7, . . . , 11 yielding no periods.

The approximation of γi by rational numbers is necessary for the calculation by a computer to
avoid rounding errors. Theorem 2.11 as well as [3, Theorem 4.8] left some areas between the sets
Rγi

and the parable x = y2

4 uninvestigated. These ”holes” are very close to the boundary of D2

causing troubles for an analyis by Algorithm 2. This explains the choice of QD in Theorem 2.8.
We investigate these areas by another usage of Algorithm 3.

Theorem 2.12. For i = 4, . . . , 11 let

Ei =
{
(x, y) ∈ R

∣∣x ≥ γ′i−1y − (γ′i−1)
2, x ≥ γ′′i y − (γ′′i )2

}
.

Ak(Ei, i) terminates yielding no periods.

Summing up we gain

Theorem 2.13.
⋃

0<κ≤γ11
Rκ ⊃

{
(x, y) ∈ R

∣∣x ≤ 19
20

}
is fully contained in D0

2.
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Figure 5. The orbit of the point (−200, 200)

3. An area near the point (1, 1)

3.1. Statement of the theorem. For areas near the boundary of D2 an application of the
presented algorithms fails. Often the only possible way to prove a set Q to be a subset of D0

2 is to
do this directly by observing the behaviour of the orbits of the mapping τr for r ∈ Q. An example
for the usage of this strategy is [3, Subsection 4.2], where it is shown that a small area near the
point (1,−1) is a subset of D0

2. In that style, we will prove the following

Theorem 3.1.

P :=
{

(1− T, 1 + δT )
∣∣∣∣0 < T <

1
30

, 0 ≤ δ ≤ 1
}
⊂ D0

2.

Proof. Fix T ∈ (0, 1
30 ) and δ ∈ [0, 1]. Let r = (1− T, 1 + δT ) ∈ P . Furthermore define

A :=
{
(x, y) ∈ Z2 |x ≤ 0, y < 0

}
,

B :=
{
(x, y) ∈ Z2 |x ≥ 0, y > 0

}
.

These sets represent the third quadrant with the negative y-axis and the first quadrant with the
positive y-axis, respectively. We will prove the statement by showing that τp

r sends each point
of Z2 to 0 for some p ∈ N. The idea is not very complicated, but several technical lemmas are
needed. These lemmas are proven afterwards. Everything is based on the fact that the application
of τ3

r changes a point only little. Figure 5 shows the orbit of the point (−200, 200) for T = 1
50 and

δ = 1. It is divided into three branches. After three applications of τr we return to one branch.
We now look at the sequence {τn

r (z)}n∈N of a point z ∈ Z2. We will show the existence of a
finite subsequence {z0, . . . , zq0} that ends up in 0. This proves the theorem. We first assert that
each point in Z2 has an orbit that intersects with A ∪ B ∪ {0}. This is shown in Lemma 3.12.
Hence, without loss of generality, we can start our subsequence with z0 ∈ A (for B the proof runs
analogously). For a zq ∈ A, q > 0, construct zq+1 in the following way: Let (u0, v0) := zq. For an
i ≥ 0 set (ui+1, vi+1) := τ3

r (ui, vi). Then for (ui, vi) ∈ A the following points (which are shown in
the mentioned lemmas) are true:

ui+1 ≤ 0 (Lemma 3.2),(3.1)
ui+1 + vi+1 ≥ −‖(ui, vi)‖1 (Lemma 3.4),(3.2)

vi+1 − vi ≥ 1 (Lemma 3.6).(3.3)

Formula (3.3) ensures that there is no repetition possible and hence there cannot exist a period
within the set A. By (3.1) and (3.3) can further be seen that either (ui+1, vi+1) ∈ A or vi+1 ≥ 0.
Thus there exists a j ∈ N with (ui, vi) ∈ A for i ≤ j and (uj+1, vj+1) 6∈ A where (uj+1, vj+1) lies on
or above the x-axis. Additionally the length of (ui, vi) is not growing with respect to the 1-norm.
Now apply τr once. Then Lemma 3.8 says that either τr(uj+1, vj+1) = 0 or τr(uj+1, vj+1) ∈ B.
Moreover we always have ‖τr(uj+1, vj+1)‖1 ≤ ‖(uj , vj)‖1 which is shown in Lemma 3.10. Now, if
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(x0, y0) = 0, set zq+1 := 0. Otherwise we proceed in an analogous manner as before for the set B.
Start with (x0, y0) := τr(uj+1, vj+1) and define (xk+1, yk+1) := τ3

r (xk, yk), k ≥ 0. Then for each
(xk, yk) ∈ B we have

xk+1 ≥ 0 (Lemma 3.3),(3.4)
xk+1 + yk+1 ≤ ‖(xk, yk)‖1 (Lemma 3.5),(3.5)

yk+1 − yk ≤ −1 (Lemma 3.7).(3.6)

Thus, again, there exists an l ∈ N with (xk, yk) ∈ B for k ≤ l and (xl+1, yl+1) 6∈ B. (3.5) ensures
that ‖(xk+1, yk+1)‖1 ≤ ‖(xk, yk)‖1 for k < l. We set zq+1 := τr(xl+1, yl+1) and see that zq+1 ∈ A
or zq+1 = 0 (Lemma 3.9) and this time ‖zq+1‖1 < ‖(xl, yl)‖1 (Lemma 3.11). Hence we have

‖zq‖1 = ‖(u0, v0)‖1 ≤ ‖(u1, v1)‖1 ≤ . . . ≤ ‖(uj , vj)‖1
≤ ‖(x0, y0)‖1 ≤ ‖(x1, y1)‖1 ≤ . . . ≤ ‖(xl, yl)‖1 < ‖zq+1‖1 .

It is easy to see that any zq is a member of our sequence {τn
r z}n∈N and there exists an q0 > 0

with ‖z0‖1 < ‖z1‖1 < . . . < ‖zq0‖1 = 0. Hence {z0, . . . , zq0} really ends up in 0. �

3.2. Supporting lemmas. We need some preparing definitions. Let (u, v) ∈ Z2. Using the
abbreviations

ι(u, v) := vδT − uT,

κ(u, v) := −uδT − v(T + δT )− bι(u, v)cδT,

λ(u, v) := u(T + δT ) + vT + bι(u, v)c(T + δT )− bκ(u, v)cδT

yields

τr(u, v) = (v,−u− v − bι(u, v)c),
τ2
r (u, v) = (−u− v − bι(u, v)c, u + bι(u, v)c − bκ(u, v)c),

τ3
r (u, v) = (u + bι(u, v)c − bκ(u, v)c, v + bκ(u, v)c − bλ(u, v)c).

For some proofs it is better to choose another representation. By direct calculation we gain

(3.7) τ3
r ((u, v)) = (u + α1u + α2v + α3, v + β1u + β2v + β3)

with

α1 := T (−1 + δ)− T 2δ,

α2 := T (1 + 2δ) + T 2δ2,

β1 := T (−1− 2δ) + T 2(1 + 2δ − δ2) + T 3δ2,

β2 := T (−2− δ) + T 2(−2δ − 3δ2)− T 3δ3,

α3 := (−1− δT ){ι(u, v)}+ {κ(u, v)},
β3 := (T + 2δT + δ2T 2){ι(u, v)}+ (−1− δT ){κ(u, v)}+ {λ(u, v)}.

where {a} denotes the fractional part of a. These expressions satisfy the following inequalities:

−T ≤ α1 < 0,(3.8)
T ≤ α2 < 4T,(3.9)

−3T < β1 < 0,(3.10)
−4T < β2 ≤ −2T,(3.11)
−T ≤ α2 + β2 < 0.(3.12)

The estimations are partly very crude, but easy to verify and sufficient for our aims. Because of
monotonicity the extreme values of α3 and β3 can only occur, if {ι(u, v)}, {κ(u, v)} and {λ(u, v)}
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take extreme values. From this consideration we gain the following table:

{λ(u, v)} {κ(u, v)} {ι(u, v)} α3 β3

0 0 0 0 0
0 0 1 −1− δT T + 2δT + δ2T 2

0 1 0 1 −1− δT
0 1 1 −δT −1 + T + δT + δ2T 2

1 0 0 0 1
1 0 1 −1− δT 1 + T + 2δT + δ2T 2

1 1 0 1 −δT
1 1 1 −δT +T + δT + δ2T 2

This table shows that

−1− δT < α3 < 1,(3.13)
−1− δT < β3 < 1 + T + 2δT + δ2T 2,(3.14)

−1 + T + δ2T 2 < α3 + β3 < 1.(3.15)

Note that {ι(u, v)}, {κ(u, v)} and {ι(u, v)} cannot be equal to 1 hence all inequalities are strict.
While proving the lemmas, we always have to keep track of the signs of the αi and βi as well as
the possible values δ and T can obtain.

Lemma 3.2. Let (ui, vi) ∈ A and (ui+1, vi+1) = τ3
r (ui, vi). Then ui+1 ≤ 0.

Proof.
ui+1 = ui + uiα1 + viα2 + α3 = ui(1 + α1) + viα2 + α3

By the definition of A we have ui ≤ 0 and vi < 0. Because vi is an integer this implies vi ≤ −1.
(1 + α1) > 0 and α2 > 0 by (3.8) and (3.9). Since by (3.13) we have α3 < 1 we obtain

ui+1 < −α2 + 1 = −T (1 + 2δ)− T 2δ2 + 1 < 1.

The fact that ui+1 is an integer allows the final conclusion ui+1 ≤ 0. �

Lemma 3.3. Let (xk, yk) ∈ B and (xk+1, yk+1) = τ3
r (xk, yk). Then xk+1 ≥ 0.

Proof. Analogously to Lemma 3.2, by using (3.8), (3.9) and (3.13), we get

xk+1 =xk + xkα1 + ykα2 + α3

=xk(1 + α1) + ykα2 + α3

>α2 − 1− δT

=− 1 + T (1 + δ) + T 2δ2 > −1

and therefore xk+1 ≥ 0. �

Lemma 3.4. Let (ui+1, vi+1) = τ3
r (ui, vi). Then (ui, vi) ∈ A and ‖(ui, vi)‖1 = m implies that

ui+1 + vi+1 ≥ −m.

Proof. Since (ui, vi) ∈ A we have ‖(ui, vi)‖1 = −ui − vi. Thus

ui+1 + vi+1 =ui + uiα1 + viα2 + α3 + vi + uiβ1 + viβ2 + β3

>ui(α1 + β1) + vi(α2 + β2)−m− 1 + T + δ2T 2

where (3.15) gives the lower bound for α3 + β3. Considering (3.8), (3.9) and (3.12) yields ui+1 +
vi+1 > −m− 1 and for integer values ui+1, vi+1,m we get ui+1 + vi+1 ≥ −m. �

Lemma 3.5. Let (xk+1, yk+1) = τ3
r (xk, yk). If (xk, yk) ∈ B and ‖(xk, yk)‖1 = m, then xk+1 +

yk+1 ≤ m.
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Proof. Since (xk, yk) ∈ B we have ‖(xk, yk)‖1 = xk + yk. Again (3.8), (3.9), (3.12) and (3.15) are
used for the following estimation.

xk+1 + yk+1 =xk + xkα1 + ykα2 + α3 + yk + xkβ1 + ykβ2 + β3

<xk(α1 + β1) + yk(α2 + β2) + m + 1
<m + 1

and thus xk+1 + yk+1 ≤ m. �

Lemma 3.6. Let (ui+1, vi+1) = τ3
r (ui, vi). Then (ui, vi) ∈ A implies that vi+1 − vi ≥ 1.

Proof. Since (ui, vi) ∈ A we have ui ≤ 0 and vi < 0. Thus

κ(ui, vi) =− uiδT − vi(T + δT )− bι(ui, vi)cδT
≥− uiδT − vi(T + δT )− ι(ui, vi)δT

=ui(−δT + δT 2) + vi(−T − δT − δ2T 2) > 0⇒ bκ(ui, vi)c ≥ 0

λ(ui, vi) =ui(T + δT ) + viT + bι(ui, vi)c(T + δT )− bκ(ui, vi)cδT
≤ui(T + δT ) + viT + ι(ui, vi)(T + δT )

=ui(T + δT − T 2 − δT 2) + vi(T + δT 2 + δ2T 2)

≤− T − δT 2 − δ2T 2 < 0⇒ bλ(ui, vi)c ≤ −1.

Finally the simple computation

vi+1 − vi = bκ(ui, vi)c − bλ(ui, vi)c ≥ 1

shows the statement. �

Lemma 3.7. Let (xk, yk) ∈ B and (xk+1, yk+1) = τ3
r (xk, yk). Then yk+1 − yk ≤ −1.

Proof.

κ(xk, yk) =− xkδT − yk(T + δT )− bι(xk, yk)cδT
≤− xkδT − yk(T + δT )− (ι(xk, yk)− 1)δT

=xk(−δT + δT 2) + yk(−T − δT − δ2T 2) + δT

≤− T − δ2T 2 < 0⇒ bκ(xk, yk)c ≤ −1

λ(xk, yk) =xk(T + δT ) + ykT + bι(xk, yk)c(T + δT )− bκ(xk, yk)cδT
≥xk(T + δT ) + ykT + (ι(xk, yk)− 1)(T + δT ) + δT

=xk(T + δT − T 2 − δT 2) + yk(T + δT 2 + δ2T 2)− T

≥δT 2 + δ2T 2 ≥ 0⇒ bλ(xk, yk)c ≥ 0.

Hence

yk+1 − yk = bκ(xk, yk)c − bλ(xk, yk)c ≤ −1.

�

Lemma 3.8. If (uj , vj) ∈ A and (uj+1, vj+1) = τ3
r (uj , vj) 6∈ A then τr(uj+1, vj+1) ∈ B or

τr(uj+1, vj+1) = 0.

Proof. Let (u′, v′) := τr(uj+1, vj+1). We will show that u′ ≥ 0 and v′ > 0. We have uj+1 ≤ 0
(according to Lemma 3.2) and vj+1 > vj (according to Lemma 3.6). Since (uj+1, vj+1) 6∈ A we can
conclude that vj+1 ≥ 0 and therefore u′ = vj+1 ≥ 0. The proof of the other statement requires
some more estimations. Set m := −uj−vj . Suppose first that m < 2. This is only for uj +vj = −1
and therefore ui = 0 and vi = −1. Then bι(uj , vj)c ∈ {−1, 0}, bκ(uj , vj)c = 0 and bλ(uj , vj)c =
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−1. Hence either (uj+1, vj+1) = 0, which means that (u′, v′) = 0, or (uj+1, vj+1) = (1, 0), which
implies that v′ = −b−1 + T c = 1 > 0. If m ≥ 2 then

uj+1 =uj(1 + α1) + vjα2 + α3

>(−vj −m)(1 + α1) + vjα2 − 1− δT

=vj(−1− α1 + α2)−m(1 + α1)− 1− δT.

Note that (uj , vj) ∈ A and so vj ≤ −1 < 0. Thus

uj+1 ≥1 + α1 − α2 −m−mα1 − 1− δT

=−m + α1(1−m)− α2 − δT

≥−m− α2 − δT.

Since uj+1 and m are integers, the conclusion

(3.16) uj+1 ≥ −m

holds. Furthermore by (3.7) and (3.15)

uj+1 + vj+1 =uj(1 + α1 + β1) + vj(1 + α2 + β2) + α3 + β3

<(−m− vj)(1 + α1 + β1) + vj(1 + α2 + β2) + 1

=−m + 1−mα1 −mβ1 + vj(α2 + β2 − α1 − β1).

Inserting vj ≤ −1 and using (3.8)-(3.11) yields

uj+1 + vj+1 ≤−m + 1−mα1 −mβ1 − (α2 + β2 − α1 − β1)

=(−m + 1)(1 + α1 + β1)− α2 − β2

≤(−m + 1)(1− 4T ) + 3T

=m(−1 + 4T ) + 1− T.

Together with (3.16) this implies

uj+1(1− T ) + vj+1(1 + δT )

≤uj+1(1− T ) + (m(−1 + 4T ) + 1− T − uj+1)(1 + δT )

=m(−1 + 4T )(1 + δT ) + (1− T )(1 + δT )− uj+1(T + δT )

≤m(−1 + 4T )(1 + δT ) + (1− T )(1 + δT ) + m(T + δT )

=m(−1 + 5T + 4δT 2) + 1− T + δT − δT 2

≤− 2 + 10T + 8δT 2 + 1− T + δT − δT 2

=− 1 + 9T + δT + 7δT 2 < 0

and therefore v′ = −buj+1(1 − T ) + vj+1(1 + δT )c ≥ 1 > 0. Hence τr(uj+1, vj+1) = (u′, v′) is
really inside B, when it is not 0. �

Lemma 3.9. (xl, yl) ∈ B and (xl+1, yl+1) = τ3
r (xl, yl) 6∈ B implies that τr(xl+1, yl+1) ∈ A or

τr(xl+1, yl+1) = 0.

Proof. Let (x′, y′) := τr(xl+1, yl+1). Analogously to Lemma 3.8 we have to show that x′ ≤ 0 and
y′ < 0. The claim (xl+1, yl+1) 6∈ B together with Lemma 3.3 and Lemma 3.7 implies that yl+1 ≤ 0
and therefore x′ = yl+1 ≤ 0. The second estimation comes from the following computations: Let
m := xl + yl. Suppose m < 3. There are three possibilities:

(xl, yl) = (0, 1):

bι(0, 1)c =bδT c = 0

bκ(0, 1)c =b−T − δT c = −1

bλ(0, 1)c =bT + δT c = 0

and therefore (xl+1, yl+1) = (0 + 0 + 1, 1− 1 + 0) = (1, 0) and further (x′, y′) = τr(1, 0) =
(0,−b(1− T )c) = 0.
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(xl, yl) = (1, 1):

bι(1, 1)c =bδT − T c ∈ {0,−1}
bκ(1, 1)c =b−T − 2δT − bι(1, 1)cδT c = −1

bλ(1, 1)c =b2T + 2δT + bι(1, 1)c(T + δT )c = 0.

So either (xl+1, yl+1) = (1, 0), which goes to 0 by the calculation above, or (xl+1, yl+1) =
(2, 0) and y′ = −b2− 2T c = −1 < 0.

(xl, yl) = (0, 2):

bι(0, 2)c =b2δT c = 0

bκ(0, 2)c =b−2T − 2δT c = −1

bλ(0, 2)c =b2T + δT c = 0.

This yields (xl+1, yl+1) = (1, 1). This case does not fulfill the condition (xl+1, yl+1) 6∈ B.
Thus it is irrelevant for the present lemma.

Now let m ≥ 3. Note that always yl ≥ 1.

xl+1 =xl(1 + α1) + ylα2 + α3

<(−yl + m)(1 + α1) + ylα2 + 1

=yl(−1− α1 + α2) + m(1 + α1) + 1
≤− 1− α1 + α2 + m + mα1 + 1

=m + α1(m− 1) + α2

≤m + α2.

Again xl+1 and m are integers and from there follows

(3.17) xl+1 ≤ m.

Analogously to Lemma 3.8, we need a lower bound for xl+1 + yl+1:

xl+1 + yl+1 =xl(1 + α1 + β1) + yl(1 + α2 + β2) + α3 + β3

>(m− yl)(1 + α1 + β1) + yl(1 + α2 + β2)− 1 + T + δ2T 2

≥m− 1 + mα1 + mβ1 + yl(α2 + β2 − α1 − β1) + T

≥m− 1 + mα1 + mβ1 + (α2 + β2 − α1 − β1) + T

=(m− 1)(1 + α1 + β1) + α2 + β2 + T

≥(m− 1)(1− 4T )− 2T

=m(1− 4T )− 1 + 2T

where (3.8)-(3.11) are used to gain the last lines. With the help of these two results we show the
estimation

xl+1(1− T ) + yl+1(1 + δT )

≥xl+1(1− T ) + (m(1− 4T )− 1 + 2T − xl+1)(1 + δT )

=m(1− 4T )(1 + δT ) + (−1 + 2T )(1 + δT )− xl+1(T + δT )

≥m(1− 4T )(1 + δT ) + (−1 + 2T )(1 + δT )−m(T + δT )

=m(1− 5T − 4δT 2)− 1 + 2T − δT + 2δT 2

≥3− 15T − 12δT 2 − 1 + 2T − δT + 2δT 2

=2− 13T − δT − 10δT 2 > 1.

Therefore y′ = −bxl+1(1− T ) + yl+1(1 + δT )c ≤ −1 < 0. �

Lemma 3.10. If (ui, vi) ∈ A and (ui+1, vi+1) = τ3
r (ui, vi) 6∈ A then we have ‖τr(ui+1, vi+1)‖1 ≤

‖(ui, vi)‖1 = m.
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Proof. Let (u′, v′) := τr(ui+1, vi+1). Lemma 3.8 says that τr(ui+1, vi+1) is element of B and
therefore ‖τr(ui+1, vi+1)‖1 = u′ + v′, while the inside A lying point (ui, vi) induces the condition
ui + vi = −m. According to Lemma 3.4, ui+1 + vi+1 ≥ −m is valid, although the point is not an
element of A.

u′ + v′ =vi+1 − ui+1 − vi+1 − b−ui+1T + vi+1δT c
=− bui+1(1− T ) + vi+1δT c
≤ − bui+1(1− T ) + (−ui+1 −m)δT c
=− bui+1(1− T − δT )−mδT c.

Using (3.16) yields

u′ + v′ ≤− b−m(1− T − δT )−mδT c
≤m− bmT c ≤ m

and shows that u′ + v′ ≤ m holds. �

Lemma 3.11. If (xl, yl) ∈ B and (xl+1, yl+1) = τ3
r (xl, yl) 6∈ B then we have ‖τr(xl+1, yl+1)‖1 <

‖(xl, yl)‖1 = m.

Proof. Let (x′, y′) = τr(xl+1, yl+1). Referring to Lemma 3.9 we have (x′, y′) ∈ A and therefore
‖(x′, y′)‖1 = −x′ − y′. On the other hand ‖(xl, yl)‖1 = xl + yl =: m. According to Lemma 3.5,
xl+1 + yl+1 ≤ m holds, although the point is not an element of B.

x′ + y′ =yl+1 − xl+1 − yl+1 − b−xl+1T + yl+1δT c
=− bxl+1(1− T ) + yl+1δT c
≥ − bxl+1(1− T ) + (−xl+1 + m)δT c
=− bxl+1(1− T − δT ) + mδT c.

Now we use (3.17) to get

x′ + y′ ≥− bm(1− T − δT ) + mδT c
≥ −m− b−mT c ≥ −m + 1.

This shows the validity of ‖(x′, y′)‖1 ≤ m− 1 < m. �

Lemma 3.12. Let (u, v) ∈ Z2. Then there is an i ∈ N with either τ i
r(u, v) ∈ A∪B or τ i

r(u, v) = 0.

Proof. Consider the line x + y + ι(x, y) = 0. It runs through the origin and splits the second
quadrant into two pieces for each possible T and δ. It allows the partition of Z2 into 0 and the
sets

B :=
{
(x, y) ∈ Z2 |x ≥ 0, y > 0

}
,

A :=
{
(x, y) ∈ Z2 |x ≤ 0, y < 0

}
,

U1 :=
{
(x, y) ∈ Z2 |x < 0, y ≥ 0, x + y + ι(x, y) < 0

}
,

U2 :=
{
(x, y) ∈ Z2 |x < 0, y ≥ 0, x + y + ι(x, y) ≥ 0

}
,

U3 :=
{
(x, y) ∈ Z2 |x > 0, y ≤ 0

}
.

There are the following cases
(u, v) ∈ U1: We have v ≥ 0 and −bu + v + ι(u, v)c ≥ 1 > 0. Thus τr(u, v) = (v,−bu + v +

ι(u, v)c) ∈ B.
(u, v) ∈ U2: (u, v) cannot be an element of the x-axis. Suppose v = 1 and u ≤ −2. Then

u + v + ι(u, v) ≤ −2 + 2T + 1 + δT = −1 − 2T − δT < 0 shows that (u, v) does not
lie in U2. If u = −1 then (u, v) = (−1, 1). This point is an element of U2. τr(−1, 1) =
(1,−1 + 1 − bT + δT c) = (1, 0) and τr(1, 0) = (0,−1 − b−T c) = 0 shows that this point
goes to 0 after 2 applications of τr. For the rest of U2 we can assume u ≤ −1 and v ≥ 2.

v + uβ1 + vβ2 + β3 ≥2 + 2β2 − β1 − 1− δT

=1− T + T 2(−1− 4δ − 2δ2) + T 3(−δ2 − δ3) > 0
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and therefore v + uβ1 + vβ2 + β3 ≥ 1. Further we have

ι(u, v) =vδT − uT ≥ 2δT + T > 0⇒ bι(u, v)c ≥ 0,

κ(u, v) =− uδT − v(T + δT )− bι(u, v)cδT
=− vT − bu + v + ι(u, v)cδT
≤− vT < 0

which shows that bκ(u, v)c ≤ −1. Furthermore bι(u, v)c − bκ(u, v)c ≥ 1. Thus we can
conclude that the point

τ3
r (u, v) = (u + bι(u, v)c − bκ(u, v)c, v + β1u + β2v + β3)

is above the x-axis and right of (u, v). This induces that τm
r (u, v) is either 0, an element

of U1 or an element of B for an m ∈ N.
(u, v) ∈ U3: This implies that v ≤ 0. Thus τr(u, v) = (v,−u− v − bι(u, v)c) 6∈ U3.

Hence ∃i ∈ N with τ i
r(u, v) ∈ A ∪B ∪ {0} for each (u, v) ∈ Z2. �

4. A Family of Cutouts

In this section we construct a family of pairwise disjoint periods which all yield nonempty
cutouts. Afterwards we use this to show that the point K ′

d := (0, . . . , 0, 1, 1) is a critical point.
At the end we turn to another family of periods. It was presented in [1] and we will provide the
shape of the corresponding polygons.

4.1. Quadrangles near the point (1, 1). For each n ∈ N, n ≥ 1, consider the period

ωn := (2n + 1,−2n);
n⊔

i=1

(2i− 1, 2n− 2i + 1,−2n),
n−1⊔
i=1

(2n + 1,−2i,−2n + 2i)

where
⊔

denotes the sequence gained by concatenation, e.g.
⊔n

i=1 ai = a1, . . . , an. For an empty
set of indices the corresponding sequence is empty. Hence for each n ≥ 1 we have a period of
length 6n− 1.

ω1 = (3,−2); 1, 1,−2,

ω2 = (5,−4); 1, 3,−4, 3, 1,−4, 5,−2,−2,

ω3 = (7,−6); 1, 5,−6, 3, 3,−6, 5, 1,−6, 7,−2,−4, 7,−4,−2,

...

Thus the set P (ωn) consists of the points satisfying the following system of inequalities, deduced
from (1.2):

0 ≤ x− 2ny + 2n + 1 < 1,(4.1)
0 ≤ −2nx + (2n + 1)y − 2 < 1,(4.2)
0 ≤ −2x + (2n + 1)y − 2n < 1,(4.3)
0 ≤ (2n + 1)x− 2ny + 1 < 1,(4.4)
0 ≤ −2nx + (2j + 1)y + 2n− 2j − 1 < 1 (0 ≤ j < n),(4.5)
0 ≤ (2j + 1)x + (2n− 2j − 1)y − 2n < 1 (0 ≤ j < n),(4.6)
0 ≤ (2n + 1)x− 2jy − 2n + 2j < 1 (0 < j < n),(4.7)
0 ≤ −2jx + (−2n + 2j)y + 2n + 1 < 1 (0 < j < n).(4.8)
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Figure 6. The points of the period ω7

For n = 1, (4.2) and (4.3) are equal and (4.7) as well as (4.8) do not exist. For a point r ∈ P (ωn),
the function τr maps as follows:

(1,−2n) 7→ (−2n, 2n + 1),
(−2n, 2n + 1) 7→ (2n + 1,−2),
(−2, 2n + 1) 7→ (2n + 1,−2n),

(2n + 1,−2n) 7→ (−2n, 1),
(−2n, 2j + 1) 7→ (2j + 1, 2n− 2j − 1) (0 ≤ j < n),

(2j + 1, 2n− 2j − 1) 7→ (2n− 2j − 1,−2n) (0 ≤ j < n),
(2n + 1,−2j) 7→ (−2j,−2n + 2j) (0 < j < n),

(−2j,−2n + 2j) 7→ (−2n + 2j, 2n + 1) (0 < j < n).

Figure 6 shows these points for n = 7. We will see that the set P (ωn) of points satisfying the
inequalities (4.1)-(4.8) equals a nonempty polygon for all n ≥ 1. Let

x(1)
n :=

(
1,

2n + 1
2n

)
,

x(2)
n :=

(
2n(2n + 1)

4n2 + 2n− 1
,

(2n + 1)2

4n2 + 2n− 1

)
,

x(3)
n :=

(
2n(2n− 1)

4n2 − 2n + 1
,

4n2

4n2 − 2n + 1

)
,

x(4)
n :=

{(
3
4 , 3

2

)
(n = 1)(

1, 2n
2n−1

)
(otherwise)

.

Denote by �(a1, . . . ,ak) the convex hull of the points a1, . . . ,ak.

Theorem 4.1. For any n ≥ 1, P (ωn) equals the open set S := int�(x(1)
n , . . . ,x(4)

n ).

Proof. We chose from our list the four right hand (strict) inequalities (4.1), (4.4), (4.5) with
j = n − 1 and (4.6) with j = 0. For n = 1 take (4.2) instead of the last one. They form a
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Figure 7. The cutouts P (ωn)

subsystem of the system (4.1)-(4.8). Each of these inequalities describes an open half plane:

U (1)
n : {(x, y) |x− 2ny + 2n + 1 < 1} ,

U (2)
n : {(x, y) |(2n + 1)x− 2ny + 1 < 1} ,

U (3)
n : {(x, y) |−2nx + (2n− 1)y + 1 < 1} ,

U (4)
n :

{
{(x, y) |−2x + 3y − 2 < 1} (n = 1)
{(x, y) |x + (2n− 1)y − 2n < 1} (otherwise)

.

Obviously we have P (ωn) ⊂
⋂4

i=1 U
(i)
n . The lines

g(1)
n : x− 2ny + 2n = 0,

g(2)
n : (2n + 1)x− 2ny = 0,

g(3)
n : −2nx + (2n− 1)y = 0,

g(4)
n :

{
−2x + 3y − 3 = 0 (n = 1)

x + (2n− 1)y − 2n− 1 = 0 (otherwise)

are the boundary lines of these half planes: g
(i)
n bound U

(i)
n for i = 1, . . . , 4. Now it is quickly

verified that

x(1)
n = g(1)

n ∧ g(2)
n , x(1)

n ∈ U (3)
n ∩ U (4)

n ,

x(2)
n = g(2)

n ∧ g(4)
n , x(2)

n ∈ U (1)
n ∩ U (3)

n ,

x(3)
n = g(1)

n ∧ g(3)
n , x(3)

n ∈ U (2)
n ∩ U (4)

n ,

x(4)
n = g(3)

n ∧ g(4)
n , x(4)

n ∈ U (1)
n ∩ U (2)

n .

This shows that S =
⋂4

i=1 U
(i)
n and thus S ⊃ P (ωn). On the other hand simple calculations show

that for each i = 1, . . . , 4, x
(i)
n satisfies all the other inequalities of the system (4.1)-(4.8). Hence

we also have S ⊂ P (ωn). �

From the x-values of x(2)
n and x(3)

n

2n(2n + 1)
4n2 + 2n− 1

= 1 +
1

4n2 + 2n− 1
2n(2n− 1)

4n2 − 2n + 1
= 1− 1

4n2 − 2n + 1
we see that only a part of Π(ωn) lies within D2. Figure 7 shows the cutout polygons for n > 1.
Again the axes are reversed to save space. The very big Polygon P (ω1) can be seen in Figure 1.
Together with a second one, it forms the rightmost cutout. As it can be seen, the polygons cut
out triangles out of D2 (black).
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4.2. A critical point. In [1, Theorem 7.5] was shown that Kd := (0, . . . , 0, 1, 0) ∈ Dd is a critical
point, i.e. for any neighbourhood U ∈ Dd infinitely many cutout polyhedra are necessary to gain
U ∩D0

d. We will use the results of subsection 4.1 to show K ′
d := (0, . . . , 0, 1, 1) ∈ Dd to be a critical

point, too. This was already stated in [1, Remark 7.6] but without being explicitly proven. We
will accomplish that proof now. The following lemma is a basic fact:

Lemma 4.2. Let π be any period. Then intP (π) ∩ Zd = ∅.

Proof. P (π) is described be several inequalities of the form

0 ≤ a1x1 + . . . + adxd + ad+1 < 1

with integers a1, . . . , ad. To ensure that a point is an inner point of P (π), both inequalities have
to be strict. For a point of Zd this is impossible to fulfill. �

Theorem 4.3. The point K ′
d is critical.

Proof. Because of the lifting Theorem [1, Theorem 6.2] it suffices to show the assertion only for
K ′

2 = (1, 1). From Theorem 4.1 we know that we can construct a sequence of points (xk, yk)k∈N
converging to K ′

2 with xk < 1, yk > 1 and (xk, yk) 6∈ D0
2 for all k ∈ N. Suppose K ′

2 were not a
critical point. Then there must exist a period π = (a0, a1); a2, . . . , an−1 such that P (π) includes all
but finitely many elements of the sequence. For this period we can deduce the following properties
(for the rest of the proof, take all indices modulo n):

(1) P (π) ⊃ Q := (1 − δ, 1) × (1, 1 + ε) for some δ, ε > 0. The set P (π) is described by
inequalities

0 ≤ ai−1x + aiy + ai+1 < 1
with i ∈ {0, . . . , n− 1}. The points of Q have to suffice all of these inequalities. Together
with Lemma 4.2 we gain

ai < 0 ⇒ ai−1 + ai + ai+1 = 1,
ai > 0 ⇒ ai−1 + ai + ai+1 = 0,
ai = 0, ai−1 < 0 ⇒ ai−1 + ai + ai+1 = 0,
ai = 0, ai−1 > 1 ⇒ ai−1 + ai + ai+1 = 1.

Especially we have

(4.9)
ai ≤ 0, ai+1 < 0 ⇒ ai+2 = 1− ai − ai+1 > 0 ⇒ ai+3 = ai − 1 < 0

⇒ ai+4 = ai+1 + 1 ,

(4.10)
ai ≥ 0, ai+1 > 0 ⇒ ai+2 = −ai − ai+1 < 0 ⇒ ai+3 = ai + 1 > 0

⇒ ai+4 = ai+1 − 1 .

(2) π has to include zeros. To see this, we first note that π consists of positive and negative
numbers. Summing up over all triples ai−1 + ai + ai+1 and observing the rules from (1)
yields

3
n∑

i=1

ai = |{i | ai < 0 ∨ ai = 0, ai−1 > 1} | > 0.

For any i ∈ {0, . . . , n− 1} we have

ai +ai+1 +ai+2 ∈ {0, 1}
−ai+1 −ai+2 −ai+3 ∈ {0,−1}

ai −ai+3 ∈ {0, 1,−1}.
Therefore, the element ai+3 differs from the element ai by one at most. If n 6≡ 0(3), the
elements of π can be rearranged as

a0, a3, . . . , a3j+3(mod n), . . . , (0 ≤ j ≤ n− 1)

Observing that this list includes positive numbers as well as negative ones and that neigh-
boured elements differ by one at most shows that necessarily it has to include at least one
zero. In the case n ≡ 0(mod 3) we can make such a rearrangement for each of the sets
Ak := {ai|i ≡ k(mod 3)}, k = 0, 1, 2 separately. Suppose all of these sets consist of equal
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Figure 8. The cutouts P (ζn)

signed integers only. Then there must be at least one such set including only positive
numbers, say A1. The calculation

0 <
n−1∑
i=0

ai =
n/3−1∑

j=0

(a3j + a3j+1 + a3j+2) = 0,

where a3j+1 ∈ A1 for all j, shows the impossibility of this. Hence A1 has to include both
positive and negative numbers and therefore zeros too.

We are now at the point to prove that there cannot exist a period π performing the desired
properties. We do this by constructing a sequence (bi)i≥0 of integers sufficing points (1) and (2) and
showing that this sequence ends up in a series of zeros. Without loss of generality we may start with
b0 = 0. Suppose b1 = k > 0. Successive application of (4.10) shows b3k = k > 0 and b3k+1 = 0.
Hence b3k+2 = −k+1. Now we apply (4.9) sufficiently often to see that b6k−2 = −k+1, b6k−1 = 0.
This implies b6k = k−1. Repeating this procedure we gain b3k2+2k−1 = 0 and b3k2+2k = 0. Similar
calculations for the case k < 0 yield the same result finishing the proof. �

Conjecture 4.4. K and K ′ are the only critical points in the 2-dimensional case.

4.3. The shape of another family of cutouts. In [1] the family of periods

ζn = (n + 1, 1);−n,−1, n,
n⊔

i=2

(i,−n− 1 + i,−i, n + 1− i)

of nonempty cutout polyhedra was investigated. Contrary to the cutouts P (ωn), which are located
in the upper half plane, we have y < 0 for P (ζn). But the shape of these cutouts has not been
investigated yet. Therefore we will add an analogue analysis for the periods ζn here. We have the
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pairs of inequalities

0 ≤ x + (n + 1)y + 1 < 1,(4.11)
0 ≤ jx + (j − n− 1)y − j < 1 (0 < j ≤ n),(4.12)
0 ≤ (j − n− 1)x− jy + n + 1− j < 1 (0 < j ≤ n),(4.13)
0 ≤ −jx + (n + 1− j)y + (j + 1) < 1 (0 < j ≤ n),(4.14)
0 ≤ (n + 1− j)x + (j + 1)y + j − n < 1 (0 ≤ j < n).(4.15)

Note that the length of ζn is 4n + 1 and that we have exactly one inequality of each type for the
case n = 1, which we will see to behave a little different again. We direct our attention to five lines,
for n = 1 to three lines, respectively. They are deduced from the strict side of inequality (4.11)
and (4.12) with j = 1, and the not strict side of inequality (4.15) with j = n− 1 and additionally,
for n > 1, the strict sides of (4.14) with j = n and (4.15) with j = n− 1. In particular we have:

h
(1)
1 :x + 2y = 0,

h
(2)
1 :x− y = 2,

h
(3)
1 :2x + y = 1

and for n > 1

h(1)
n :(n + 1)x + y = n + 1,

h(2)
n :x− ny = 2,

h(3)
n :2x + ny = 1,

h(4)
n :nx− y = n,

h(5)
n :x + (n + 1)y = 0.

Further define the points:

y(1)
n :=

(
n2 + n + 2
n2 + n + 1

,− n + 1
n2 + n + 1

)
,

y(2)
n :=

(
1,− 1

n

)
,

y(3)
n :=

(
n2 + 1
n2 + 2

,− n

n2 + 2

)
,

y(4)
n :=

(
n(n + 1)

n2 + n + 1
,− n

n2 + n + 1

)
,

y(5)
n :=

(
(n + 1)2

n(n + 2)
,− n + 1

n(n + 2)

)
.

The points y(1)
1 and y(5)

1 as well as y(3)
1 and y(4)

1 are identical, such that there are only the three
different points y(i)

1 , i = 1, 2, 3 for the case n = 1.

Theorem 4.5.
P (ζ1) = �(y(1)

1 ,y(2)
1 ,y(3)

1 ) \ (h(1)
1 ∪ h

(2)
1 ),

P (ζn) = �(y(1)
1 , . . . ,y(5)

1 ) \ (h(1)
1 ∪ h

(2)
1 ∪ h

(4)
1 ∪ h

(5)
1 ), n > 1.

Proof. (sketch) For n > 1 we have g
(i)
n ∧ g

(i+1)
n = y(i)

n for i = 1, . . . , 5 (upper indices are taken
modulo 5) and g

(i)
1 ∧ g

(i+1)
1 = y(i)

1 for i = 1, 2, 3 (upper indices are taken modulo 3), respectively.
Therefore the five (three, resp.) lines bound the stated area. Only h

(3)
n is deduced from a not

strict inequality, all other lines come from strict ones. Hence these lines have to be removed.
Additionally all points satisfy the rest of the inequalities. �
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ζ1 describes a triangle, the others form pentagons. In Figure 8 this is shown graphically, starting
with P (ζ1) on the left (reversed axes). As easy can be verified, ζn cuts out a quadrangle from D2

for n > 1, for n = 1 it is an triangle (black parts).

References
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