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Abstract

Let F be a field and F[x, y] the ring of polynomials in two variables over F. Let

f ∈ F[x, y] and consider the residue class ring R := F[x, y]/fF[x, y]. Our first aim is

to study digit representations in R, i.e., we ask for which f each element of R admits

a digit representation of the form d0 + d1x + · · · + dℓx
ℓ with digits di ∈ F[y] satisfy-

ing degy(di) < degy(f). These digit systems are motivated by the well-known notion of

canonical number systems. In a next step we enlarge the ring in order to allow representa-

tions including negative powers of the “base” x. In particular, we define and characterize

digit representations for the ring S := F((x−1, y−1))/f F((x−1, y−1)) and give easy to

handle criteria for finiteness and periodicity of such representations. Finally, we attach

fundamental domains to our digit systems. The fundamental domain of a digit system is

the set of all elements having only negative powers of x in their “x-ary” representation.

The translates of the fundamental domain induce a tiling of S. Interestingly, the funda-
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mental domains of our digit systems turn out to be unions of boxes. If we choose F = Fq

to be a finite field, these unions become finite.

1. Introduction

Since the end of the 19th century various generalizations of the usual radix representa-

tion of the integers to other algebraic structures have been introduced and extensively in-

vestigated. A prominent class of number systems are canonical number systems in residue

class rings of polynomials over Z. A special instance of a canonical number system has

first been investigated by Knuth [14]. Later on, they have been studied thoroughly by

Gilbert, Grossman, Kátai, Kovács and Szabó (cf. for instance [6, 7, 11, 12, 13]).

The most general definition of canonical number systems is due to Pethő [15] and

reads as follows. Let P ∈ Z[x] and consider the residue class ring Z[x]/PZ[x]. Then

(x, {0, 1, . . . , |P (0)| − 1}) is called a canonical number system in Z[x]/PZ[x], if each

z ∈ Z[x]/PZ[x] can be represented by an element

ℓ∑

j=0

djx
j ∈ Z[x] with “digits” 0 ≤ dj < |P (0)|.

More recently, canonical number systems gained considerable interest and were stud-

ied extensively. We refer the reader for instance to Akiyama et al. [1] where they are

embedded in a more general framework.

The present paper is motivated by the definition of canonical number systems. Indeed,

we replace Z in the definition of canonical number systems by F[y], where F is an arbitrary

field. For finite fields this concept has been introduced and studied by the third and

fourth authors [18] (similar generalizations have been investigated in recent years; see

e.g. [4, 8, 16]). Indeed, let F = Fq be a finite field. In [18], digit systems in the residue

class ring R := Fq[x, y]/f Fq[x, y] for f ∈ Fq[x, y], have been investigated, in particular,

all polynomials f with the property that each r ∈ R admits a finite representation

r ≡ d0 + d1x+ · · · + dℓx
ℓ mod f

with “digits” di ∈ Fq[y] satisfying degy(di) < degy(f) have been characterized (see

Section 2 for a formal definition of these digit systems). Moreover, eventually periodic

representations have been investigated in this paper. In the first part of the present

paper we extend the characterization result of [18] to arbitrary fields F. Even in this

more general case the characterization problem of all such digit systems turns out to be

completely solvable.

In order to motivate the second aim of our paper we again go back to canonical number

systems. Already Knuth [14], who studied the special instance P (x) = x2 + 2x + 2

observed that canonical number systems have interesting geometrical properties. Indeed,

considering representations involving negative powers of the base and defining so-called

“fundamental domains” yields connections to fractals and the theory of tilings (see for

instance [2, 10, 17]).

In the present paper we would like to carry over representations with respect to negative

powers as well as the definition of fundamental domains to our new notion of digit system.

The fundamental domain turns out to be a union of “boxes”. If F = Fq is a finite field,

this union becomes finite which makes the fundamental domain easy to describe.
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The paper is organized as follows. In Section 2 we give the formal definition of digit

systems in residue class rings R of the polynomial ring F[x, y] over a field F. Moreover, we

give a new proof of the theorem by Scheicher and Thuswaldner [18] which charac-

terizes all polynomials that admit finite representations. Moreover, we enlarge the space

of interest to the residue class ring F((x−1, y−1))/fF((x−1, y−1)) of the ring of Laurent

series in two variables. We are able to prove that each element of this ring admits a

unique “digital” representation. Section 3 shows that our digit systems are symmetric in

the variables x and y and gives a way to switch between the “x-” and the “y-digit rep-

resentation”. The switching algorithm gives insights into the arithmetic structure of the

digit systems. In Section 4 we investigate which elements allow periodic representations.

It turns out that this question can be answered with help of the total ring of fractions

of R. In this section we confine ourselves to the case where F is a finite field. Finally,

in Section 5 we construct “fundamental domains” for our digit systems. Interestingly, it

turns out that these sets are bounded, closed and open and can be written as unions

of cylinders. If F is a finite field these unions become finite which makes the set totally

bounded and therefore compact. The fundamental domains induce a tiling of S.

2. Digit systems

Let F be a field and Gx = F[x][y] the polynomial ring in two commuting variables with

coefficients in F. Let f ∈ Gx. We first define digit representations for the elements of the

residue class ring Rx := Gx/fGx. Set

Nx = {d ∈ F[y] | degy(d) < degy(f)}.

We say that g ∈ Gx is an x-digit representation of r ∈ Rx if and only if the following

two conditions hold:

• g maps to r under the canonical projection map.

• g =
∑ℓ

i=0 dix
i for some ℓ ∈ Z and di ∈ Nx.

The polynomials di are called the x-digits of r. If each element of Rx has a unique x-digit

representation we say that (x,Nx) is a digit system in Rx with base x and set of digits

Nx.

Remark 2·1. If F = Fq is a finite field, then Rx is an (Nx, x)-ring in the sense of

Allouche et al. [3]. Moreover, in this case the associated digit systems coincide with

the notion of digit systems studied in [18].

It is easy to characterize x-digit systems.

Theorem 2·2 (Representations I). Let f ∈ Gx. The pair (x,Nx) is a digit system in

Rx if and only if f is monic in y, i.e., the leading coefficient of f written as a polynomial

in y with coefficients in F[x] is a nonzero element of F.

Proof. Assume first that f is monic in y. Let r ∈ Rx and pick any representative

g′ ∈ Gx of r. Since f is monic in y using division with remainder we can find g, a ∈ Gx

with degy(g) < degy(f) such that g = af + g′. Writing g as a polynomial in x with

coefficients in F[y] we see that it is an x-digit representation of r. To prove that g is

unique assume on the contrary that g′′ ∈ Gx is a different x-digit representation of r.

Then 0 6= g′′ − g maps to zero in Rx and satisfies degy(g′′ − g) < degy(f). Therefore



4 Tobias Beck and Others

f ∤ g′′−g. On the other hand, since the kernel of the quotient map Gx → Rx is generated

by f , it follows that f | g′′ − g which is a contradiction.

Assume now that (x,Nx) is a digit system and
∑ℓ

i=0 dix
i is the x-digit representation

of ydegy(f). Then ydegy(f) −
∑ℓ

i=0 dix
i is monic in y and divisible by f , therefore f is

monic in y as well.

Remark 2·3. Obviously, expanding an element r ∈ Rx in base x with y-digits is the

same as reducing the exponents of y.

Remark 2·4. If F = Fq is a finite field, we obtain a generalization of [18, Theo-

rem 2.5].

If we define further

Gy := F[y][x] and G := F[x, y],

then all three rings G, Gx and Gy are trivially F-isomorphic by sending x 7→ x and y 7→ y.

Accordingly we get isomorphisms of the residue class rings

R := G/fG, Rx, Ry := Gy/fGy.

Remark 2·5. Assume that we are given a polynomial f ∈ G such that both Rx ad-

mits an x-digit system and Ry admits a y-digit system. In view of Theorem 2·2 this is

equivalent to the fact that f is monic with respect to both x and y. If we think of the

x-digit (resp. y-digit) representation as being the canonical representation for elements

of Rx (resp. Ry) then we may consider the isomorphism Rx → Ry as switching between

x- and y-digit representations. For this reason, later on we will confine ourselves to these

choices of f .

So far we have carried over the notion of canonical number systems to polynomial rings

over a field. However, we also aim at an analogy for representations including negative

powers of the base. With these representations we finally wish to define “fundamental

domains” for our digit systems. Thus for our further constructions we make use of the

fields F((x−1)) and F((y−1)). These fields are complete with respect to | · |x = qdegx(·)

and | · |y = qdegy(·), respectively. First define the rings

H := F((x−1, y−1)), Hx := F((x−1))[y], Hy := F((y−1))[x]

and their quotients modulo f

S := H/fH, Sx := Hx/fHx, Sy := Hy/fHy.

Note that Sx is a vector space over the complete field F((x−1)) of dimension degy(f).

In what follows we will rarely mention symmetric statements obtained by interchanging

the roles of x and y.

By πG, πGx
, πH and πHx

we denote the respective quotient maps of the rings de-

fined above. The elements of G,Gx,H and Hx are naturally represented as formal sums

h =
∑

(i,j)∈Z2 hi,jx
iyj with certain support restrictions. The support of h, denoted by

supp(h), is the set of lattice points (i, j) ∈ Z2 such that hi,j 6= 0. For a binary relation

∗ on Z we use the shorthand notation Z∗a := {i ∈ Z | i ∗ a}. We have the following
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assertions:

• h ∈ G ⇐⇒ supp(h) ⊂ Z≥0 × Z≥0 is finite.

• h ∈ Gx ⇐⇒ supp(h) ⊂ Z≥0 × Z≥0 is finite.

• h ∈ H ⇐⇒ there are a, b ∈ Z such that supp(h) ⊆ Z≤a × Z≤b.

• h ∈ Hx ⇐⇒ there are a, b ∈ Z such that supp(h) ⊆ Z≤a × (Z≥0 ∩ Z≤b).

Setting

m := degx(f) and n := degy(f)

we will assume from now on that f is of the shape

f =
∑

0≤i≤m

bix
i with bi ∈ F[y], bm 6= 0.

Moreover, we define two standard areas in the exponent lattice,

Ax := Z × (Z≥0 ∩ Z<n) ⊂ Z2

and

Ay := (Z≥0 ∩ Z<m) × Z ⊂ Z2.

We are now able to extend the notion of digit system to the larger ring Sx.

Definition 2·6 (Digit representation). We say that h ∈ Hx is an x-digit representa-

tion of s ∈ Sx if and only if the following two conditions hold:

• πHx
(h) = s.

• h =
∑ℓ

i=−∞ dix
i for some ℓ ∈ Z and di ∈ Nx.

The second condition is equivalent to degy(h) < n or supp(h) ⊂ Ax. For short we write

s = (dℓ . . . d0.d−1d−2 . . .)x.

If there exist κ and µ such that di = di−κ for all i < −µ we say that s admits an

eventually periodic x-digit representation. This will be written as

s = (dℓ . . . d0.d−1 . . . d−µd−µ−1 . . . d−µ−κ)x.

Moreover, we say that s admits a purely periodic x-digit representation if

s = (.d−1 . . . d−κ)x.

If each element of Sx has a unique x-digit representation we say that (x,Nx) is a digit

system in Sx with base x and set of digits Nx.

By copying the proof of Theorem 2·2, we immediately get the following Theorem 2·7.

Note that we may drop the constraint of f being monic in y since we are now working

in a polynomial ring over a field.

Theorem 2·7 (Representations II). Let f ∈ G. Then (x,Nx) is a digit system in Sx.

Remark 2·8. By our definition the pair (x,Nx) forms a digit system in Sx for arbi-

trary f ∈ G. However, it forms a digit system in Rx only if f is monic in y. Indeed, if

f is not monic in y then the elements of Rx (regarded as a subset of Sx) generally only

admit x-digit representations in Hx but not in Gx.
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3. The transformation between x- and y-digit representations

In what follows we want to study the relation between x- and y-digit representations.

Since we built our theory starting from (x,Nx) digit systems in Rx in view of Remarks 2·5

and 2·8 we assume that f is monic in x and y. Under this assumption we will prove that

the identity

ϕxy : Rx → Ry; x 7→ x, y 7→ y (3·1)

can be extended to an isomorphism between Sx and Sy. Recall that by Theorem 2·7 each

element of Sx admits a unique x-digit representation. In the present section we want to

describe an explicit transformation procedure that turns an x-digit representation of an

element of Sx into a y-digit representation of an element of Sy (see Theorem 3·10).

Remark 3·1. Showing that the spaces Sx and Sy are isomorphic amounts (by sym-

metry) to showing that each element in H has an equivalent one in Hx modulo f . This

is not hard to establish by the iteration of usual division with remainder by f which

successively kills negative powers of y. However, we give the transformation procedure

leading to this isomorphism in great detail in the following lemmas. The reason for this

lengthy treatment can be seen in Section 5. Indeed, in the proof of Lemma 5·2 we need all

the detailed information of the transformation procedure between Sx and Sy contained in

Lemmas 3·2 to 3·9 below. On the other hand, the content of Lemma 5·2 is essential for

many properties of fundamental domains established in Section 5.

In what follows we will decompose a formal series h =
∑

(i,j) hi,jx
iyj into its y-fractional

part {h}y :=
∑

j<0(
∑

i hi,jx
i)yj and its y-integer part ⌊h⌋y :=

∑

j≥0(
∑

i hi,jx
i)yj .

The idea for establishing the transformation procedure is to show that elements of

S – the ring not favoring one of its variables – are representable uniquely with respect

to both standard areas, i.e., have a unique x- and a unique y-digit representation. This

transformation process is done by applying so-called atomic steps which will be treated

in the following lemmas.

First we define the atomic step of the first kind. It cuts off the negative powers of y

for a single coefficient hk in a representation
∑

i hi(y)x
i.

Lemma 3·2 (Atomic step of the first kind). Let h ∈ H be given by

h =
ℓ∑

i=−∞

hix
i, hi ∈ F((y−1)).

Let k ≤ ℓ be an integer and set lk := {hk}y. Then we say that

h′ =

ℓ∑

i=−∞

h′ix
i, h′i ∈ F((y−1))

emerges from h by an atomic step of the first kind at index k (notation: h′ = Ak(h)) if

h′ = h−
lk
bm

xk−mf.
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In this case we have h′k ∈ F[y] and the estimates

degy(h′k) ≤ degy(hk),

degy(h′k−m+i) ≤ max(degy(lk) + n− 1,degy(hk−m+i)) (0 < i < m),

degy(h′k−m) ≤ max(degy(lk) + n,degy(hk−m)).

Moreover, πH(h) = πH(h′) and h′i = hi for i > k or i < k −m.

Proof. This follows immediately from the equality

h′ = h−
lk
bm

m∑

i=0

bix
k−m+i

because degy(bi) < n for 0 < i < m, degy(b0) = n and degy(bm) = 0.

The following lemma shows how a combination of several atomic steps of the first kind

affects a given representation.

Lemma 3·3 (Succession of atomic steps of the first kind). Let h ∈ H be given by

h =

ℓ∑

i=−∞

hix
i, hi ∈ F((y−1)),

and

k0 :=







min
(

ℓ, ℓ+mdegy(h)
)

, n = 1,

min
(

ℓ, ℓ−
⌈
− degy(h)

n−1

⌉)

, n ≥ 2.

Then for k ≤ k0 the element

Ak ◦ · · · ◦Aℓ(h) =

k0∑

i=−∞

h′ix
i, h′i ∈ F((y−1)),

satisfies h′i ∈ F[y] for all k ≤ i ≤ k0. In particular, its x-degree is bounded by k0.

Proof. Assume that degy(h) ≥ 0. Then k0 = ℓ and the lemma is easily proved by

ℓ− k+ 1 successive applications of Lemma 3·2. Now assume degy(h) < 0. For k0 < j ≤ ℓ

set

h(j) := Aj ◦ · · · ◦Aℓ(h) =

ℓ∑

i=−∞

h
(j)
i xi, h

(j)
i ∈ F((y−1)).

If n = 1 we claim that

degy(h
(j)
i ) ≤







−∞, i ≥ j,

degy(h) +
⌊

ℓ−i
m

⌋
, j −m ≤ i < j,

degy(h), otherwise,

(3·2)

and if n ≥ 2 we claim that

degy(h
(j)
i ) ≤







−∞, i ≥ j,

degy(h) + (ℓ− j + 1)(n− 1), j −m < i < j,

degy(h) + (ℓ− j + 1)(n− 1) + 1, i = j −m,

degy(h), otherwise.

(3·3)
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Both estimates, (3·2) and (3·3), are proved by induction. Since h(j) = Aℓ(h) for j = ℓ,

the induction start is an immediate consequence of Lemma 3·2 in both cases. Also in

both cases, the induction step follows directly from this lemma and works as long as

degy(h
(j+1)
j ) < 0, which holds because j > k0.

With the choice j = k0 + 1 relation (3·2) as well as relation (3·3) first imply that

degx(h(k0+1)) ≤ k0.

An application of Aj cannot increase the x-degree of the argument. So by another k0 −

k + 1 successive applications of Lemma 3·2 we have degx(h(k)) ≤ k0 and h
(k)
i ∈ F[y] for

i ≤ k0.

The atomic step of the second kind contained in the next lemma cuts off a single

coefficient hk in a representation
∑

i hi(y)x
i in a way that its y-degree becomes less than

n.

Lemma 3·4 (Atomic step of the second kind). Let h ∈ H be given by

h =

ℓ∑

i=−∞

hix
i, hi ∈ F((y−1)).

Let k ≤ ℓ be an integer and set lk := yn⌊y−nhk⌋y. Then we say that

h′ =

max(ℓ,k+m)
∑

i=−∞

h′ix
i, h′i ∈ F((y−1))

emerges from h by an atomic step of the second kind at index k (notation: h′ = Bk(h))

if

h′ = h−
lk
b0
xkf.

In this case we have the estimates

degy(h′k) < n,

degy(h′k+i) ≤ max(degy(hk+i),degy(hk) − 1) (0 < i < m),

degy(h′k+m) ≤ max(degy(hk+m),degy(hk) − n).

Moreover, πH(h) = πH(h′) and h′i = hi for i < k or i > k +m.

Proof. This follows immediately from the equality

h′ = h−
lk
b0

m∑

i=0

bix
k+i

because degy(bi) < n for 0 < i < m, degy(b0) = n and degy(bm) = 0.

Again we need to dwell upon the effect of a combination of atomic steps of the second

kind to a given representation. This is done in the following lemma.

Lemma 3·5 (Succession of atomic steps of the second kind). Let h ∈ H be given by

h =

ℓ∑

i=−∞

hix
i, hi ∈ F((y−1)),
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k ≤ ℓ and ℓ0 := max(ℓ, ℓ+ (m− 1)(degy(h) − n)). Then for ℓ′ ≥ ℓ0 the element

Bℓ′ ◦ · · · ◦Bk(h) =

ℓ0+m∑

i=−∞

h′ix
i

satisfies degy(h′i) < n for all i ≥ k. In particular, its x-degree is bounded by ℓ0 +m.

Proof. Assume that degy(h) < n. Then ℓ0 = ℓ and by the definition of the operators

Bt in Lemma 3·4, the operator Bℓ′ ◦· · ·◦Bk does not change h. Now assume degy(h) ≥ n.

For 0 ≤ j ≤ degy(h) − n set

h(j) := Bℓ+(m−1)j ◦ · · · ◦Bk(h) :=

ℓ+(m−1)j+m
∑

i=−∞

h
(j)
i xi.

We claim that

degy(h
(j)
i ) <







n, k ≤ i ≤ ℓ+ (m− 1)j,

degy(h) − j, ℓ+ (m− 1)j < i < ℓ+ (m− 1)j +m,

degy(h) − j − (n− 1), i = ℓ+ (m− 1)j +m.

(3·4)

This is shown by induction on j. For j = 0 this is easily seen by ℓ − k + 1 successive

applications of Lemma 3·4. Each induction step follows by another m − 1 applications.

After degy(h) − n steps we arrive at the element

h(degy(h)−n) = Bℓ0 ◦ · · · ◦Bk(h)

which, in view of (3·4), has the desired properties. Again the operator Bℓ′ ◦ · · · ◦ Bℓ0+1

does not change h(degy(h)−n).

Corollary 3·6 (A Cauchy property). Let h ∈ H be given by

h =

ℓ∑

i=−∞

hix
i, hi ∈ F((y−1)),

let k < ℓ and

ℓ′1 := max(k +m, k +m+ (m− 1)(degy(h) − n)),

ℓ′2 := max(ℓ′1, ℓ, ℓ+ (m− 1)(degy(h) − n)).

Then

h′ := Bℓ′
2
◦ · · · ◦Bk(h) =

ℓ′
2
+m
∑

i=−∞

h′ix
i and

h′′ := Bℓ′
2
◦ · · · ◦Bk+1(h) =

ℓ′
2
+m
∑

i=−∞

h′′i x
i

satisfy

max
(

degy(h′i),degy(h′′i )
)

< n for i > k and

h′i = h′′i for i > ℓ′1 +m.

Proof. The claim about the maximum of the y-degrees and the bounds on the x-degrees
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of h′ and h′′ follow from direct applications of Lemma 3·5 with ℓ′ = ℓ′2, so it remains to

show the last claim or equivalently that degx(h′′ − h′) ≤ ℓ′1 +m holds. Note that by the

definition of lk in Lemma 3·4 it is clear that the operators Bt are F-linear. Hence, setting

g := Bk(h) we may write

h′′ − h′ = Bℓ′
2
◦ · · · ◦Bk+1(h− g).

By the definition of Bk we have

h− g =

k+m∑

i=k

gix
i

for certain gi with degy(gi) ≤ degy(h). Another application of Lemma 3·5 with ℓ′ = ℓ′1
shows that

Bℓ′
1
◦ · · · ◦Bk+1(h− g)

has x-degree bounded by ℓ′1 +m and y-degree less than n. Finally,

Bℓ′
2
◦ · · · ◦Bk+1(h− g) = Bℓ′

1
◦ · · · ◦Bk+1(h− g)

holds because applying Bℓ′
2
◦ · · · ◦Bℓ′

1
+1 to an element of y-degree smaller than n is the

identity. This yields the result.

We can define a norm |h| := edeg(h) for h ∈ H (where deg(·) denotes the total degree).

Then H becomes a topological ring, i.e., addition and multiplication are continuous with

respect to the induced metric. Multiplication is even an open mapping since the degree of

a product is equal to the sum of the degrees of the factors. Note that H is not complete,

for example, the sequence (
∑

0≤i≤j x
iy−2i)j is Cauchy but has no limit in H.

Lemma 3·7. If (fj)j is a sequence in H which is Cauchy and supp(fj) ⊆ Z≤a × Z≤b

for certain fixed a, b ∈ Z and j sufficiently large, then limj→∞ fj exists in H.

Proof. Trivial.

The following two lemmas form the basis of the switching process between x- and

y-digit representations.

Lemma 3·8 (Uniformization Lemma I). Let h ∈ H. Then there is some h′ ∈ H and

ℓ ∈ Z with πH(h′) = πH(h) and supp(h′) ⊆ Z≤ℓ × Z<n.

Proof. Let ℓ′ be defined as in Lemma 3·5 and set

h(k) = Bℓ′ ◦ · · · ◦Bk(h)

for k sufficiently small. Then the sequence (h(k))−k is Cauchy by Corollary 3·6 and

supp(h(k)) ⊆ Z≤ℓ′+m × Z≤degy(h). Hence, there is some h′ with

h′ = lim
k→−∞

h(k).

Moreover, it is easy to see that supp(h′) ⊆ Z≤ℓ′+m ×Z<n. Setting ℓ := ℓ′ +m it remains

to show that πH(h′) = πH(h), or in other words that h′ − h ∈ fH.

By construction we have h(k) − h = e(k)f for certain e(k) ∈ H. Since (h(k) − h)−k is



Number systems and tilings over Laurent series 11

a Cauchy sequence and multiplication by f is an open mapping, we conclude that also

(e(k))−k is Cauchy and the support of its elements is suitably bounded. Hence,

h′ − h = lim
k→−∞

(h(k) − h) = lim
k→−∞

e(k)f =

(

lim
k→−∞

e(k)

)

f ∈ fH.

Lemma 3·9 (Uniformization Lemma II). Let h ∈ H and assume that supp(h) ⊆ Z≤ℓ×

Z<n for some ℓ ∈ Z. Then there exists an h′ ∈ H with πH(h′) = πH(h) and supp(h′) ⊆

Z≤ℓ × (Z≥0 ∩ Z<n) ⊂ Ax.

Proof. Set

h(k) = Ak ◦ · · · ◦Aℓ(h) =
ℓ∑

i=−∞

h
(k)
i xi, h

(k)
i ∈ F((y−1)),

for k sufficiently small. Then h
(k)
i = h

(k′)
i for i ≥ max(k, k′) from the definition of

the operators At in Lemma 3·2. It follows immediately that (h(k))−k is Cauchy. Also

supp(h(k)) ⊆ Z≤ℓ × Z<n and hence h′ := limk→−∞ h(k) exists. Moreover, it is easy to

see that in fact supp(h′) ⊆ Z≤ℓ × (Z≥0 ∩ Z<n). The fact that πH(h′) = πH(h) is shown

exactly in the same way as in the proof of Lemma 3·8.

The following theorem forms the main result of the present section.

Theorem 3·10 (Representations III). Assume that f is monic in x and y. Then for

each s ∈ S there is a unique h ∈ H with supp(h) ⊂ Ax and πH(h) = s. In other words

each s ∈ S admits a unique x-digit representation.

Proof. Choose h′′ ∈ H arbitrary such that πH(h′′) = s. Apply Lemma 3·8 to h′′ in

order to produce an element h′ ∈ H with supp(h′) ⊆ Z≤ℓ ×Z<n. In a second step apply

Lemma 3·9 to h′ to get h ∈ H with supp(h) ⊂ Ax and note that still πH(h) = s. It

remains to show that such an h is unique.

If we had two distinct representations, their difference would be an element g ∈ H \{0}

with supp(g) ⊂ Ax. It will be sufficient to prove that πH(g) 6= 0. Assume on the contrary

that g = af for some a ∈ H. Let Π(g) be the Minkowski sum of the convex hull of

supp(g) and the third quadrant. Furthermore, let (i1, j1) ∈ Z2 be the vertex on the

horizontal face of Π(g) and (i2, j2) ∈ Z2 be the vertex on the vertical face of Π(g)

and set d(g) := j1 − j2 ∈ Z≥0. Define Π(a), Π(f), d(a) and d(f) analogously. Then

Π(g) = Π(a) + Π(f) and d(g) = d(a) + d(f). But d(a) ≥ 0 and d(f) = n because f is

monic in x and d(g) ≤ n− 1 because supp(g) ⊂ Ax, contradiction.

Remark 3·11. The argument of the proof makes essential use of the fact that f is

monic in x and y.

In what we did so far we also constructed an explicit isomorphism between the sets Sx,

S and Sy. This is emphasized in the following corollary.

Corollary 3·12 (The isomorphism). Assume that f is monic in x and y. Then we

have S ∼= Sx
∼= Sy. In fact, the isomorphism ϕxy, see (3·1), extends to Sx → Sy.

Proof. We show Sx
∼= S. The natural inclusion Hx →֒ H induces a homomorphism

ψ : Sx → S. Let s ∈ Sx \ {0}. Then s has a unique representative h ∈ Hx \ {0} with
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j

i

supp (h)

2

1

Ax

Ay

m − 1

n − 1

Fig. 1. The isomorphism ϕyx : Sy → Sx

supp(h) ⊂ Ax by Theorem 2·7. But then ψ(s) is represented by the same h regarded as

an element of H, and by Theorem 3·10 we find ψ(s) 6= 0, hence ψ is injective.

On the other hand, let s ∈ S and h ∈ H be a representative with supp(h) ⊂ Ax. Then

obviously h is in the image of Hx, hence ψ is also surjective. By the same reasoning we

have S ∼= Sy and by composition we get an isomorphism ψxy : Sx → Sy.

Now let r ∈ Rx, i.e., r = πGx
(h) for some h ∈ Gx with supp(h) ⊂ Ax. Also there is

h′ ∈ Gy with supp(h′) ⊂ Ay and ϕxy(r) = πGy
(h′) by Theorem 2·2. Now consider h and

h′ as elements of H, then h−h′ ∈ fH and hence πH(h) = πH(h′). Now the construction

of ψxy and the uniqueness statement in Theorem 3·10 imply that ψxy|Rx
= ϕxy.

We write again ϕxy : Sx → Sy for the extended isomorphism. For the representation

Theorem 3·10 we had to show that we can transform an arbitrary support to fit into the

region Ax. For the isomorphism ϕyx we have to transform a support in Ay into a support

in Ax. This is illustrated in Figure 1 as follows: one application of Lemma 3·8 moves the

upper part of h into Ax (indicated by arrow ①). A subsequent application of Lemma 3·9

moves the lower part of h into Ax (indicated by arrow ②). The only part which is affected

by the transformations of both lemmas is the overlapping region Ay∩Ax, which has been

shaded in dark grey.

4. The total ring of fractions and periodic digit representations

Our next objective is to investigate under what condition the x-digit representation of

an element of Sx is periodic. It turns out that periodic representations are related to the

total ring of fractions Q(R) of R. Recall that Q(R) := S−1R where S ⊂ R denotes the

multiplicative set of non-zero divisors. Let F := Q(R) and set

Fx := F(x)[y]/fF(x)[y] and Fy := F(y)[x]/fF(y)[x].

Lemma 4·1 (Total rings of fractions). We have F ∼= Fx
∼= Fy. In fact, the isomor-

phism ϕxy, see (3·1), extends uniquely to Fx → Fy.

Proof. Being monic in y, the polynomial f is in particular primitive as a polynomial

with coefficients in F[x]. Hence, the set T := πG(F[x] \ {0}) consists of non-zero divisors

and we have embeddings R →֒ T −1R ∼= Fx →֒ F . This implies that Q(Fx) = F .

Now let h ∈ Fx be a non-zero divisor. In other words, h is represented by a polynomial

h′ ∈ F(x)[y] such that h′ and f are coprime in the principal ideal domain F(x)[y]. Then
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Sx
//

ϕxy

))
S Sy

oo

Fx
//

?�

OO

F

?�

OO

Fy
oo

?�

OO

Rx
//

ϕxy

44

?�

OO

R

?�

OO

Ry
oo

?�

OO

Fig. 2. The commuting diagram

the image of h′ is invertible in Fx, i.e., h−1 ∈ Fx. Hence, Fx is its own total ring of

fractions and the last embedding above is already an isomorphism.

By composing Fx → F and the inverse of Fy → F we find an isomorphism ψxy : Fx →

Fy clearly extending ϕxy. Let a/b ∈ Fx, then b(a/b) = a and for any such isomorphism we

have ϕxy(b)ψxy(a/b) = ϕxy(a). Since ϕxy(b) is a non-zero divisor this already determines

ψxy(a/b) uniquely.

Note that it is easy to compute the isomorphic images effectively, using the Extended

Euclidean Algorithm. We write again ϕxy : Fx → Fy for the extended isomorphism.

This is justified; indeed, there holds the commuting diagram in Figure 2, where all the

maps (except the ϕxy) are induced by the respective maps of representatives. We have

to argue, why the middle row fits into this diagram. The reason is that the vertical

arrows are inclusions, the top and bottom horizontal arrows are all isomorphisms. The

objects in the middle are the total rings of fractions that obviously have to be mapped

isomorphically onto each other. In view of the above diagram we will from now on consider

digit representations of elements in the rings R, F and S.

Lemma 4·2 (Rational Laurent series).

(i) Let Fq be the finite field with q elements and z ∈ Fq((x
−1)). Then z is eventually

periodic if and only if z ∈ Fq(x).

(ii) Let z ∈ Fq(x). Write z = a + x−κ(b + c/d) with κ ∈ Z≥0, a, b, c, d ∈ Fq[x] with

c 6= 0, d 6= 0, degx(c) < degx(d), degx(b) < κ, gcd(c, d) = 1 and x ∤ d. Let µ be

minimal such that xµ ≡ 1 mod d. Then we have a representation

z = (uρ . . . u0.vκ−1 . . . v0pµ−1 . . . p0)x

with ρ = degx(a) and certain ui, vi, pi ∈ Fq. Furthermore µ is the minimal length

of the period.

Remark 4·3. Representing elements z ∈ F(x) as above is possible even if F is infinite.

However, choosing µ is only possible because Fq is finite and, hence, x maps to an element

of the finite group of units modulo d.

Proof. First assume z′ = c/d with the same conditions. Then xµ = 1+ed and xµc/d =

c/d + p with p := ec. The first summand is purely non-integral, whereas the second

summand is integral. Moreover, degx(p) = degx(xµc/d) < µ. So we have a representation

p = (pµ−1 . . . p0.)x. By repeating the argument we see that z′ is purely periodic, in

particular, we have z′ = (.pµ−1 . . . p0)x.
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On the other hand assume that z′ is purely periodic of this form. Then an easy calcu-

lation shows

z′ =

∑µ−1
i=0 pix

i

xµ − 1
, (4·1)

so, reducing this fraction, we get a representation z′ = c/d as above.

Now any element z ∈ Fq(x) can be written as in the claim and any eventually periodic

z ∈ Fq((x
−1)) can be written as z = a+ x−κ(b+ z′) with a, b ∈ Fq[x] and z′ ∈ Fq((x

−1))

purely periodic.

It remains to prove the assertion on the period length. Assume that µ′ ≤ µ is the

length of the minimal period. Then Equation (4·1) with µ replaced by µ′ implies that

d | xµ′

− 1, in other words xµ′

≡ 1 mod d and hence also µ ≤ µ′.

Corollary 4·4 (Periodicity). Let F = Fq be a finite field and let s ∈ S. The following

assertions are equivalent:

• s ∈ F .

• s has an eventually periodic x-digit representation.

• s has an eventually periodic y-digit representation.

Proof. By symmetry, it suffices to show the equivalence of the first two statements. By

Lemma 4·1, s ∈ F if and only if s can be represented by an element h =
∑n−1

i=0 hiy
i ∈

Fq(x)[y] ⊂ Hx. By Lemma 4·2 this is the case if and only if all the coefficients have even-

tually periodic representations in Fq((x
−1)). Hence, s ∈ F if and only if h is eventually

periodic when written as a sum of x-digits.

The difficulty of making statements about the periodic representations now depends

heavily on the representation of an element s ∈ F . The easy case is when s is represented

by an element of Fq(x)[y] and we want to study the x-digit representation.

Theorem 4·5 (Shape of the period). Let F = Fq be a finite field and let s ∈ F be

represented by

h =

n−1∑

i=0

hiy
i

with hi = ai + x−κi(bi + ci/di) ∈ Fq(x) such that κi ∈ Z≥0, ai, bi, ci, di ∈ Fq[x] with

ci 6= 0, degx(ci) < degx(di), degx(bi) < κi, gcd(ci, di) = 1 and x ∤ di. Let µi be minimal

such that xµi ≡ 1 mod di. Then we have a representation

s = (uρ . . . u0.vκ−1 . . . v0pµ−1 . . . p0)x

for certain x-digits ui, vi, pi. Here ρ = maxi(degx(ai)), κ = maxi(κi) and µ = lcmi(µi)

is the minimal length of the period.

Proof. The x-digit representation is inferred directly from the set of Laurent series

representations of the hi. So this theorem is an immediate consequence of Lemma 4·2.

The more difficult case is when s is represented by an element of Fq(y)[x] in the same

situation. In this case, we first use the Extended Euclidean Algorithm to convert the

representation appropriately and then apply Theorem 4·5.
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Example 4·6. Let f := x3 + (3y + 1)x+ 2y + y2 ∈ F5[x, y] and consider the element

s :=
y5 + xy + 2y + 4x

y3 + 2y2x+ y2 + y
∈ Q(F5[x, y]/fF5[x, y]).

We want to compute, say, its y-digit representation. Using the Extended Euclidean Al-

gorithm, we first compute a nicer representation by

h = h0 + h1x+ h2x
2

=

(
y8 + 4y7 + 2y6 + 2y5 + 4y4 + 4y3 + 2y2 + 4y + 2

y6 + 2y5 + y4 + 3y3 + 3y + 1

)

+

(
3y8 + 3y7 + 3y6 + y5 + 2y4 + 2y3 + 4y + 4

y7 + 2y6 + y5 + 3y4 + 3y2 + y

)

x+

(
4y6 + 3y3 + 3y2 + 2

y6 + 2y5 + y4 + 3y3 + 3y + 1

)

x2.

Decomposing coefficients as in Theorem 4·5 yields

h0 = (y2 + 2y + 2) + y0

(

0 +
3y5 + y4 + y

y6 + 2y5 + y4 + 3y3 + 3y + 1

)

,

h1 = (3y + 2) + y−1

(

1 +
3y5 + y2 + 4y + 3

y6 + 2y5 + y4 + 3y3 + 3y + 1

)

,

h2 = (4) + y0

(

0 +
2y5 + y4 + y3 + 3y2 + 3y + 3

y6 + 2y5 + y4 + 3y3 + 3y + 1

)

.

One computes that y has order 208 modulo y6 + 2y5 + y4 + 3y3 + 3y + 1, indeed

y208 − 1 ≡ (y202 + 3y201 + · · · + 3y + 4)(y6 + 2y5 + y4 + 3y3 + 3y + 1) mod 5.

In this example ρ = maxi(degx(ai)) = 2, κ = maxi(κi) = 1 and µ = lcmi(µi) = 208.

And indeed, if we develop the coefficients separately and combine them to y-digits, we get

the representation

s = ((1)(2 + 3x)(2x+ 2 + 4x2).(x+ 3 + 2x2)(2x2 + 3x)(4x+ 2) . . . (2x2)(2x+ 3 + 2x2)
︸ ︷︷ ︸

208 y-digits

)y.

5. The fundamental domain associated to a digit system

Now we want to give a more detailed study of the isomorphism ϕxy : Sx → Sy. Instead

of considering the map ϕxy, we compare the x- and y-digit representations of elements

of s.

Definition 5·1 (Height of elements). Let s ∈ S and h ∈ H be the x-digit representa-

tion of s. Then we define

hgtx(s) :=

{

degx(h), s ∈ S \ {0},

−∞, s = 0.

In other words, if s 6= 0 is represented by h =
∑ℓ

j=−∞ hjx
j where the hj are x-digits

and hℓ 6= 0, then hgtx(s) = ℓ. By Theorem 3·10, we can convert from one representation

into the other, so we may ask how to bound one height in terms of the other.
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Lemma 5·2 (Mutual bounds on height). Let s ∈ S. Then we have the implications:

(i) hgty(s) < 0 ⇒ hgtx(s) ≤







m− 1 +mhgty(s), n = 1,

m− 1 −
⌈
− hgty(s)

n−1

⌉

, n ≥ 2.

(ii) 0 ≤ hgty(s) ≤ n− 1 ⇒ hgtx(s) ≤ m− 1.

(iii) n− 1 < hgty(s) ⇒ hgtx(s) ≤ (hgty(s) − n+ 2)(m− 1) + 1.

Proof. Let

h =

m−1∑

i=0

hix
i, hi ∈ F((y−1))

be the y-digit representation of an element s ∈ S.

(i) Applying Lemma 3·3 with ℓ = m − 1 and degy(h) = hgty(s) yields (with h(k)

defined as in this lemma)

degx(h(k)) ≤







m− 1 +mhgty(s), n = 1,

m− 1 −
⌈
− hgty(s)

n−1

⌉

, n ≥ 2

for k sufficiently small. Setting h′ := limk→−∞ h(k) this implies that

degx(h′) ≤







m− 1 +mhgty(s), n = 1,

m− 1 −
⌈
− hgty(s)

n−1

⌉

, n ≥ 2.

However, since h′ is the x-digit representation of s this implies that degx(h′) =

hgtx(s) and we are done.

(ii) This follows directly from Lemma 3·9.

(iii) If hgty(s) = degy(h) satisfies the bounds in (iii) we need to apply Lemma 3·8 first.

Since degx(h) ≤ m− 1 by Lemma 3·5 (setting ℓ = m− 1 and degy(h) = hgty(s))

this yields h′ with πH(h) = πH(h′) and

degx(h′) ≤ (m− 1)(hgty(s) − n+ 2) + 1.

By Lemma 3·9 we obtain an x-representation h′′ of s satisfying the same bounds

on degx as h′. This yields (iii).

The following example illustrates the fact that the bounds are actually sharp.

Example 5·3. Let f := x3 − y3x2 + y4 ∈ F5[x, y], a := x2y−10, b := x2y3 and

c := x2y10. Here m = 3, n = 4, hgty(a) = −10, hgty(b) = 3 and hgty(c) = 10. In these

cases one checks:

a ≡ 4y2x−7 + 3yx−5 + 4y3x−4 + 2x−3 + y2x−2 mod f,

b ≡ y3x2 mod f,

c ≡ y2x8 + 2yx10 + y3x11 + 3x12 + 4y2x13 + 4yx15 + y3x16 + 4x17 mod f.

Hence, hgtx(a) = −2, hgtx(b) = 2 and hgtx(c) = 17. These are exactly the bounds of the

above lemma.
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We may consider Sx (and also S) as an F((x−1))-vector space or Sy (and also S) as

an F((y−1))-vector space. In both cases we are dealing with normed topological vector

spaces; we just set |s|x := qhgtx(s) and |s|y := qhgty(s) (with q being the cardinality of the

finite field or e in case of an infinite ground field). The two vector spaces are obviously

complete with respect to to the respective metric.

Definition 5·4 (Fundamental domain). We define

Fx := {s ∈ S | hgtx(s) < 0} = {s ∈ S | |s|x < 1}

and call it the fundamental domain with respect to x.

In other words Fx ⊂ S is the set of those elements that have a purely fractional

representation in x-digits. We are interested in the structure of Fx when written in

terms of y-digits. A similar question is how the fundamental domains Fx and Fy are

related or how the two different norms on S compare. This yields information about the

arithmetic properties of the isomorphism ϕxy. From the above lemma, we immediately

get the following corollary.

Corollary 5·5 (Continuity of ϕxy). Let s ∈ S. We have the following assertions:

(i) The isomorphism ϕxy is a continuous map.

(ii) hgty(s) < −(n− 1)(m− 1) then s ∈ Fx.

(iii) If s ∈ Fx then hgty(s) ≤ n− 1.

Proof. All items are straight-forward consequences of Lemma 5·2.

(i) We may restrict our attention to neighborhoods of 0 because ϕxy can be viewed

as a homomorphism between topological groups. Lemma 5·2 now becomes a very

explicit statement of the ǫ-δ-definition of continuity at 0.

(ii) In particular, we have hgty(s) < 0, so we can apply Lemma 5·2(i). If n = 1, the

claim follows immediately from this part of Lemma 5·2. If n ≥ 2, we get

−hgty(s) > (n− 1)(m− 1)

⇒ (n− 1)
⌈
− hgty(s)

n−1

⌉

> (n− 1)(m− 1)

⇒
⌈
− hgty(s)

n−1

⌉

> m− 1

⇒ (m− 1) −
⌈
− hgty(s)

n−1

⌉

< 0.

Hence, by Lemma 5·2(ii) we have hgtx(s) < 0 and thus s ∈ Fx.

(iii) This follows directly from the symmetric statement of Lemma 5·2(iii).

Corollary 5·6. If n = 1 then Fx = Fy.

Proof. This follows directly from Corollary 5·5(ii) and its symmetric statement.

Corollary 5·7 (Mutual composition of fundamental domains). Let

ρ = (n− 1)(m− 1)
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and

Vx =
{

s ∈ Fx | s = πH(h) for some h ∈ H with

supp(h) ⊆ {0, . . . ,m− 1} × {−ρ, . . . , n− 1}
}

.

Then Vx is an F-vector space and

Fx =
⋃

s∈Vx

(s+ y−ρFy). (5·1)

In particular, Fx is a clopen, bounded subset of the topological F((y−1))-vector space S.

If F = Fq is a finite field then Vx is finite and Fx is even compact.

Proof. By definition, Vx is trivially an F-vector space. By Corollary 5·5(iii) we can

write any element s ∈ Fx as s = πH(h′) for some h′ ∈ H with supp(h′) ⊂ Ay and

degy(h′) < n. Write now h′ = h + h′′ with supp(h) ⊆ {0, . . . ,m − 1} × {−ρ, . . . , n − 1}

and degy(h′′) < −ρ. Then by Corollary 5·5(ii) we always have πH(h′′) ∈ Fx. Therefore

πH(h′) ∈ Fx if and only if πH(h) ∈ Fx. But elements of the form πH(h′′) are exactly the

elements in the set y−ρFy. This proves (5·1).

Set

W =
{

s ∈ S | s = πH(h) for some h ∈ H with

supp(h) ⊆ {0, . . . ,m− 1} × {−ρ, . . . ,∞}
}

.

Now S is the disjoint union of the open sets of the form s + y−ρFy where s ∈ W . Vx is

a subset of W , hence Fx and S \ Fx can both be written as infinite unions of open sets.

Therefore Fx is open, closed and bounded (again by Corollary 5·5(iii)). If F = Fq is a

finite field, it is easily seen that Fx is totally bounded and therefore compact.

Remark 5·8.

(i) The interest of this and the following corollaries lies in the fact that we view Fx

(which corresponds to the open unit ball of S as an F((x−1))-vector space) as a subset of

S considered as an F((y−1))-vector space.

(ii) The statement about compactness becomes wrong in case of an infinite ground field

F. Then Fx is not even compact in S as an F((x−1))-vector space. For example let (ai)i∈N

be an infinite sequence of pairwise distinct x-digits. Then bi := (.ai) is a sequence in Fx

without accumulation point.

Corollary 5·7 gives a way for computing Fx in terms of Fy. All we need to do is to

determine Vx. We will now sketch an algorithm for doing this fastly.

We have to decide for each h ∈ H with supp(h) ⊆ {0, . . . ,m − 1} × {−ρ, . . . , n − 1}

whether πH(h) ∈ Fx or not. Since the set Ax of x-digit representations is closed under

addition, we first compute the x-digit representation hi,j of xiyj for each pair i, j ∈

{0, . . . ,m− 1} × {−ρ, . . . , n− 1}. Observe that h is of the form

h =
m−1∑

i=0

n−1∑

j=−ρ

ai,jx
iyj .
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Note that πH(h) ∈ Fx if and only if hgtx(h) < 0. By the definition of hi,j and because

Ax is closed under addition this is equivalent to

degx

(
m−1∑

i=0

n−1∑

j=−ρ

ai,jhi,j

)

< 0.

Setting h′i,j := ⌊hi,j⌋x this can be rewritten as

m−1∑

i=0

n−1∑

j=−ρ

ai,jh
′
i,j = 0. (5·2)

Thus πH(h) is in Vx if and only if (5·2) holds. Hence, 5·2 gives a set of linear equations

for the elements ai,j ∈ F that characterizes Vx.

One can view a fundamental domain as the self affine-solution of an iterated function

system (for the definition, we refer to Hutchinson [9]) in case F = Fq is a finite field.

Corollary 5·9 (Fundamental domains viewed as self-affine sets). Let F = Fq be a

finite field. Then the fundamental domain Fx is the unique non-empty compact subset of

S (seen as F((y−1))-vector space) satisfying the set equation

Fx =
⋃

d∈Nx

x−1(Fx + d).

Proof. This is an easy consequence of the general theory of self-affine sets and iterated

function systems (see for instance Hutchinson [9]).

Remark 5·10. If F is infinite, Fx cannot be seen as a solution of an infinite iterated

function system in S (in the sense of Fernau [5], for instance), because the contraction

ratios of the mappings χd(z) := x−1(z + d), where d ∈ Nx, do not converge to zero. We

could only regard it as a non-compact solution of

T =
⋃

d∈Nx

x−1(T + d).

However, this set equation has more than one non-empty non-compact solutions.

Theorem 5·11 (A tiling induced by the fundamental domain). The collection

{Fx + r | r ∈ R}

forms a tiling of the space S (seen as an F((y−1))-vector space) in the sense that
⋃

r∈R

(Fx + r) = S

and

(Fx + r1) ∩ (Fx + r2) = ∅

for r1, r2 ∈ R distinct.

Proof. Any s ∈ S has a unique x-digit representation h by Theorem 3·10. Setting

s0 := πH({h}x) and s1 := πH(⌊h⌋x) we find that s decomposes uniquely as s = s0 + s1
with s0 ∈ Fx and s1 ∈ R ⊂ S, hence S = Fx ⊕R is a direct sum of F-vector spaces. The

claim of the theorem is just another formulation of the same fact.
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Fig. 3. The fundamental domain Fy

This picture shows the fundamental domain Fy in S (when viewed as a vector space over
F5((x

−1))) induced by the polynomial x3 + (3y + 1)x + 2y + y2 ∈ F5[x, y]. For illustration
purposes elements of F5((x

−1)) were mapped to R by mapping x to 5 and the field elements to
their canonical representatives in {0, . . . , 4}.

Finally, we want to present a way how to visualize a fundamental domain in the real

vector space if F = Fq is a finite field. Let ν : Fq → {0, . . . , q − 1} be an enumeration of

the elements of the finite field. We define the mapping

µ : Fq((y
−1)) → R,

ℓ∑

i=−∞

ciy
i 7→

ℓ∑

i=−∞

ν(ci)q
i.

Note that the right sum converges since it can be bounded by a geometric sum.

In order to keep the notation simple, we will assume that n = 2. Then we may consider

elements s ∈ S as vectors of the plane Fq((y
−1)) × Fq((y

−1)) and visualize them via the

map µ × µ in R2. If we use the algorithm sketched above in order to express Fx in

terms of Fy we see immediately that Fx corresponds to a finite union of closed boxes of

side length q−ρ where ρ is defined as in Corollary 5·7. Since elements of R have integral

coordinates in R2 under the map µ × µ it is clear that the overall volume of the image

of the fundamental domain Fx is 1. This gives an intuitive picture of the fundamental

domain.

Example 5·12. Let f := x3 + (3y + 1)x + 2y + y2 ∈ F5[x, y], hence q = 5. We

want to express, say, Fy in terms of Fx. To this matter we compute the vector space of

Corollary 5·7 where ρ = (3 − 1)(2 − 1) = 2 and get

Vy = 〈1 + 2x−1y, x−2y, x−1, x−2〉F5
⊂ F5((x

−1, y−1))/fF5((x
−1, y−1))

which reads in vector notation as

Vy = 〈(1, 2x−1), (0, x−2), (x−1, 0), (x−2, 0)〉F5
⊂ F((x−1)) × F((x−1)).

Since F5 is finite, Vy is finite too, and one computes exactly 625 different F5-linear

combinations of the basis elements in Vy. Applying the map µ×µ to each of these elements

one gets the lower left vertex of a box in R2 of side length 5−ρ = 0.04. The union of these

boxes visualizes the fundamental domain and has volume 1, see Figure 3.
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ized radix representations and dynamical systems. I. Acta Math. Hungar. 108(3) (2005)
207–238.



Number systems and tilings over Laurent series 21

[2] S. Akiyama and J. M. Thuswaldner. The topological structure of fractal tilings gener-
ated by quadratic number systems. Comput. Math. Appl. 49(9-10) (2005) 1439–1485.

[3] J.-P. Allouche, E. Cateland, W. J. Gilbert, H.-O. Peitgen, J. O. Shallit and
G. Skordev. Automatic maps in exotic numeration systems. Theory Comput. Syst.
(Math. Systems Theory) 30 (1997) 285–331.

[4] G. Barat, V. Berthé, P. Liardet and J. Thuswaldner. Dynamical directions in
numeration. Annal. Inst. Fourier 56 (2006) 1987–2092.

[5] H. Fernau. Infinite iterated function systems. Math. Nachr. 170 (1994) 79–91.
[6] W. J. Gilbert. Radix representations of quadratic fields. J. Math. Anal. Appl. 83 (1981)

264–274.
[7] E. H. Grossman. Number bases in quadratic fields. Stud. Sci. Math. Hung. 20 (1985)

55–58.
[8] M. Hbaib and M. Mkaouar. Sur le bêta-développement de 1 dans le corps des séries
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