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Abstract

Tractability properties of various notions of discrepancy have been intensively
studied in the last decade. In this paper we consider the so-called weighted star dis-
crepancy which was introduced by Sloan and Woźniakowski. We show that under a
very mild condition on the weights one can obtain tractability with s-exponent zero
(s is the dimension of the point set). In the case of product weights we give a condi-
tion such that the weighted star discrepancy is even strongly tractable. Furthermore,
we give a lower bound for the weighted star discrepancy for a large class of weights.
This bound shows that for such weights one cannot obtain strong tractability.

Keywords: Weighted star discrepancy, (strong) tractability, quasi-Monte Carlo.

1 Introduction

For quasi-Monte Carlo integration of functions over the s-dimensional unit cube [0, 1]s

one needs point sets which are very well distributed. In many cases the quality of the
distribution of a point set is measured by the star discrepancy which is intimately linked to
the worst-case error of quasi-Monte Carlo integration via the well known Koksma-Hlawka
inequality (see, for example, [8, 9, 14]).

For a point set PN,s = {x0, . . . , xN−1} in the s-dimensional unit cube [0, 1)s the
discrepancy function ∆ is defined by

∆(α1, . . . , αs) :=
AN (

∏s
i=1[0, αi))

N
− α1 · · ·αs

for 0 < α1, . . . , αs ≤ 1. Here AN (E) denotes the number of indices n, 0 ≤ n ≤ N −1, such
that xn is contained in the set E. By taking the sup norm of this function, we obtain the
star discrepancy

D∗
N (PN,s) = sup

z∈(0,1]s
|∆(z)|
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Hi 584/3-1 of the German Science Foundation (DFG). The second and third author are supported by
the Austrian Science Foundation (FWF), Project S9609, that is part of the Austrian National Research
Network “Analytic Combinatorics and Probabilistic Number Theory”. The third author is also supported
by Project P18455.
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of the point set PN,s. We will often refer to the star discrepancy as the classical star
discrepancy in contrary to the weighted star discrepancy defined below.

Sloan and Woźniakowski [17] (see also [2]) introduced the notion of weighted discrep-
ancy and proved a “weighted” Koksma-Hlawka inequality. The idea is that in many
applications some projections are more important than others and that this should also
be reflected in the quality measure of the point set.

We start with some notation which goes back to the paper [17]: let Is = {1, 2, . . . , s}
denote the set of coordinate indices. For u ⊆ Is, u 6= ∅, let γu,s be a nonnegative real
number (the weight), |u| the cardinality of u, and for a vector z ∈ [0, 1]s let z(u) denote
the vector from [0, 1]|u| containing the components of z whose indices are in u. By (zu, 1)
we mean the vector z from [0, 1]s with all components whose indices are not in u replaced
by 1.

Definition 1 For a point set PN,s = {x0, . . . , xN−1} in [0, 1)s and given weights γ =
{γu,s : u ⊆ Is, u 6= ∅}, the weighted star discrepancy D∗

N,γ is given by

D∗
N,γ(PN,s) = sup

z∈(0,1]s
max
∅6=u⊆Is

γu,s|∆(zu, 1)|.

We remark that also the notion of weighted Lp-discrepancy is well known and studied
(mainly for the special case p = 2) in a multitude of papers (see, for example, [1, 5, 10, 17]).
The following kind of weights are often studied in literature:

• Product weights which are weights of the form γu,s =
∏

j∈u
γj,s, for ∅ 6= u ⊆ Is, where

γj,s is the weight associated with the j-th component. Often the weights γj,s have
no dependence on s, i.e., γj,s = γj. See, for example, [17, 2].

• Finite-order weights of fixed order k ∈ N which are weights with γu,s = 0 for all
u ⊆ Is with |u| > k. See, for example, [6, 16].

We would like to have a point set in the s-dimensional unit cube with weighted star
discrepancy of at most ε ∈ (0, 1) and we are looking for the smallest cardinality N of a
point set such that this can be achieved. For ε ∈ (0, 1) and dimension s ∈ N we define
the quantity

Nmin(ε, s) := min{N ∈ N : ∃PN,s ⊂ [0, 1)s such that D∗
N,γ(PN,s) ≤ ε},

which is often called the inverse of the weighted star discrepancy.

Definition 2 1. We say that the weighted star discrepancy is tractable, if there exist
non-negative C, α and β such that

Nmin(ε, s) ≤ Csαε−β (1)

holds for all dimensions s = 1, 2, . . . and for all ε ∈ (0, 1). The infima of α and β
such that (1) holds are called the s-exponent and the ε-exponent of tractability.

2. We say that the weighted star discrepancy is strongly tractable, if inequality (1)
holds with α = 0.
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Tractability means that there exists a point set whose cardinality is polynomial in s
and ε−1 such that the weighted star discrepancy of this point set is bounded by ε.

An excellent survey on tractability of different notions of discrepancy can be found in
the paper [15].

Tractability and strong tractability for the classical star discrepancy are defined in the
same manner as in the weighted case. Here it is known that for any number of points N
and dimension s there exists a point set PN,s ⊂ [0, 1)s, such that

D∗
N(PN,s) ≤ C

√
s

N

for some constant C > 0. This was first proved by Heinrich, Novak, Wasilkowski, and
Woźniakowski in [12]. For an extension of this result see [3]. Hence the classical star
discrepancy is tractable with s-exponent at most one and ε-exponent at most two. It was
further shown in [12] that the inverse of the classical star discrepancy is at least cs log ε−1

with an absolute constant c > 0 for all ε ∈ (0, ε0] and s ∈ N. This lower bound was
improved by Hinrichs [13] to csε−1 with an absolute constant c > 0 for all ε ∈ (0, ε0] and
s ∈ N. From these results it follows, that the classical star discrepancy cannot be strongly
tractable. We stress that all mentioned results are non-constructive. A first constructive
approach is given in [7]. However here for given s and ε the authors can only ensure
a running time for the construction algorithm of order Csss(log s)sε−2(s+2) which is too
expensive for practical applications. An overview of many open questions concerning this
topic can be found in [11].

Here we are interested in tractability properties of the weighted star discrepancy. Of
course it follows from the above results for the classical star discrepancy, that the weighted
star discrepancy is tractable with s-exponent at most one and ε-exponent at most two as
long as the weights are bounded. Now one may ask for conditions on the weights such
that a fewer dependence on the dimension s, i.e., a smaller s-exponent or even strong
tractability, can be obtained.

In Section 2 of this paper we show that under a very mild condition on the weights
we can indeed obtain an s-exponent equal to zero (Theorems 1 and 2). The proofs for
these results are based on the results from [12] and [7] for the classical star discrepancy.
Furthermore we consider the case of product weights (independent of s) and give con-
ditions such that the weighted star discrepancy is strongly tractable (Theorem 3). The
proof of this result is an extension of a result from [4]. Finally, in Section 3 we give a
lower bound on the weighted star discrepancy for a large class of weights (Theorem 4).
From this bound we conclude that for such weights we cannot have strong tractablity.

2 Upper Bounds

First we prove the existence of point sets in the s-dimensional unit cube whose star
discrepancy satisfies a certain upper bound. From this result we deduce our tractability
result for the weighted star discrepancy.

Theorem 1 There exists a constant C > 0 with the following property: for given number
of points N and dimension s there exists a point set PN,s consisting of N points in the
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s-dimensional unit cube, such that

D∗
N,γ(PN,s) ≤ C

1 +
√

log s√
N

max
∅6=u⊆Is

γu,s

√
|u|. (2)

Proof. It was shown in [12, Theorem 3] that for given number of points N and dimension
s the probability that an i.i.d. randomly chosen point set PN,s has star discrepancy at

most λ
√

s/N is at least

1 −
(
Kλ2e−2λ2

)s

,

for some (unknown) constant K and for all λ ≥ max{1, K, λ0}, where λ0 is such that
Kλ2 ≤ e2λ2

for all λ ≥ λ0.
For given number of points N and dimension s we consider the set

As :=

{
PN,s ⊂ [0, 1)s : D∗

N (PN,s(u)) ≤ λ

√
|u|
N

∀u ⊆ Is, u 6= ∅
}

,

where PN,s(u) := {x0(u), . . . , xN−1(u)} if PN,s = {x0, . . . , xN−1}. Furthermore, for u ⊆
Is, u 6= ∅, we define

Au,s :=

{
PN,s ⊂ [0, 1)s : D∗

N (PN,s(u)) ≤ λ

√
|u|
N

}
.

Then we have
As =

⋂

∅6=u⊆Is

Au,s.

Hence

P[As] = P




⋂

∅6=u⊆Is

Au,s


 = 1 − P




⋃

∅6=u⊆Is

Ac
u,s


 ≥ 1 −

∑

∅6=u⊆Is

P
[
Ac

u,s

]

> 1 −
∑

∅6=u⊆Is

(
Kλ2e−2λ2

)|u|
= 1 −

s∑

u=1

(
s

u

) (
Kλ2e−2λ2

)u

= 2 −
(
1 + Kλ2e−2λ2

)s

.

Now we choose λ := c max
{

1,
√

(log s)/(log 2)
}

with c := max{2, K, λ0}. Then for s = 1

we obtain
P[A1] > 1 − Kc2e−2c2 ≥ 0

as c ≥ λ0. For s ≥ 2 and x := c2/ log 2 > 5 we have x2 ≤ 2x ≤ sx and log s ≤ sx−1.
Therefore it follows that x2 log s ≤ s2x−1 and hence

c3 log s

(log 2)s2c2/(log 2)
≤ log 2

cs
.

From this inequality we obtain (for s ≥ 2)

P[As] > 2 −
(
1 + Kλ2e−2λ2

)s

≥ 2 −
(

1 +
c3 log s

(log 2)s2c2/(log 2)

)s

≥ 2 −
(

1 +
log 2

cs

)s

> 2 − e(log 2)/c = 2 − 21/c > 0.
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Hence for all s ∈ N we have P[As] > 0. Thus we have shown that there exists a point set
PN,s ⊂ [0, 1)s such that for each ∅ 6= u ⊆ Is we have

D∗
N(PN,s(u)) ≤ c max

{
1,

√
log s

log 2

} √
|u|
N

≤ C
(
1 +

√
log s

)√
|u|
N

.

For the weighted star discrepancy of this point set we obtain

D∗
N,γ(PN,s) ≤ C

1 +
√

log s√
N

max
∅6=u⊆Is

γu,s

√
|u|,

which is the desired result. 2

Remark 1 One can see from the proof above that, by increasing c (and therefore C),
the probability such that (2) holds tends to one.

From Theorem 1 we obtain the following conclusion.

Corollary 1 If
Cγ := sup

s=1,2,...
max
∅6=u⊆Is

γu,s

√
|u| < ∞, (3)

then for the weighted star discrepancy of the point set from Theorem 1 we have

D∗
N,γ(PN,s) ≤ C · Cγ

1 +
√

log s√
N

, (4)

where C > 0 is the (unknown) constant from Theorem 1. Hence we have

Nmin(ε, s) ≤
⌈

C2 · C2
γ

(
1 +

√
log s

)2

ε2

⌉
. (5)

From (5) we obtain, that if condition (3) holds, then the weighted star discrepancy is
tractable with s-exponent zero and with ε-exponent at most 2. We stress that we do not
obtain strong tractability in this case as we still have the logarithmic dependence on the
dimension s.

We note that condition (3) is a very mild condition on the weights. For example for
finite order weights it is always fulfilled. In the case of product weights it is enough that
the weights γj are decreasing and that γj < 1 for an index j ∈ N. In fact, we have

max
∅6=u⊆Is

γu,s

√
|u| = max

u=1,...,s

√
u

u∏

j=1

γj

and hence Cγ = sups=1,2,...

√
s
∏s

j=1 γj. We have

√
s
∏s

j=1 γj√
s + 1

∏s+1
j=1 γj

=

√
s

s + 1

1

γs+1
> 1
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for s large enough and therefore it follows that Cγ < ∞.

For example, if γj = 1/ log(j + 1), then Cγ =
√

2
log 2 log 3

.
For a much stronger condition on the weights we could even obtain strong tractability,

namely if

sup
s=1,2,...

(√
log s max

∅6=u⊆Is

γu,s

√
|u|

)
< ∞.

However, this condition is a very restrictive one. For example, it cannot hold for weights
which are independent of the dimension.

In the same way as above, one can show a little bit weaker result, but with explicit
constants.

Theorem 2 For given number of points N and dimension s there exists a point set PN,s

consisting of N points in the s-dimensional unit cube, such that

D∗
N,γ(PN,s) ≤

1√
N

√
2
(
log

(⌈
ρ
√

N
⌉

+ 1
)

+ log (2(e − 1)s)
)1/2

max
∅6=u⊆Is

γu,s

√
|u|,

where ρ = 3 log 3√
2(3 log 3+log 2)

.

Proof. The proof of Theorem 2 follows exactly the lines of the proof of Theorem 1. The
only difference is that here we use the fact that for given number of points N and dimension
s the probability that an i.i.d. randomly chosen point set PN,s has star discrepancy at
most √

2√
N

(
s log

(⌈
ρ
√

N
⌉

+ 1
)

+ log

(
2

c

))1/2

,

where ρ = 3 log 3√
2(3 log 3+log 2)

, is at least 1 − c, where 0 < c ≤ 1 is a real. This result follows

from a slight extension of the proof of [7, Theorem 3.2] (see also [12, Theorem 1]). 2

We obtain the following corollary.

Corollary 2 If
Cγ := sup

s=1,2,...
max
∅6=u⊆Is

γu,s

√
|u| < ∞, (6)

then for the weighted star discrepancy of the point set from Theorem 2 we have

D∗
N,γ(PN,s) ≤

Cγ√
N

√
2
(
log

(⌈
ρ
√

N
⌉

+ 1
)

+ log (2(e − 1)s)
)1/2

. (7)

Again, from the bound (7) we do not obtain that the weighted star discrepancy is
strongly tractable. We only obtain that it is tractable with s-exponent equal to zero (and
ε-exponent at most 2).

Now we turn to the case of product weights (independent of the dimension s) and
give a condition under which the weighted star discrepancy is strongly tractable. The
following result is an extension of [4, Corollary 8].
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Theorem 3 Let N, s ∈ N. For product weights, if

∞∑

j=1

γj < ∞,

then there exists a point set PN,s ⊂ [0, 1)s such that for any δ > 0 we have

D∗
N,γ(PN,s) ≤

Cδ,γ

N1−δ
,

where Cδ,γ > 0 is independent of s and N . Hence the weighted star discrepancy is strongly
tractable with ε-exponent equal to one.

Remark 2 We remark that the point set PN,s considered in Theorem 3 is a superposition
of digital nets over Z2. This will follow from the proof below. However, the result is
still not constructive as the result which we will use was proved by averaging over all
digital nets, see [4]. We remark that strong tractability results for the weighted star
discrepancy can also be obtained from the results of Wang in [18] and [19]. Wang’s
results are constructive, but one needs much more restrictive conditions on the weights.

For the proof of Theorem 3 we need the subsequent lemma.

Lemma 1 Let PN1,s, . . . ,PNm,s be point sets with cardinality N1, . . . , Nm respectively.
Further let PN,s = PN1,s ∪ . . . ∪ PNm,s (here we mean a superposition where the multi-
plicity of elements matters) and N = N1 + · · ·+ Nm. Then we have

D∗
N,γ(PN,s) ≤

m∑

i=1

Ni

N
D∗

Ni,γ
(PNi,s).

We omit the easy proof of this result. (See [9] for a proof of this result in the un-
weighted case.)

Proof of Theorem 3. Under the assumption
∑∞

i=1 γi < ∞ it was shown in [4, Corollary]
by averaging over all digital nets, that for each δ > 0 there exists for each prime p and
each m ∈ N a digital net over Zp with pm points, say Ppm,s ⊂ [0, 1)s, such that

D∗
pm,γ(Ppm,s) ≤

Cδ,γ

pm(1−δ)
,

where Cδ,γ > 0 is independent of s and m.
Now for simplicity we consider the case p = 2 only. Let δ > 0 and let N ∈ N

with binary representation N = 2r1 + · · · + 2rm, where 0 ≤ r1 < r2 < . . . < rm, i.e.,
rm = ⌊log2 N⌋, where log2 denotes the logarithm in base 2. For each 1 ≤ i ≤ m there
exists a point set P2ri ,s ⊂ [0, 1)s, such that

D∗
2ri ,γ(P2ri ,s) ≤

Cδ,γ

2ri(1−δ)
.

Let PN,s = P2r1 ,s ∪ . . . ∪ P2rm ,s (here we mean a superposition where the multiplicity of
elements matters). Then it follows from Lemma 1, that

D∗
N,γ(PN,s) ≤

m∑

i=1

2ri

N
D∗

2ri ,γ(P2ri ,s) ≤
Cδ,γ

N

m∑

i=1

2riδ ≤ Cδ,γ

N

⌊log2 N⌋∑

j=0

2jδ ≤ C̃δ,γ

N1−δ
.
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Hence for each s, N ∈ N there exists a point set PN,s with D∗
N,γ(PN,s) ≤ eCδ,γ

N1−δ which is
the desired result. This point set is a superposition of digital nets over Z2. 2

3 Lower Bounds

The aim of this section is to show that the logarithmic factor in the dimension in the
tractability results is indeed necessary for a large class of weigths. That implies that the
star discrepancy is not strongly tractable for such weights. In particular, this includes
finite order weights of order k ≥ 2 if all the weights of order 2 are bounded below by a
constant c > 0.

To prove these lower bounds we start with an elementary lemma. For u ⊆ Is and
k ∈ {0, 1} let

Bk(u) =

{
x = (x1, . . . , xs) ∈ [0, 1)s : xi ∈

[
k

2
,
k + 1

2

)
for i ∈ u

}
.

Lemma 2 Let PN,s = {x0, . . . , xN−1} ⊂ [0, 1)s. Then there exists u ⊆ Is with cardinality
at least s/2N such that one of the sets B0(u) and B1(u) contains at least half of the points
of PN,s.

Proof. There exists u0 ⊆ Is with cardinality at least s/2 and k0 ∈ {0, 1} such that
x0 ∈ Bk0

(u0). Inductively, for h = 1, . . . , N −1, we can choose uh ⊆ uh−1 with cardinality
at least s/2h+1 and kh ∈ {0, 1} such that xh ∈ Bkh

(u). Set u = uN−1 and let k ∈ {0, 1}
be such that at least half of the kh, h = 0, . . . , N − 1 are equal to k. Then the cardinality
of u is at least s/2N and at least half of the points x0, . . . , xN−1 are in Bk(u). 2

We now give the announced lower bound for the weighted star discrepancy.

Theorem 4 If the weights γ = {γu,s : u ⊆ Is, u 6= ∅} are such that there exists a constant
c > 0 with γu,s ≥ c for all u ⊆ Is with cardinality 2 then

D∗
N,γ(PN,s) ≥

c

12

for any point set PN,s consisting of N points in the s-dimensional unit cube with s ≥ 2N+1.
In particular, the weighted star discrepancy is not strongly tractable for such weights.

Proof. With the preceding lemma we find u0 ⊆ Is with cardinality 2 such that one of the
sets B0(u0) or B1(u0) contains at least N/2 points of PN,s. Without loss of generality we
assume that u0 = {1, 2}. Let z

(0) = (1/2, 1/2, 1/2, . . . , 1/2), z
(1) = (1, 1/2, 1/2, . . . , 1/2)

and z
(2) = (1/2, 1, 1/2, . . . , 1/2). Furthermore, let n0, n1, n2 be the number of points in

the point set PN,s which are contained in the boxes I1×I2× [0, 1)s−2 for I1 = I2 = [0, 1/2),
I1 = [1/2, 1), I2 = [0, 1/2) and I1 = [0, 1/2), I2 = [1/2, 1), respectively.

Let us first assume that the set B0(u0) contains at least N/2 points. Then

∆(z(0)
u0

, 1) =
AN (B0(u0))

N
− 1

4
≥ 1

4
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which implies

D∗
N,γ(PN,s) ≥

c

4
.

Finally, we treat the case that the set B1(u0) contains at least N/2 points so that its
complement contains at most N/2 points, i.e.

n0 + n1 + n2 ≤ N/2.

Then at least one of the following three inequalities holds

n0 + n1 ≤
5N

12
, n0 + n2 ≤

5N

12
, n0 ≥

N

3
.

If the first inequality holds then it follows that

∆(z(1)
u0

, 1) =
n0 + n1

N
− 1

2
≤ − 1

12
.

If the second inequality holds, we have

∆(z(2)
u0

, 1) =
n0 + n2

N
− 1

2
≤ − 1

12
.

If the third inequality is true then

∆(z(0)
u0

, 1) =
n0

N
− 1

4
≥ 1

12
.

In any case,

D∗
N,γ(PN,s) ≥

c

12
.

2
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