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Abstract

We study the complexity of constraint satisfaction problems for templates Γ that are first-
order definable in (Z; succ), the integers with the successor relation. In the case that Γ is locally
finite (i.e., the Gaifman graph of Γ has finite degree), we show that Γ is homomorphically
equivalent to a structure with a certain majority polymorphism (which we call modular median)
and the CSP for Γ can be solved in polynomial time, or Γ is homomorphically equivalent to
a finite transitive structure, or the CSP for Γ is NP-complete. Assuming a widely believed
conjecture from finite domain constraint satisfaction (we require the tractability conjecture by
Bulatov, Jeavons and Krokhin in the special case of transitive finite templates), this proves that
those CSPs have a complexity dichotomy, that is, are either in P or NP-complete.

1 Introduction

Constraint satisfaction problems appear naturally in many areas of theoretical computer science,
for example in artificial intelligence, optimization, computer algebra, computational biology,
computational linguistics, and type systems for programming languages. Such problems are
typically NP-hard, but sometimes they are polynomial-time tractable. The question as to which
CSPs are in P and which are hard has stimulated a lot of research in the past 10 years. For pointers
to the literature, there is a recent collection of survey articles [10].

The constraint satisfaction problem CSP for a fixed (not necessarily finite) structure Γ
with a finite relational signature τ is the computational problem to decide whether a given
primitive positive sentence is true in Γ. A formula is primitive positive if it is of the form
∃x1, . . . , xn. ψ1 ∧ · · · ∧ ψm where ψi is an atomic formula over Γ, i.e., a formula of the form
R(y1, . . . , yj) for a relation symbol R of a relation from Γ. The structure Γ is also called the
template of the CSP.

The class of problems that can be formulated as a CSP for a fixed structure Γ is very large. It
can be shown that for every computational problem there is a structure Γ such that the CSP for
Γ is equivalent to this problem under polynomial-time Turing reductions [3]. This makes it very
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unlikely that we can give good descriptions of all those Γ where the CSP for Γ is in P. In contrast,
the class of CSPs for a finite structure Γ is quite restricted, and indeed it has been conjectured
that the CSP for Γ is either in P or NP-complete in this case [12]. So it appears to be natural to
study the CSP for classes of infinite structures Γ that share good properties with finite structures.

In graph theory and combinatorics, there are two major concepts of finiteness for infinite
structures. The first is ω-categoricity: a countable structure is ω-categorical if and only if
its automorphism group has for all n only finitely many orbits in its natural action on n-
tuples [9, 19, 16]. This property has been exploited to transfer techniques that were known to
analyze the computational complexity of CSPs with finite domains to infinite domains [6, 5, 7]; see
also the introduction of [2].

The second concept of finiteness is the property of an infinite graph or structure to be locally
finite (see Section 8 in [11]). A graph is called locally finite if every vertex is contained in a finite
number of edges; a relational structure is called locally finite if its Gaifman graph (definition given
in Section 2) is locally finite. Many conjectures that are open for general infinite graphs become true
for locally finite graphs, and many results that are difficult become easy for locally finite graphs.

In this paper, we initiate the study of CSPs with locally finite templates by studying locally
finite templates that have a first-order definition in (Z; succ), where succ = {(x, y) | x = y + 1} is
the successor relation on the integers.

As an example, consider the directed graph with vertex set Z which has an edge between x
and y if the difference, y − x, between x and y is either 1 or 2. This graph can be viewed as the
structure (Z; Diff{1,3}) where Diff{1,3} = {(x, y) | x− y ∈ {1, 3}}, which has a first-order definition
over (Z; succ) since R{1,2}(x, y) iff

succ(x, y) ∨ ∃u, v. succ(x, u) ∧ succ(u, v) ∧ succ(v, y) .

Another example is the undirected graph (Z; Dist{1,2}) with vertex set Z where two integers x, y
are linked if the distance, |y − x|, is one or two.

Structures with a first-order definition in (Z; succ) are particularly well-behaved from a
model-theoretic perspective: all of those structures are strongly minimal [19, 16], and therefore
uncountably categorical. Uncountable models of their first-order theory will be saturated; for
implications of those properties for the study of the CSP, see [4]. In some sense, (Z; succ) constitutes
one of the simplest infinite structures that is not ω-categorical.

The corresponding class of CSPs contains many natural combinatorial problems. For instance,
the CSP for the structure (Z;R{1,3}) is the computational problem consisting to label the vertices
of a given directed graph G such that if (x, y) is an arc in G, then the difference between the label
for x and the label for y is one or three. It will follows from our general results that this problem is
in P. The CSP for the undirected graph (Z; Dist{1,2}) is exactly the 3-coloring problem, and hence,
NP-complete. This is readily seen if one observes that any homomorphism of a graph G into the
template modulo 3 gives rise to a 3-coloring of G. In general, the problems that we study in this
paper have the flavor of assignment problems where we have to assign integers to variables such
that various given constraints on differences and distances (and Boolean combinations thereof)
between variables are satisfied. We therefore call the class of CSPs whose template is locally finite
and definable over (Z; succ) distance CSPs.

In Section 6 we prove the following classification result for distance CSPs.

Theorem 1 Let Γ be a locally finite structure with a first-order definition in (Z; succ) that is not
homomorphically equivalent to a finite structure. Then either

• The CSP for Γ is NP-complete.
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• Γ has a modular median polymorphism (see Section 5), and the CSP for Γ is in P.

If a locally finite structure Γ with a first-order definition in (Z; succ) has a finite core, then
a widely accepted conjecture about finite domain CSPs implies that the CSP for Γ is either NP-
complete or in P. In fact, for this we only need the special case of the conjecture of Feder and
Vardi [12] that states that the CSP for finite templates with a transitive automorphism group is
either in P or NP-complete (see Section 7 for details).

Our theorem shows that if Γ is not homomorphically equivalent to a finite core, then the CSP
for Γ is NP-complete, or that Γ has a certain majority polymorphism, which we call modular median
(defined in Section 5), and the CSP for Γ can be solved in polynomial time by local consistency
techniques. Polynomial-time tractability results based on local consistency were previously only
known for finite or ω-categorical templates; we use the assumption that templates for distance
CSPs are locally finite to extend the technique to non-ω-categorical templates.

On the way to our classification result we derive several facts about structures definable
in (Z; succ), and automorphisms and endomorphisms of these structures, which might be of
independent interest in model theory, universal algebra, and combinatorics. For example, we
show that every injective endomorphism of a connected locally finite structure Γ with a first-
order definition in (Z; succ) is either of the form x 7→ −x + c or of the form x 7→ x + c for some
c ∈ Z.

2 Preliminaries

A finite relational signature τ is a finite set of relation symbols Ri, each of which has an associated
arity ki. A (relational) structure Γ consists of a set D (the domain) together with a relation
RΓ
i ⊆ Dki for each relation symbol Ri from τ . We consider only finite signature structures in this

paper.
For x, y ∈ Z, let d(x, y) be the distance between x and y, that is, |x − y|. The relation

{(x, y) | y = x + 1} is denoted by succ, and the relation {(x, y) | d(x, y) = 1} is denoted by
sym-succ. A k-ary relation R is said to be first-order (fo) definable in the τ -structure Γ if there is
an fo-τ -formula φ(x1, . . . , xk) such that R = {(x1, . . . , xk) : Γ |= φ(x1, . . . , xk)}. A structure ∆ is
said to be fo-definable in Γ if each of its relations is fo-definable in Γ. For example, (Z; sym-succ)
is fo-definable in (Z; succ) (though the converse is false).

The structure induced by a subset S of the domain of Γ is denoted by Γ[S]. We say that a
structure is connected if it cannot be written as the disjoint union of two other structures. The
Gaifman graph of a relational structure Γ with domain D is the following undirected graph: the
vertex set is D, and there is an edge between distinct elements x, y ∈ D when there is a tuple
in one of the relations of Γ that has both x and y as entries. A structure Γ is readily seen to be
connected if and only if its Gaifman graph is connected. The degree of a structure Γ is defined to
be the degree of the Gaifman graph of Γ. The degree of a relation R ⊆ Zk is defined to be the
degree of the structure (Z;R). Throughout the paper, Γ will be a finite-degree relational structure
with an fo definition in (Z; succ). The notation (Γ, R) indicates the expansion of Γ with the new
relation R.

An fo-formula Θ is primitive positive (pp) if it is of the form ∃x1, . . . , xi.θ(x1, . . . , xi, xi+1,
. . . , xj) where θ is a conjunction of atoms. Note that we consider the boolean false ⊥ to be a pp-
formula, and we always allow equalities in pp-formulas. A pp-sentence is a pp-formula with no free
variables. Suppose Γ is a finite structure over a finite signature with domain D := {a1, . . . , as}. Let
θΓ(x1, . . . , xs) be the conjunction of the positive facts of Γ, where the variables x1, . . . , xs correspond
to the elements a1, . . . , as. That is, R(xλ1 , . . . , xλk) appears as an atom in θΓ iff (aλ1 , . . . , aλk) ∈ RΓ.
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Define the pp-sentence ∃x1 . . . xs.θΓ(x1, . . . , xs) to be the canonical query of Γ. Conversely, for a
pp-sentence Θ := ∃x1 . . . xs.θ(x1, . . . , xs) we build the canonical database ΓΘ to be the structure
with domain {x1, . . . , xs} of which θ(x1, . . . , xs) lists the positive facts.

For a structure Γ over a finite signature, CSP(Γ) is the computational problem to decide whether
a given pp-sentence is true in Γ. It is not hard to see that CSP(∆) ≤P CSP(Γ) for any Γ and ∆
with the same domain such that each of the relations of ∆ is pp-definable in Γ (see [18]); here, ≤P

indicates polynomial-time many-to-one reduction (in fact, logspace reductions may be used, though
this is harder to see and requires the celebrated result of [20]).

Let Γ and ∆ be τ -structures. A homomorphism from Γ to ∆ is a function f from the domain of
Γ to the domain of ∆ such that, for each k-ary relation symbol R in τ and each k-tuple (a1, . . . , ak)
from Γ, if (a1, . . . , ak) ∈ RΓ, then (f(a1), . . . , f(ak)) ∈ R∆. In this case we say that the map
f preserves the relation R. Injective homomorphisms that also preserve the complement of each
relation are called embeddings. Surjective embeddings are called isomorphisms; homomorphisms
and isomorphisms from Γ to itself are called endomorphisms and automorphisms, respectively. The
set of automorphisms of a structure Γ forms a group under composition. A (k-ary) polymorphism
of a structure Γ over domain D is a function f : Dk → D such that, for all m-ary relations R of Γ,
if (ai1, . . . , a

i
m) ∈ RΓ, for all i ≤ k, then (f(a1

1, . . . , a
k
1), . . . , f(a1

m, . . . , a
k
m)) ∈ RΓ.

A unary function g (over domain D) is in the local closure of a set of unary functions F (over
domain D) if, for every finite D′ ⊆ D there is a function f ′ ∈ F such that g and f ′ agree on all
elements in D′. We say the F generates f if f is in the local closure of the set F ′ of all functions
that can be obtained from the members of F by repeated applications of composition.

If there exist homomorphisms f : Γ → ∆ and g : ∆ → Γ then Γ and ∆ are said to be
homomorphically equivalent. It is a basic observation that CSP(Γ) = CSP(∆) if Γ and ∆ are
homomorphically equivalent. A structure is a core if all of its endomorphisms are embeddings [1]
– a core ∆ of a structure Γ is an induced substructure that is itself a core and is homomorphically
equivalent to Γ. It is well-known that, if a structure has a finite core, then that core is unique up
to isomorphism (the same is not true for infinite cores).

We could have equivalently defined the class of distance CSPs as the class of CSPs whose
template is locally finite and first-order definable in (Z; s), where s is the unary successor function,
since (Z; succ) and (Z; s) fo-define the same structures. The structure (Z; s) admits quantifier
elimination; that is, for every fo-formula φ(x) there is a quantifier-free (qf) φ′(x) such that (Z; s)
|= ∀x.φ(x)↔ φ′(x) (this is easy to prove, and can be found explicitly in [13]). Thus we may have
terms in φ′ of the form y = sj(x), where sj is the successor function composed on itself j times. Let
Γ be a finite signature structure, fo-definable in (Z; succ), i.e. qf-definable in its functional variant
(Z; s). Let m be the largest number such that y = sm(x) appears as a term in the qf definition
of a relation of Γ. Consider now CSP(Γ), the problem to evaluate Φ := ∃x1, . . . , xk.φ(x1, . . . , xk),
where φ is a conjunction of atoms, on Γ. Let S := {1, . . . , k · (m + 1)}. It is not hard to see that
Γ |= Φ iff Γ[S] |= Φ. It follows that CSP(Γ) will always be in NP.

3 Endomorphisms

The main result of this section is the following theorem.

Theorem 2 Let Γ be a relational structure with a first-order definition in (Z; succ) which has finite
degree and which is connected. Then:

• The automorphism group of Γ equals either the automorphism group of (Z; succ), or that of
(Z; sym-succ).
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• Either Γ has a finite range endomorphism, or it has an endomorphism which maps Γ onto
a subset of Z isomorphic to a structure fo-definable in (Z; succ) all of whose endomorphisms
are automorphisms.

The proof of this theorem can be found at the end of this section, and makes use of a series of
lemmata. We assume henceforth that Γ is a relational structure with a first-order definition in
(Z; succ) which has finite degree and which is connected.

Before beginning the proof, we remark the following. If a structure Γ as in Theorem 2 has
a first-order definition in (Z; sym-succ), then it is easy to see that the automorphism group of Γ
contains that of (Z; sym-succ), and hence it is equal to the latter group by the theorem. Now it is
tempting to believe that also the converse holds, i.e., that if the automorphism group of Γ equals
that of (Z; sym-succ) then Γ is fo-definable in (Z; sym-succ); for example, if the automorphism
group of a structure ∆ equals that of an ω-categorical structure ∆′, then ∆ does have a first-order
definition in ∆′. In our situation, however, this is not true: Let

R := {(x, y, u, v) ∈ Z4 : (y = succ(x) ∧ v = succ(u)) ∨ (u = succ(v) ∧ x = succ(y))},

and set Γ := (Z;R). Clearly, Γ satisfies the hypotheses of Theorem 2. The function which
sends every x ∈ Z to −x is an automorphism of Γ, so the automorphism group of Γ equals
that of (Z; sym-succ), by Theorem 2. However, R is not fo-definable in (Z; sym-succ). To see
this, suppose it were definable. For every positive natural number i, let sym-succi be the binary
relation that says that the distance between two points equals i. Then R is also definable
in (Z; sym-succ1, sym-succ2, . . .), and even with a quantifier-free formula φ(x, y, u, v) since this
structure has quantifier-elimination. Let n be the maximal natural number such that sym-succn

occurs in φ(x, y, u, v). We claim that φ(0, 1, n + 2, n + 3) holds iff φ(0, 1, n + 3, n + 2) holds. To
see this, we show that any atom of the formula φ(x, y, u, v), i.e., any occurrence of sym-succk(a, b),
where {a, b} ⊆ {x, y, u, v} and k ≤ n, evaluates to true upon insertion of v1 := (0, 1, n+2, n+3) for
the variables (x, y, u, v) if and only if it evaluates to true upon insertion of v2 := (0, 1, n+ 3, n+ 2)
for (x, y, u, v). This is obvious when {a, b} ⊆ {x, y} since v1 and v2 have identical values for x, y.
If |{a, b} ∩ {x, y}| = 1 then the atom becomes false in both evaluations, so the only remaining case
is where {a, b} ⊆ {u, v}; but then the atom becomes true in both evaluations if and only if k = 1
and a 6= b, so we are done. Now since φ(0, 1, n + 2, n + 3) holds iff φ(0, 1, n + 3, n + 2) holds, we
have a contradiction since v1 is an element of R whereas v2 is not.

Denote by E the edge-relation of the Gaifman graph of Γ. It is clear that every endomorphism
of Γ preserves E. We claim that there are 0 < d1 < · · · < dn such that E(x, y) holds iff
d(x, y) ∈ {d1, . . . , dn}. To see this, observe that if x, y ∈ Z are connected by E and u, v ∈ Z are so
that d(x, y) = d(u, v), then also u, v are connected by E: This is because there is an automorphism
of (Z; succ) (and hence of Γ) which sends {x, y} to {u, v} and this automorphism also preserves E.
Hence, the relation E is determined by distances. Moreover, there are only finitely many distances
since Γ is assumed to have finite degree.

Definition 3 We will refer to the distances defining the Gaifman graph of Γ as d1, . . . , dn. We
also write D for the largest distance dn.

The following basic claim characterizes those structures with a first-order definition in (Z; succ)
which are connected by their distance set.

Claim 4 Γ is connected if and only if the greatest common divisor of d1, . . . , dn is 1.
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Proof: If d is the greatest common divisor of d1, . . . , dn it is clear that all the nodes accessible
from a node x ∈ Z are of the form x+ c ·d where c ∈ Z. Conversely, every node of the form x+ c ·d
is accessible from x because c · d = c1 · d1 + · · · + cn · dn for some c1, . . . , cn ∈ Z, by the extended
Euclidean algorithm.

In order to lighten the notation we might use ex to denote e(x), where e is an endomorphism
of Γ and x ∈ Z.

Lemma 5 Suppose that Γ is connected and of finite degree. Then there exists a constant c = c(Γ)
such that for all endomorphisms e of Γ we have d(e(x), e(y)) ≤ d(x, y) + c for all x, y ∈ Z.

Proof: We first claim that for every 0 < q < D, there exists a number cq such that
d(e(x), e(y)) ≤ cq for all endomorphisms e of Γ and all x, y ∈ Z with d(x, y) = q. To see this,
pick u, v with d(u, v) = q and a path between u and v in the Gaifman graph of Γ; say this path
has length lq. Then, since this path is mapped to a path under any endomorphism, we have
d(e(u), e(v)) ≤ D · lq for all endomorphisms e. Since an isomorphic path exists for all x, y with the
same distance, our claim follows by setting cq := D · lq. Set c to be the maximum of the cq, and
let an endomorphism e and x, y ∈ Z be given. Assume wlog that x < y. There exists m ≥ 0 and
0 ≤ q < D such that y = x + D · m + q. Set xr := x + D · r, for all 0 ≤ r ≤ m. Since xr and
xr+1 are connected in the Gaifman graph of Γ for all 0 ≤ r < m, so are exr and exr+1, and hence
d(exr, exr+1) ≤ D. Therefore,

d(ex, ey) ≤
∑

0≤r<m
d(exr, exr+1) + d(exm, ey) ≤ D ·m+ d(exm, ey)

≤ d(x, y) + d(exm, ey) ≤ d(x, y) + c.

Observe that a constant c(Γ) not only exists, but can actually be calculated given the distances
d1, . . . , dn: by the proof of Lemma 5, it suffices to calculate a constant cq for all 0 < q < D. To do
this, one must find a path of length lq between two numbers u, v ∈ Z with d(u, v) = q; this again
amounts to solving the equation x1 · d1 + · · ·+ xn · dn = q (with variables x1, . . . , xn) over Z, which
can be achieved by the extended Euclidean algorithm.

In the following, we will keep the symbol c reserved for the minimal constant guaranteed by the
preceding lemma.

Lemma 6 Let e be an endomorphism of Γ. If for all k > c+1 there exist x, y with d(x, y) = k and
d(e(x), e(y)) < k, then e generates a finite range operation whose range has size at most 2(c+ 1).

Proof: Let A ⊆ Z be finite. We claim that e generates a function fA which maps A into a set of
diameter at most 2c+1. The lemma then follows by the following standard local closure argument:
Let S be the set of all those functions α whose domain is a finite interval [−n;n] ⊆ Z and whose
range is contained in the interval [−c; c], and which have the property that there exists a function
generated by e which agrees with α on [−n;n]. By our claim, S is infinite. For functions α, β in S,
write α ≤ β iff β is an extension of α. Clearly, the set S, equipped with this order, forms a finitely
branching tree; since the tree is infinite, it has an infinite branch (this easily verified fact is called
König’s lemma) B ⊆ S. The branch B defines a function f from Z into the interval [−c; c]; since
e generates functions which agree with f on arbitrarily large intervals of the form [−n;n], we have
that f is generated by e, too. This completes the proof.

Enumerate the pairs (x, y) ∈ A2 with x < y by (x1, y1), . . . , (xr, yr). Now the hypothesis of
the lemma implies that by successive applications of e and shifts we can map (x1, y1) to a pair of
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distance at most c+1; in other words, there exists t1 generated by e such that d(t1x1, t1y1) ≤ c+1.
Similarly, there exists t2 generated by e such that d(t2t1x2, t2t1y2) ≤ c + 1. Continuing like
this we arrive at a function tr generated by e such that d(trtr−1 · · · t1xr, trtr−1 · · · t1yr) ≤ c + 1.
Now consider t := tr ◦ · · · ◦ t1. Set fj := tr ◦ · · · ◦ tj+1 and gj := tj ◦ · · · ◦ t1, for all
1 ≤ j ≤ r; so t = fj ◦ gj . Then, since by construction d(gj(xj), gj(yj)) ≤ c + 1, we have that
d(txj , tyj) = d(fj(gj(xj)), fj(gj(yj)) ≤ d(gj(xj), gj(yj)) + c ≤ 2c+ 1 for all 1 ≤ j ≤ r, and our claim
follows.

Lemma 7 If the hypothesis of the preceding lemma does not hold, i.e., if for an endomorphism
e of Γ there exists k > c + 1 such that d(ex, ey) ≥ k for all x, y with d(x, y) = k, then either
e(s + D) = e(s) + D for all s ∈ Z or e(s + D) = e(s) −D for all s ∈ Z. In particular, e does not
generate a finite range operation.

Proof: Let k > c + 1 be so that d(ex, ey) ≥ k for all x, y with d(x, y) = k. Let w ∈ Z be
arbitrary. Then, since d(e(w+k), e(w)) ≥ k, we have e(w) 6= e(w+k); since e satisfies the statement
of the lemma if and only if the endomorphism e′ defined by e′(x) := −e(x) does, we may assume
that e(w + k) > e(w) . We claim that for all v ∈ Z, e(v + k) ≥ e(v) + k. Suppose not, and say
wlog that there exists v > w contradicting our claim. Then, since d(e(v + k), e(v)) ≥ k, we have
e(v+ k) ≤ e(v)− k. Take the minimal v with v > w satisfying this property. Then, by minimality,
we have e(v − 1 + k) ≥ e(v − 1) + k. Since by Lemma 5 we have d(e(v − 1 + k), e(v + k)) ≤ c+ 1,
we get that e(v − 1) + k − c− 1 ≤ e(v + k). On the other hand, e(v)− c− 1 ≤ e(v − 1). Inserting
this into the previous inequality, we obtain e(v) − c − 1 + k − c − 1 ≤ e(v + k), which yields
e(v)− 2c− 2 + k ≤ e(v+ k). By our assumption on v, we obtain e(v)− 2c− 2 + k ≤ e(v)− k, which
yields k ≤ c+ 1, a contradiction.

Set b := k ·D. We next claim that e(v + b) = e(v) + b for all v ∈ Z. Since b is a multiple of D
and points with distance D cannot be mapped to points with larger distance under e, we get that
e(v+ b) ≤ e(v) + b. On the other hand, since b is also a multiple of k and since e(v+ k) ≥ e(v) + k
for all v ∈ Z, we obtain e(v + b) ≥ e(v) + b, proving the claim.

We now prove that e(v) +D ≤ e(v +D) for all v ∈ Z. This is because e(v) + kD = e(v) + b =
e(v + b) = e(v + kD) = e(v +D + (k − 1)D) ≤ e(v +D) + (k − 1)D, the latter inequality holding
since D is the maximal distance in the relation E and cannot be increased. Subtracting (k − 1)D
on both sides, our claim follows.

Since points of distance D cannot be mapped to points of larger distance under e, we have
e(v +D) ≤ e(v) +D for all v ∈ Z, and we have proved the lemma.

The following lemma summarizes the preceding two lemmas.

Lemma 8 The following are equivalent for an endomorphism e of Γ:

(i) There exists k > c+ 1 such that d(ex, ey) ≥ k for all x, y ∈ Z with d(x, y) = k.

(ii) e does not generate a finite range operation.

(iii) e satisfies either e(v +D) = e(v) +D or e(v +D) = e(v)−D.

Proof: Lemma 7 shows that (i) implies (ii) and (iii). It follows from from Lemma 6 that (ii)
implies (i). Finally, it is clear that (iii) implies (ii).

We know now that there are two types of endomorphisms of Γ: Those which are periodic with
period D, and those which generate a finite range operation. We will now provide examples showing
that both types really occur.
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Example 9 Let R := {(x, y) : d(x, y) = 1 ∨ d(x, y) = 3}, and set Γ := (Z;R). Set e(3k) := 3k,
e(3k+ 1) := 3k+ 1, and e(3k+ 2) := 3k, for all k ∈ Z. Then e is an endomorphism of Γ that does
not generate any finite range operations since it satisfies e(v + 3) = e(v) + 3 for all v ∈ Z.

Observe that in the previous example, we checked that e is of the non-finite-range type by virtue
of the easily verifiable Item (iii) of Lemma 8 and without calculating c(Γ), which would be more
complicated.

Example 10 For the structure Γ from Example 9, let e be the function which maps every x ∈ Z
to its value modulo 4. Then e is an endomorphism which has finite range.

Example 11 Set R := {(x, y) : d(x, y) ∈ {1, 3, 6}} and S := {(x, y) : d(x, y) = 3}. Then
Γ := (Z;R,S) has the endomorphism from Example 9. However, it does not have any finite range
endomorphism. To see this, consider the set 3Z := {3m : m ∈ Z}. If e were a finite range
endomorphism, it would have to map this set onto a finite set. By composing e with automorphisms
of (Z; succ), we may assume that e(0) = 0 and e(3) > 0. Then e(3) = 3 as e preserves S. We claim
e(s) = s for all s ∈ 3Z. Suppose to the contrary that s is the minimal positive counterexample (the
negative case is similar). We have e(s− 3) = s− 3 and hence, as e preserves S, e(s) ∈ {s− 6, s}.
If we had e(s) = s− 6, then e(s− 6) = s− 6 and (s− 6, s) ∈ R yields a contradiction.

Example 12 Let Γ = (Z; sym-succ), and let e be the function that maps every x to its absolute
value. Then e does not have finite range, but does generate a function with finite range (namely,
the function which sends the even numbers to 0 and the odd numbers to 1).

The proof of Lemma 7 generalizes canonically to a more general situation.

Lemma 13 Let e be an endomorphism of Γ satisfying the various statements of Lemma 8. Let q
be so that d(x, y) = q implies that d(ex, ey) ≤ q. Then e satisfies either e(v + q) = e(v) + q for all
v ∈ Z, or e(v + q) = e(v)− q for all v ∈ Z.

Proof: This is the same argument as in the proof of Lemma 7, with D replaced by q.

Definition 14 Given an endomorphism e of Γ, we call all positive natural numbers q with the
property that e(v + q) = e(v) + q for all v ∈ Z or e(v + q) = e(v)− q for all v ∈ Z stable for e.

Observe that if e satisfies the various statements of Lemma 8, then D is stable for e. Note
also that if p, q are stable for e, then they must have the same “direction”: We cannot have
e(v + p) = e(v) + p and e(v + q) = e(v)− q for all v ∈ Z.

Lemma 15 Let e satisfy the various statements of Lemma 8, and let q be the minimal stable
number for e. Then the stable numbers for e are precisely the multiples of q. In particular, q
divides D.

Proof: Clearly, all multiples of q are stable. Now for the other direction suppose that p is stable
but not divisible by q. Write p = m · q + r, where m, r are positive numbers and 0 < r < q.
Since r is not stable, composing e and shifts we can find build a function t such that t(0) = 0 and
d(t(mq), t(p)) 6= r. By the property of p we should have t(p) = p. But this is impossible since then
d(t(mq), t(p)) = d(mq, p) = r, a contradiction.
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Lemma 16 Let e be an endomorphism of Γ satisfying the statements of Lemma 8. Let q be its
minimal stable number. Then there is an endomorphism t of Γ which can be written as a functional
composite using automorphisms of (Z; succ) and e which has the following properties:

• t satisfies either t(v + q) = t(v) + q or t(v + q) = t(v)− q

• t(0) = 0

• t[Z] = {q · z : z ∈ Z}.

Proof: Assume 1 < q (otherwise t can be chosen to be the identity and there is nothing
to do). We claim that e generates a term t1 such that t1(0) = 0 and t1(1) ∈ {q · z : z ∈ Z}.
To see this, observe that since 1 < q and since q is the smallest positive number with the
property that d(x, y) = q implies d(ex, ey) ≤ q, there exist x0, y0 ∈ Z with d(x0, y0) = 1 and
d(ex0, ey0) > 1. Write r1 := d(ex0, ey0). If r1 is not a multiple of q, then there exist x1, y1 ∈ Z
with d(x1, y1) = r1 and d(ex1, ey1) =: r2 > r1. Again, if r2 is not a multiple of q, then there
exist x2, y2 ∈ Z with d(x2, y2) = r2 and d(ex2, ey2) =: r3 > r2. Consider the sequence (xi, yi) of
pairs of distance ri (setting r0 := 1). By exchanging xi+1 and yi+1 if necessary, we may assume
that xi+1 < yi+1 iff exi < eyi, for all i. There exist automorphisms αi of (Z; succ) such that
(αi(e(xi)), αi(e(yi))) = (xi+1, yi+1). Set si := αi ◦ e ◦ αi−1 ◦ · · · ◦ α0 ◦ e. Then the endomorphism
si sends (x0, y0) to (xi+1, yi+1), a pair of distance ri+1 > ri > · · · > r0. Thus the sequence must
end at some finite i. By construction of the sequence, this happens only if ri+1 is a multiple of q.
Therefore, ri+1 = d(si(x0), si(y0)) ∈ {q · z : z ∈ Z}. By applying shifts we may assume x0 = 0,
y0 = 1, and si(0) = 0. Set t1 := si.

Now if 2 < q, then consider the number t1(2). We claim that e generates a term t2 such that
t2(0) = 0 and t2(t1(2)) is a multiple of q. If already t1(2) is a multiple of q, then we can choose t2
to be the identity. Otherwise, we can increase the distance of t1(2) from 0 successively by applying
shifts and e just as before, where we moved away 1 from 0. After a finite number of steps, we arrive
at a term t2 such that d(t2(0), t2t1(2)) is a multiple of q. Applying a shift one more time, we may
assume that t2(0) = 0, and so t2 has the desired properties.

We continue inductively, constructing for every i < q a term ti such that ti(0) = 0 and
ti ◦ · · · ◦ t1(i) is a multiple of q. At the end, we set t := tq−1 ◦ · · · ◦ t1. Since e satisfies either
e(v + q) = e(v) + q or e(v + q) = e(v)− q, so does t, as it is composed of e and automorphisms of
(Z; succ). It is also clear from the construction that t(0) = 0 holds. These two facts together imply
that t[Z] contains the set {q · z : z ∈ Z}. For the other inclusion, let v ∈ Z be arbitrary, and write
v = q · z + r, where z ∈ Z and 0 ≤ r < q. Then t(v) = q · z + t(r) or t(v) = −q · z + t(r), which is a
multiple of q since t(r) is a multiple of q by construction.

Observe that we did not need local closure in the preceding lemma.

Lemma 17 Let e be an endomorphism of Γ which is not an automorphism of (Z; sym-succ). Then
e is not injective.

Proof: If e generates a finite range operation then the lemma follows immediately, so assume
this is not the case. Then e has a minimal stable number q. Since e is not an automorphism of
(Z; sym-succ), we have q > 1. But then the statement follows from the preceding lemma, since the
function t is not injective.

Lemma 18 Let e be an endomorphism of Γ which is not an automorphism of (Z; sym-succ) and
which does not generate a finite range operation. Then e is not surjective.
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Proof: This is a direct consequence of Lemma 16, since being surjective is preserved under
composition.

Proof: (of Theorem 2) We prove the first statement. It is a direct consequence of Lemma 17
that the automorphism group of Γ is contained in that of (Z; sym-succ). Since Γ is fo-definable
in (Z; succ), its automorphism group contains that of (Z; succ). The statement now follows from
the easily verifiable fact that there are no permutation groups properly between the automorphism
groups of (Z; succ) and (Z; sym-succ).

For the second statement, suppose that Γ has no finite range endomorphism. If all of its
endomorphisms are automorphisms, then we are done. Otherwise, Γ has an endomorphism t as in
Lemma 16, with q > 1. Consider the substructure ∆ of Γ induced on the image t[Z] = {q ·z : z ∈ Z}
of t. We claim that ∆ is isomorphic to a structure ∆′ with domain Z which has a first-order
definition in (Z; succ). Indeed, let R be any relation of Γ, and let φ be the formula defining R in
(Z; succ). For all i ∈ ω, let succi be the binary relation on Z which says about a pair (x, y) ∈ Z2

that y = x + i. Then adding the succi to the language, φ can be assumed to be quantifier-free.
Now construct a formula φ′ as follows: For all i ∈ ω not divisible by q, replace every occurrence

of succi by ∀x(x 6= x). For all other i, replace every occurrence of succi by succ
i
q . Let R′ be the

relation defined by φ′ on Z. Then one readily checks that (t[Z];R) (where R is restricted to the
domain t[Z]) is isomorphic to (Z;R′) via the isomorphism which sends every x ∈ t[Z] to x

q . Thus,

defining ∆′ to have exactly the relations of the form R′, where R is a relation of Γ, we get that ∆′

is indeed isomorphic to ∆. Clearly, ∆′ is fo-definable in (Z; succ).
Since ∆ is the image of an endomorphism of Γ, one readily checks that the Gaifman graph of ∆

coincides with the induced subgraph of the Gaifman graph of Γ on t[Z]. Thus in ∆, two points x, y
are adjacent iff d(x, y) ∈ {d1, . . . dn}; moreover, d(x, y) is divisible by q. Therefore, the remaining
relevant distances are those divisible by q. In other words, if {di1 , . . . , dir} are those distances from
{d1, . . . , dn} which are divisible by q, then the Gaifman graph of ∆′ is isomorphic to the graph on

Z defined by the distances {di1q , . . . ,
dir
q }. Since before, the greatest common divisor of all possible

distances was 1, we must have lost at least one distance, i.e., r < n.
Observe that ∆ (and hence ∆′) is connected as it is the image of an endomorphism of Γ. Note

moreover that ∆ cannot have a finite range endomorphism: If s were such an endomorphism, then
s◦t would be a finite range endomorphism for Γ, contrary to our assumption. If all endomorphisms of
∆ are automorphisms, then we are done. Otherwise ∆ (more precisely, ∆′) satisfies all assumptions
that we had on Γ, and we may repeat the argument. Since in every step we lose a distance for
the Gaifman graph, this process must end, meaning that we arrive at a structure all of whose
endomorphisms are automorphisms.

4 Definability of Successor

In this section we show how to reduce the complexity classification for distance constraint
satisfaction problems with template Γ to the case where either Γ has a finite core, or the relation
succ is pp-definable in Γ. We make essential use of the results of the previous section; but note
that in this section we do not assume that Γ is connected.

Theorem 19 Every finite degree relational structure Γ with a first-order definition in (Z; succ) is
either homomorphically equivalent to a finite structure, or to a connected finite-degree structure
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∆ with a first order definition in (Z; succ) which satisfies one of two possibilities: CSP(∆) (and,
hence, CSP(Γ)) is NP-hard, or succ is definable in ∆.

The following lemma demonstrates how the not necessarily connected case can be reduced to
the connected case.

Lemma 20 Every finite degree relational structure Γ with a first-order definition in (Z; succ) is
homomorphically equivalent to a connected finite-degree structure ∆ with a first order definition in
(Z; succ).

Proof: If the Gaifman graph of Γ does not contain any edges, then the statement is clear.
Otherwise, let g be the greatest common divisor of d1, . . . , dn (the distances in the Gaifman graph,
see Section 3, Definition 3). If Γ is connected, there is nothing to prove.

Otherwise, if Γ is disconnected, we have g > 1. Then Γ must be a disjoint union of g copies of
a connected structure ∆ (and these copies are isomorphic to each other by an isomorphism of the
form x 7→ x+ d, for appropriate constant d). In particular, Γ is homomorphically equivalent to ∆.
Moreover, we claim that ∆ itself has a first-order definition in (Z; succ). The proof here is as in the
proof of Theorem 2, with g taking the role of q.

The following is obvious.

Lemma 21 Let (a1, . . . , ak), (b1, . . . , bk) ∈ Zk. Then there is an automorphism α of (Z; succ) with
α(ai) = bi for all i ≤ k if and only if ai − aj = bi − bj for all 1 ≤ i, j ≤ k.

Lemma 22 Suppose that Γ is connected. Then there is an n0 such that Γ[{1, . . . , n}] is connected
for all n ≥ n0.

Proof: Let d1 be the smallest distance of the distances {d1, ..., dn} defining the Gaifman graph G
of Γ (as in Section 3). By connectivity of G, for each pair a, b of elements from {1, . . . , d1} there
is a path from a to b in G. Fix such a path for each pair a, b. Let n0 be the smallest number
such that all vertices on those paths are smaller than n0. We claim that Γ[{1, . . . , n}] is connected
for all n ≥ n0. To see that c, d ≤ n are connected, observe that both c and d are connected to
vertices in {1, . . . , d1} (via a sequence of vertices at distance d1). Since all vertices in {1, . . . , d1}
are connected in Γ[{1, . . . , n0}] by construction, we conclude that c and d are connected by a path
in Γ[{1, . . . , n}].

Lemma 23 Suppose that Γ is connected and of finite degree. Then there is an n0 and c such that for
all n ≥ n0 and any homomorphism f from Γ[{1, . . . , n}] to Γ we have that d(f(x), f(y)) ≤ c+d(x, y)
for all x, y ∈ {1, . . . , n}.

Proof: Let n0 be the number from Lemma 22. Then for all n ≥ n0, the structure Γ[{1, . . . , n}] is
connected. Now, proceed as in Lemma 5.

Proposition 24 Let Γ be a connected finite-degree structure with a first-order definition in
(Z; succ). Assume that every endomorphism of Γ is an automorphism of (Z; sym-succ). Then
for all a1, a2 ∈ Z there is a finite S ⊆ Z that contains {a1, a2} such that for all homomorphisms f
from Γ[S] to Γ we have d(f(a1), f(a2)) = d(a1, a2).
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Proof: Suppose that there are a1 < a2 ∈ Γ such that for all finite subsets S of elements of Γ
that contain {a1, a2} there is a homomorphism from Γ[S] to Γ where d(f(a1), f(a2)) 6= d(a1, a2).
We have to show that Γ has an endomorphism that is not an automorphism of (Z; sym-succ). Let
S be a subset of Z that contains {a1, a2}, and let f, g be functions from S → Z. Then we define
f ∼ g if there exists an automorphism α of Γ such that f(x) = α(g(x)) for all x ∈ S. We call such
a function good if it is a homomorphism from Γ[S] to Γ where d(f(a1), f(a2)) 6= d(a1, a2). Observe
that since all automorphisms of Γ preserve distances, if one function in an equivalence class is good,
then all other functions in the equivalence class are also good.

Let n0 be the number from Lemma 23, and let n1 be max(n0, |a1|, |a2|). Consider the following
infinite forest T : the vertices are the equivalence classes of good functions f : V → Z for
V = {−n, . . . , n}, for all n ≥ n1, and T has an arc from one such equivalence class F to another
H if there are f ∈ F , h ∈ H, such that f is a restriction of h, and f is defined on {−n, . . . , n}, and
h is defined on {−n− 1, . . . , n+ 1}, for some n ∈ N. Observe that

• by our assumptions the forest T is infinite;

• by Lemma 23, for every n ≥ n1 there is a b such that d(f(x), f(y)) < b for all x, y ∈
{−n, . . . , n}. Using Lemma 21 it follows that T is finitely branching;

• the forest T has only finitely many roots.

By König’s tree lemma, there is an infinite branch in T . It is straightforward to use this infinite
branch to construct an endomorphism f of Γ with d(a1, a2) 6= d(f(a1), f(a2)). This endomorphism
cannot be an automorphism of (Z; sym-succ), which concludes the proof.

Corollary 25 Suppose that Γ is a connected finite-degree structure with a first-order definition
in (Z; succ), and suppose that all endomorphisms of Γ are automorphisms of Γ. Then either the
relation sym-succk = {(x, y) | d(x, y) = k} is pp-definable in Γ for every k ≥ 1, or the relation
succk = {(x, y) | x− y = k} is pp-definable in Γ for every k ≥ 1.

Proof: First consider the case that Γ is preserved by the unary operation x 7→ −x, and let
k ≥ 1 be arbitrary. Let a1, a2 be any two elements of Z at distance k. Since all endomorphisms
of Γ are automorphisms of Γ, they are automorphisms of (Z; sym-succ) by the first statement of
Theorem 2. Hence we may apply Proposition 24, and there is a finite set S ⊆ Z such that every
homomorphism f from Γ[S] to Γ satisfies d(f(a1), f(a2)) = d(a1, a2). Let φ(a1, a2) be the primitive
positive formula obtained from the canonical query for Γ[S] by existentially quantifying all vertices
except for a1 and a2. We claim that φ is a pp-definition of sym-succk = {(x, y) | d(x, y) = k}.

The relation defined by φ contains the pair (a1, a2) (since the identity mapping is a satisfying
assignment for the canonical query Γ[S]), and since Γ is preserved by all automorphisms of
(Z; sym-succ) it also contains all other pairs (x, y) ∈ Z2 such that d(x, y) = k = d(a1, a2).
Conversely, φ does not contain any pair (x, y) with d(x, y) 6= k. Otherwise, there must be a
assignment f : S → Z that satisfies the canonical query and maps a1 to x and a2 to y. This
assignment is a homomorphism, and therefore contradicts the assumption that d(f(a1), f(a2)) =
d(a1, a2). This proves the claim.

Now consider the case that Γ is not preserved by the unary operation −. As before we use
Theorem 2 and Proposition 24 to construct a primitive positive formula φ. This time it is easy to
see that φ defines the relation {(x, y) | x− y = k}.

Proposition 26 Suppose that for all k the relation sym-succk = {(x, y) ∈ Z2 | d(x, y) = k} is
pp-definable in Γ. Then CSP(Γ) is NP-hard.

12



Proof: Observe that the primitive positive formula ∃y.d(x, y) = 1∧d(y, z) = 5 defines the relation
R = {(x, z) | d(x, z) ∈ {4, 6}}. The structure (Z;R) decomposes into two copies of the structure
(Z;S) where S = {(x, y) | d(x, y) ∈ {2, 3}}. This structure has the endomorphism x 7→ x mod 5,
and the image induced by this endomorphism is a cycle of length 5, which has a hard CSP (this is
well-known; for a much stronger result on undirected graphs, see Hell and Nešetřil [14]).

Proof: (of Theorem 19) By Lemma 20, we can assume without loss of generality that Γ is
connected. Clearly, if Γ has a finite range endomorphism, then it has a finite core. Otherwise,
by Theorem 2, there is an endomorphism of Γ that maps Γ onto a subset of Z isomorphic to an
induced substructure ∆ of Γ which is first-order definable in (Z; succ), and where all endomorphisms
are automorphisms. Being the homomorphic image of the connected structure Γ, ∆ must also
be connected. We now apply Corollary 25 to ∆. If the relation {(x, y) | d(x, y) = k} is pp-
definable in ∆ for every k ≥ 1, then CSP(Γ) (which is equal to CSP(∆) since Γ and ∆ are
homomorphically equivalent) is NP-hard by Proposition 26. Otherwise, by Corollary 25, the relation
{(x, y) | x− y = k}, and in particular the relation succ is pp-definable in ∆.

5 The Power of Consistency

All tractable distance constraint satisfaction problems for templates without a finite core can be
solved by an algorithmic technique known as local consistency. We prove these tractability results
in this section.

A majority operation on a set X is a mapping f : X3 → X satisfying

f(x, x, y) = f(x, y, x) = f(y, x, x) = x .

An n-ary relation R on a set X is 2-decomposable if R contains all n-tuples (t1, . . . , tn) such
that for every 2-element subset I of {1, . . . , n} there is a tuple s ∈ R such that ti = si for all i ∈ I.

We need the following concept to prove the algorithmic results in this paper. Let ∆ be a
structure with a (not necessarily finite) relational signature τ , and let φ be a conjunction of atomic
τ -formulas with variables V . For k > 0, we say that φ is k-consistent (with respect to ∆) if for
every assignment α of k − 1 variables x1, . . . , xk−1 ∈ V to elements from ∆ and for every variable
xk ∈ V the assignment α can be extended to xk such that all conjuncts of φ that involve no other
variables than x1, . . . , xk are satisfied over ∆ by the extension of α. We say that φ is strongly
k-consistent if φ is j-consistent for all j with 2 ≤ j ≤ k. We say that φ is globally consistent if φ is
k-consistent for all k > 0.

The following has been shown in [17] (with an explicit comment in Section 4.4 that the result
also holds on infinite domains).

Theorem 27 (Special case of Theorem 3.5 of [17]) Let Γ be a structure with a majority
polymorphism. Then every relation R of Γ is 2-decomposable. Moreover, every strongly 3-consistent
conjunction of atomic formulas is also globally consistent with respect to Γ.

In the proof of the following proposition, and in the next section, it will be convenient to
represent binary relations R ⊆ Z2 with a first-order definition in (Z; succ) by sets of integers as
follows: the set S represents the binary relation RS := {(x, x+k) | k ∈ S}. Conversely, when R is a
binary relation with a first-order definition in (Z; succ), let S(R) be the set such that RS(R) = R. It
is easy to see that every binary relation of finite degree and with a first-order definition in (Z; succ)
is of the form RS for some finite S.
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Theorem 28 Let Γ be a finite degree structure with a first-order definition in (Z; succ). If Γ has
a majority polymorphism, then CSP(Γ) is in P.

Proof: Let D be the largest distance in the Gaifman graph of Γ, as in Section 3 (Definition 3).
Let Φ be an input instance to CSP(Γ) with variables V = {x1, . . . , xn}, and let φ be the quantifier-
free part of Φ. Our algorithm and its correctness proof work independently for each connected
component of the canonical database of φ. So let us assume that the canonical database of φ is
connected.

Let ∆ be the expansion of Γ by all binary relations R with a pp-definition in Γ such that R = RS
for S ⊆ {−nD, . . . , nD}. Moreover, ∆ contains a binary relation symbol F that denotes RZ = Z2.
Let τ be the signature of ∆. Since all relations of ∆ are pp-definable in Γ, it follows that ∆ has
the same majority polymorphism as Γ.

We claim that we can compute from φ a τ -formula ψ with variables V such that

• φ implies ψ, and

• φ ∧ ψ is strongly 3-consistent with respect to ∆

in time polynomial in the size of φ. This can be done as follows.
The algorithm maintains for each pair of variables xk, xl with k, l ∈ {1, . . . , n} and k 6= l a

binary relation symbol P = P (k,l) from τ . The set S(P∆) either equals Z or it is a subset of
{−nD, . . . , nD}; in the latter case, we use this subset to represent the relation in the algorithm.

We first describe how to initialize the P (k,l). Let k, l ∈ {1, . . . , n} be distinct. If xk and xl
are non-adjacent in the Gaifman graph of the canonical query for φ, then we set P (k,l) to F .
Otherwise, there is a conjunct T (xi1 , . . . , xim) of φ with T a relation symbol from Γ such that
k, l ∈ {i1, . . . , im}. For the sake of notation, suppose that ij = j for all 1 ≤ j ≤ m, and that k = 1
and l = 2. Let R(x1, x2) be the relation with the pp-definition ∃x3, . . . , xm.T (x1, . . . , xm) over Γ.
Clearly, S(R) ⊆ {−D, . . . ,D}. Hence, R is a relation from ∆. We then set P (k,l) to R. Note that
R(x1, x2) is implied by φ in ∆.

We now describe how to obtain stronger and stronger consequences of φ by local propagation.
Let xk, xl, xm be three distinct variables from φ. Consider the case k = 1, l = 2, and
m = 3, again for the sake of notation. Then let R(x1, x3) be the binary relation defined by
∃x2. P

(1,3)(x1, x3) ∧ P (1,2)(x1, x2) ∧ P (2,3)(x2, x3) over ∆. It is straightforward to verify that R is
pp-definable in Γ. We will show below that either S(R) ⊆ {−nD, . . . , nD} or S(R) = Z. Hence, R is
a relation from ∆ and we replace P (1,3) by R. We call this replacement step proper if R was different
from P (1,3). Again, note that R(x1, x3) is implied by φ in ∆. Also note that a representation of R
can be computed from the representations of P (1,2), P (2,3), and P (1,3) in polynomial time. Moreover,
S(R) ⊆ S(P (1,3)).

We perform such replacements until for each k, l the binary relation P (k,l) cannot be changed
further by the above replacement steps. It is clear that we will reach this state after an at most
cubic number of proper replacement steps: the reason is that when a relation that is represented
by a subset S of {−nD, . . . , nD} is replaced, the representation of the replacing relation will be a
proper subset of S. Since there are only quadratically many relations where replacements can be
made, the claim follows.

We still have to show that S(R) ⊆ {−nD, . . . , nD} or S(R) = Z for R(x1, x3) defined by
∃x2. P

(1,3)(x1, x3) ∧ P (1,2)(x1, x2) ∧ P (2,3)(x2, x3) as above. The proof is by induction on the
distance l of x1 and x3 in the Gaifman graph G of the canonical database of φ; in fact, we show the
stronger claim that either S(R) = Z or S(R) ⊆ {−lD, . . . , lD}. If the distance is 1, then already
by the initialization we have that S(P (1,3)) ⊆ {−D, . . . ,D}, and hence S(R) ⊆ {−D, . . . ,D}.
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If S(P (1,3)) ⊆ {−lD, . . . , lD}, then R ⊆ {−lD, . . . , lD} and we are done; so assume that
S(P (1,3)) = Z. Let l1 be the distance between x1 and x2, and l2 be the distance between x2

and x3 in G. If S(P (1,2)) = Z or S(P (2,3)) = Z then S(R) = Z and we are done. Otherwise, by
inductive assumption we have that S(P (1,2)) ⊆ {−l1D, . . . , l1D} and S(P (2,3)) ⊆ {−l2D, . . . , l2D},
and because l ≤ l1 + l2 it follows that S(R) ⊆ {−lD, . . . , lD}.

To conclude the proof, let ψ be the formula
∧
k,l∈{1,...,n},k 6=l P

(k,l)(xk, xl). It is straightforward
to verify that φ ∧ ψ is 3-consistent with respect to ∆. Clearly, it is also 2-consistent. Since ∆ has
a majority polymorphism, Theorem 27 implies that φ ∧ ψ is globally consistent.

When P (k,l) = ∅ for some k, l then ψ is unsatisfiable in ∆; and Φ is false in Γ. Otherwise, global
consistency implies that the sentence ∃x1, . . . , xn. φ ∧ ψ is true in ∆, since we can map x1 to an
arbitrary value in Z, and then successively extend this map to a mapping that satisfies φ∧ψ. It is
clear that in this case Φ is true in Γ as well. This shows that truth of a given formula Φ in Γ can
be decided in polynomial time.

Definition 29 The d-modular median is the ternary operation md : Z3 → Z defined as follows:

• If x, y, z are congruent modulo d, then md(x, y, z) equals the median of x, y, z.

• If precisely two arguments from x, y, z are congruent modulo d then md(x, y, z) equals the first
of those arguments in the ordered sequence (x, y, z).

• Otherwise, md(x, y, z) = x.

Clearly, d-modular median operations are majority operations.

Corollary 30 Let Γ be a finite-degree structure with a first-order definition in (Z; succ) and a finite
relational signature, and suppose that Γ has a modular median polymorphism. Then CSP(Γ) is in
P.

6 Classification

In this section we finish the complexity classification for those Γ that do not have a finite core. The
main result of Section 4 shows that, unless Γ has a finite core, for the complexity classification of
CSP(Γ) we can assume that the structure Γ contains the relation succ. In the following we therefore
assume that the structure Γ contains the relation succ; moreover, we freely use expressions of the
form x− y = d, for fixed d, in primitive positive definitions since such expressions have themselves
pp-definitions from succ and therefore from Γ. Our main result will be the following.

Theorem 31 Let Γ be a first-order expansion of (Z; succ). Then Γ is preserved by a modular
median and CSP(Γ) is in P, or CSP(Γ) is NP-hard.

A d-progression is a subset of Z of the form {k, k + d, . . . , k + ld}, for some k, l ∈ Z. We shall
denote {k, k + d, . . . , k + ld} by [k, k + ld]d.

Proposition 32 Let R ⊆ Z2 be a finite-degree binary relation with a first-order definition in
(Z; succ). Then the following are equivalent.

1. R is preserved by the d-modular median md;

2. R = RS for a d-progression S.
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Proof: (1 ⇒ 2). If S is not a d-progression then there exist some a < b ∈ S such that x 6∈ S
for all a < x < b and b − a 6= d. If a − b is not multiple of d then fix v to be any integer smaller
than min(S), otherwise fix v to be a + d. Let u be such that (u, v) ∈ RS . If we apply md to
(u, v), (0, a), (0, b) we obtain (0, v) which does not belong to RS .

(2 ⇒ 1). Let (xi, yi), i = 1, 2, 3 be arbitrary tuples of RS . For every i, j ∈ {1, 2, 3},
xi − xj = yi − yj mod d. This implies that if a rule of the Definition 29 is applied to the xi’s
then the same rule is applied to the yi’s. Then we only need to care about the first rule since the
other two act as a projection. Let (xa, yb) be the result of applying the median to (xi, yi), i = 1, 2, 3
and let m (resp. M) be the minimum (resp. maximum) integer n such that (xa, n) ∈ RS . Since S is
a d-progression, (xa, yb) belongs to RS if yb − ya = 0 mod d and m ≤ yb ≤M . The first condition
follows from the fact that we apply the first rule. The second condition is shown as follows. By
the definition of median there is some l ∈ {1, 2, 3}, l 6= a, such that xl ≥ xa. Hence we have that
yl and ya are at least m, which implies that the median of the second coordinates, yb, also is. A
symmetric argument shows that yb ≤M .

Proposition 33 Let a, b be two odd numbers such that a < b. Then CSP(Z; succ, R{0,a,b,a+b}) is
NP-hard.

Proof: Let k be the integer a+b
2 . Note that the primitive positive formula

φ(x, z) = ∃y.R{0,a,b,a+b}(x, y) ∧ y − z = k

defines the relation C :=
{

(x, z) | d(x, z) ∈ { b−a2 , b+a2 }
}

. Consider the mapping f : Z →
{0, . . . , b − 1} defined by f(x) = x mod b. It follows from b−a

2 = − b+a
2 mod b that f is a

endomorphism of C. It also follows by the same reason that the restriction, D, of C to {0, . . . , b−1}
is a graph where every node has two edges. Furthermore if m is gcd( b−a2 , b+a2 ) then D is the disjoint

union of m cycles of b
m nodes. Since b

m is odd we have that CSP(Z;C) is NP-hard (this follows
from [14]).

Lemma 34 Let a, b, c ∈ Z with b 6= c. Then CSP(Z; succ, R{a,b}, R{a,c}) is NP-hard.

Proof: First observe that the formula ∃u. R{a,b}(x, u)∧u = y+a pp-defines the relation R{0,b−a};
similarly, there is a pp-definition of R{0,c−a} in Γ. Let d = b− a and e = c− a; we will show that
CSP(Z; succ, R{0,d}, R{0,e}) is NP-hard.

The relation defined by ∃u, v. R{0,d}(x, u) ∧ R{0,e}(u, v) is R{0,d,e,d+e}. If both d and e are
odd, we obtain hardness of the CSP from the previous proposition applied to (Z; succ, R{0,d,e,d+e}).
If both d and e are even, then the structure ∆ := (Z;R{0,d}, R{0,e}, {(x, y) | x − y = 2}) is pp-
definable in Γ. The structure ∆ is isomorphic to the disjoint union of two copies of the structure
(Z; succ, R{0,d/2}, R{0,e/2}); the claim now follows by induction on e.

Finally, assume that precisely one of d or e is even; say d is even. Set u := lcm(d, e)/d and
v := lcm(d, e)/e. The formula

∃y1, . . . , yu, z1, . . . , zv. R{0,d}(p, y1) ∧R{0,d}(y1, y2) ∧ · · · ∧R{0,d}(yu−1, yu) ∧R{0,d}(yu, q)
∧R{0,e}(p, z1) ∧R{0,e}(z1, z2) ∧ · · · ∧R{0,e}(zv−1, zv) ∧R{0,e}(zv, q)

with free variables p and q defines R{0,lcm(d,e)}.
We are now again in the case that we can pp-define two relations R{0,g} and R{0,h} for even g, h

(namely, g = d and h = lcm(d, e)), and thus we are done.
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Lemma 35 Let S be a finite set of integers with |S| > 1 and let d be the greatest common divisor
of all a− a′ with a, a′ ∈ S. Assume (this assumption is only for ease of notation) that all elements
of S are of the form i · d where i ∈ Z. Let md = min(S), Md = max(S), let [jd, kd]d be a maximal
d-progression in S, let l be such that l ≥ max(j −m − 1,M − k − 1, 0) and such that k ≥ j + l.
Then every d-progression with r = k − j − l + 1 elements is pp-definable in (Z; succ, RS).

Proof: For every 0 ≤ i ≤ l, let Ri(x, y) be the pp-formula ∃z.(z = x+ id)∧RS(z, y) which can be
built using RS and succ. Finally let RT be the relation defined by

∧
0≤i≤lRi(x, y). We claim that

T is precisely [(j + l)d, kd]d.
We have T ⊆ S because the formula contains R0(x, y). Let x = nd be any element of S. Let us

do a case analysis.

1. Case m ≤ n < j − 1. The smallest y such that Rj−m−1(0, y) holds is (j − 1)d. Hence in this
case x 6∈ T .

2. Case j−1 ≤ n < j+ l. By the maximality of [jd, kd]d it follows that (j−1)d 6∈ S. Henceforth
we have that Ri(0, nd) does not hold if we pick i = n− j + 1. Hence x 6∈ T .

3. Case j + l ≤ n ≤ k. For every 1 ≤ i ≤ l, we have that Ri(0, x) holds as j + i ≤ n ≤ k + i.
This implies that x ∈ T .

4. Case k < n ≤ M . By the maximality of [jd, kd]d we have that (k + 1)d 6∈ S. Hence by
choosing i = n− (k + 1) we have that Ri(0, x) does not hold. Consequently x 6∈ T

Finally, it is obvious that if T is a d-progression with r elements, then RT can be defined by
the pp-formula ∃z.(z = x+ p) ∧R[(j+l)d,kd]d(z, y) by choosing p = max(T )− kd.

Let us illustrate the construction of RT in the previous proof with an example. Assume S is
the set {1, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20} which we can represent as:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
S • • • • • • • • • • • • • • • •

We have d = 1. Consider the 1-progression [7, 16]1 in S. Then we have m = 1, M = 20, j = 7,
and k = 16. Fix l = 6. For every 0 ≤ i ≤ l let Zi such that RZi = Ri. Then we have:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Z0 • • • • • • • • • • • • • • • •
Z1 • • • • • • • • • • • • • • • •
Z2 • • • • • • • • • • • • • • • •
Z3 • • • • • • • • • • • • • • • •
Z4 • • • • • • • • • • • • • • • •
Z5 • • • • • • • • • • • • • • • •
Z6 • • • • • • • • • • • • • • • •
T • • • •

Case 1 Case 2 Case 3 Case 4

Lemma 36 Let S be a finite set of integers with |S| > 1 and let d be the greatest common divisor
of all a−a′ with a, a′ ∈ S. For any d-progression T , the relation RT is pp-definable in (Z; succ, RS).

Proof: The set of maximal d-progressions contained in S can be totally ordered by setting
T1 ≤ T2 if min(T1) ≤ min(T2). If T1 < T2 then we define the distance from T1 to T2 to be
min(T2)−max(T1).
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A d-progression is non-trivial if it contains at least two elements. For any m ≥ 1, let (RS)m

be the relation

m︷ ︸︸ ︷
RS ◦RS ◦ · · · ◦RS which we can write as RSm where Sm contains all integers that

we can express as a1 + · · · + am with a1, . . . , am ∈ S. By the definition of d it follows that if m
is large enough there exists some integer a, such that {a, a + d} ⊆ S, or, in other words, that Sm

contains a non-trivial d-progression. For ease of notation we shall assume that S already contains
a non-trivial d-progression (otherwise replace S by Sm).

For any m ≥ 1, let nm be the maximum distance between two consecutive non-trivial maximal
d-progressions contained in Sm. Also, let l−m (resp. l+m) be minimum (resp. maximum) with the
property that {min(Sm)+ l−m,min(Sm)+ l−m+d} ⊆ Sm (resp. {max(Sm)− l+m−d,max(Sm)− l+m} ⊆
Sm). Finally define lm to be max(l−m, l

+
m). For ease of notation we shall write S1 = S, l−1 = l− and

so on.
Claim 1. l2 ≤ l. Proof: Follows from the fact that {2 min(S)+ l−, 2 min(S)+ l−+d, 2 max(S)−

l+ − d, 2 max(S)− l+} ⊆ S2.
Claim 2. If l = 0 then n2 < n.
Proof: Let X < Y be consecutive non-trivial maximal d-progressions contained in S2. We claim

that there exist non-trivial maximal d-progressions A ≤ B in S such that max(A) + max(B) ≤
max(X). Indeed, set A = B to be the maximal d-progression containing {min(S),min(S) + d}.
Consequently, we can choose A ≤ B satisfying the conditions of the claim with max(A) + max(B)
maximal.

Since X < Y it follows that max(A) < max(S) which implies that there exists a maximal d-
progression C in S with B < C (in particular consider the one containing {max(S)− d,max(S)}).
Pick any such C with min(C) minimal.

Since S contains d-progressions A and B it follows that S2 contains the (not necessarily
maximal) non-trivial d-progression [min(A) + min(B),max(A) + max(B)]d. Let X ′ be a maximal
progression in S2 containing it. Similarly let Y ′ be a maximal d-progression in S2 containing
[min(B) + min(C),max(B) + max(C)]d. By the choice of A, B, and C it follows that X ′ ≤ X and
X < Y ′. As Y is consecutive to X it follows that Y ≤ Y ′. We finish by proving that the distance
from X ′ to Y ′, min(B) + min(C) −max(A) + max(B), is strictly smaller than n. Indeed, by the
minimality of C, min(C) − max(A) ≤ n and since B is non-trivial max(B) − min(B) > 0. This
finishes the proof of Claim 2.

Let T be any arbitrary d-progression and let r be its size. From claim 1 and 2 it follows that
the value of l does not increase if we replace S by S2. Since max(S)−min(S) certainly increases it
follows that we can assume (by replacing S by Sm for sufficiently large m) that max(S)−min(S) ≥
3l+ (r− 1)d. By applying iteratively claim 2 to S′ = S ∩ [min(S) + l−,max(S)− l+]d we conclude
that S2n contains the d-progression S′2

n
= [2n(min(S) + l−), 2n(max(S)− l+)]d. The result follows

by applying Lemma 35 to S2n .

Proposition 37 Let Γ be a structure with only binary relations of finite degree with a first-order
definition in (Z; succ). Then either Γ is preserved by a modular median, or CSP(Z; succ) is NP-
hard.

Proof: Assume first that Γ contains some relation RS for S = {a1, . . . , ak}, a1 < · · · < ak, that is
not a d-progression for any d. Then there exists some i such that ai−ai−1 6= ai+1−ai. Let d be the
gcd. of all ai − aj with i, j ∈ {1, . . . , k}. By Lemma 36, relation R[ai−1,ai]d is pp-definable. Then
we obtain R{ai−1,ai} with R[ai−1,ai]d ∩RS . Similarly one obtains R{ai,ai+1}. The result follows from
Lemma 34. Hence we are left with the case in which Γ contains d-progression RS and d′-progression
RT with d 6= d′. Fix arbitrary integers a, b. In a similar way to the previous case, one can pp-define
R{a,a+d} and R{b,b+d}. We apply again Lemma 34 to conclude the proof.
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Proof: (of Theorem 31) Assume Γ is not preserved by a modular median. We can assume that
there exists some d > 0 such that every binary relation pp-definable in (Γ, succ) is a d-progression,
otherwise we are done by Proposition 37. Let S be any relation in Γ. If S is 2-decomposable then
S is invariant under md. Consequently, there is a relation S in Γ that is not 2-decomposable. This
implies that, by projecting out coordinates from S, we can obtain a relation R of arity r ≥ 3 which
is not (r − 1)-decomposable. This implies, in particular, that there exists a tuple (a1, . . . , ar) 6∈ R
such that for all 1 ≤ i ≤ r, (a1 . . . , ai−1, pi, ai+1, . . . , ar) ∈ R for some integer pi. By replacing R
by the pp-defined relation

∃y1, . . . , yr.
∧

1≤i≤r
(yi = xi + ai) ∧R(x1, . . . , xr)

we can further assume that ai = 0 for all 1 ≤ i ≤ r. Furthermore, we can also assume that for
all 1 ≤ i ≤ r, pi ∈ {−d, d}. Indeed let 1 ≤ i ≤ r with pi > 0 and assume pi is minimal. Note
that pi is a multiple of d since otherwise for any j 6= i, the projection of R to {i, j} would not be
a d-progression. Define Si to be the d-progression [0, pi − d]d. Then the relation pp-defined by the
formula

∃yi.RSi(xi, yi) ∧R(x1, . . . , xi−1, yi, xi+1, . . . , xr) .

satisfies the condition at coordinate i. If pi < 0 one only needs to define Si to be the [pi + d, 0]d
and proceed in the same way.

We claim that we can pp-define a relation U of arity ≥ 3 such that (0, . . . , 0) 6∈ U and
{(u, 0, 0, . . . , 0), (0, u, 0, . . . , 0), (0, 0, u, . . . , 0)} ⊆ U for u = d or u = −d.

Let P be the set of all 1 ≤ i ≤ r such that pi = d and let N be {1, . . . , r}\P . If max(|P |, |N |) ≥ 3
then we are done as U can be obtained by permuting the coordinates of R.

Otherwise, as r ≥ 3 we can pick i ∈ N and j ∈ P . The desired relation U can be obtained by
permuting the coordinates of the (2r − 1)-ary relation defined by

∃x, y. (y = x+ d) ∧R(x1, . . . , xi−1, x, xi, . . . , xr) ∧R(y1, . . . , yj−1, y, yj , . . . , yr) ∧R[0,d]d(z, y).

Consider the relation V over domain {0, d} given by

{(x, y, z) ∈ {0, d}3 | (x, y, z, 0, . . . , 0) ∈ U} .

By its construction we have that (0, 0, 0) (and hence (d, d, d)) is not in V . Assume first that
{(d, 0, 0), (0, d, 0), (0, 0, d)} ∈ U (the case {(−d, 0, 0), (0,−d, 0), (0, 0,−d)} ∈ U is analogous). It
follows that V does not belong to any of the six Schaefer classes, and, hence, that the boolean
CSP({0, d};V ) is NP-complete. We shall show that CSP({0, d};V )) reduces to CSP(Z; succ, U).

Let Φ be an input instance of CSP(V ) with variables X and let φ be the quantifier-free part of
Φ. We construct an instance Φ′ of CSP(Z; succ, V ) in the following way: The set of variables of Φ
is X ∪ {y} where y is a new variable not occurring in X. For every atomic formula V (x1, x2, x3) in
φ we include in the quantifier-free part, φ′, of Φ′ the conjunction∧

1≤i≤r
R{0,d}(y, xi) ∧ U(x1, x2, x3, y, . . . , y)

Clearly φ′ has a satisfying assignment if it has one setting y to 0. Also an assignment of the variables
of φ′ setting y to 0 satisfies φ′ if and only if its restriction to X satisfies φ.

Proof of Theorem 1. Suppose that Γ does not have a finite core. Let ∆ be the substructure
of Γ as described in Theorem 19. Clearly, CSP(Γ) and CSP(∆) are the same problem. Unless
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CSP(Γ) is NP-hard, the relation succ is pp-definable in ∆. By the fundamental theorem of pp
definability, the CSP of the expansion of ∆ by the successor relation has the same complexity as
CSP(∆). Now the claim follows from Theorem 31.

7 Concluding Remarks

Structures with a first-order definition in (Z; succ) have a transitive automorphism group, i.e., for
every x, y ∈ Z there is an automorphism of Γ that maps x to y. We call such structures Γ transitive
as well. It is well-known and easy to prove (see e.g. [15]) that a finite core of a transitive structure is
again transitive. It follows from the main result obtained in our work that a complete classification
of the computational complexity of finite degree distance problems would follow from a classification
of the complexity of transitive finite CSPs.

In general, the complexity of the CSP for finite transitive templates has not yet been classified.
The following is known.

Theorem 38 (of [8]) Let Γ be a finite core. If there is a primitive positive interpretation of the
structure ∆ := ({0, 1}; {(0, 0, 1), (0, 1, 0), (1, 0, 0)}) in Γ, then CSP(Γ) is NP-complete.

The following conjecture is widely believed in the area.

Conjecture 39 (of [8]) Let Γ be a finite core. If there is no primitive positive interpretation of
the structure ∆ := ({0, 1}; {(0, 0, 1), (0, 1, 0), (1, 0, 0)}) in Γ, then CSP(Γ) is in P.

We believe that this conjecture might be easier to show for transitive finite cores only. Note
that by transitivity, the polymorphism algebra of Γ has no proper subalgebras. Since Γ is a core,
all polymorphisms are surjective. It follows from known results [8] that, unless CSP(Γ) admits a
primitive positive interpretation of ∆, all minimal factors of the polymorphism algebra contain an
affine operation.
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