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Abstract

A minimal clone is an atom of the lattice of clones. We
propose a new method to study minimal clones by consid-
ering the base set Ej with k elements as a finite field and
by expressing each function as a polynomial over Ej.

For k = 3 we present the list of all binary minimal poly-
nomials over GF(3) derived from Csdkany’s result. Then,
we discuss some properties of binary minimal linear poly-
nomials and of binary minimal monomials.
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1 Introduction

Let k(> 2) be a fixed integer and Ex,={0,1,...,k—1}.
Denote by O,(Cn) the set of all functions from (Ej)™ into
Ey, and set

o= Jom.
n=1
For any f € O,(C") and any ¢g1,...,gn € O,gm) the (func-
tional) composition f[g1,...,gs] of f and g1,..., gy is
a function in O,(Cm) defined by

flor, - gnl(z1, -y Tm)
= floi(x1,...

axm)v'--vgn(xla-“vxm))

Iy € Ey.
Denote by J, the set of all projections e} over

for all z4,..

Ey, where el for every 1 < ¢ < n is defined by
eM(xy, .. Ty, Tp) =x; for all xy,..., 2, € Ef.

A subset C of Oy, is a clone on Ey, if (i) C is closed
under (functional) composition and (ii) C contains J.
Denote by L the set of all clones on Ej. The set Ly is
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a lattice with respect to inclusion and called the lattice
of clones on Ej.

An atom of the lattice Ly is called a minimal clone.
In other words, a minimal clone is a minimal element
in the partially ordered set Ly \ {Jx}. It is clear that
a minimal clone C' is generated by a single function f
in O, i.e., C = (f). A function in O which generates
a minimal clone is called a minimal function.

For k = 2, the structure of L5 is completely known by
E. Post [Po 41] and, consequently, all minimal clones
are known. There are 7 minimal clones in L.

For k = 3, B. Csdkény [Cs 83] discovered all minimal
clones and listed generators, i.e., minimal functions, for
all of them. There are 84 minimal clones in L3.

For k = 4, B. Szczepara [Szc 95] found all minimal
clones which are generated by binary functions. How-
ever, the determination of all minimal clones in L4 is
not yet settled.

Other than the above mentioned works, minimal
clones and minimal functions have been discussed by
several authors: J. Dudek, J. Jezek, K. A. Kearnes,
P. P. Palfy, R. W. Quackenbush, I. G. Rosenberg, A.
Szendrei, T. Waldhauser, etc. Many of their results
contain interesting aspects of and deep insight to min-
imal clones. However, the problem of determining all
minimal clones seems to be extremely difficult. Even
the determination of minimal clones for any single k
greater than 3 is far beyond our present capability.

In this paper, we propose a new method to attack
this problem of determining minimal functions. If &
is a power of a prime number, i.e., k = p°¢ for some
prime p and e > 1, we can introduce the algebraic
structure of a field into the set Ej and Fj may be
viewed as a finite field (Galois field) GF(p€). An n-ary
function on Ej is then expressed as a polynomial in n
variables over GF(p¢). Polynomials corresponding to
minimal functions may have some common characteris-



tics which distinguish them from polynomials that are
not minimal functions. Although we have not yet ful-
filled, the aim of our work, which has just been started,
is to discover such common characteristics embraced
by minimal functions. Our hope is to find common
characteristics with respect to the form of polynomials
shared by all, or possibly some, of minimal functions.

In the sequel, we shall concentrate on polynomials of
binary idempotent minimal functions. Here a function
f € Ok is idempotent if it satisfies f(z,...,x) = z for
all x € Ey.

As an intial step of this work, we present the list
of polynomials over GF(3) in 2 variables correspond-
ing to generators of all minimal clones generated by
binary functions, which is derived from Csédkany’s list
[Cs 83] and, then, determine all binary minimal linear

polynomials as well as all binary minimal monomials.

2 Type Theorem for Minimal
Clones

The following theorem due to I. G. Rosenberg [Ro 86]
is sometimes called the type theorem for minimal

clones.

Theorem 2.1 A minimal function f on Ey whose ar-
ity is minimum among arities of functions in (f) \ Tk
1s of one of the following five types.

(i) f is a unary function.

(ii) f is a binary idempotent function.

(i) f is a ternary magjority function. Le., f satisfies

f@,zy) = fz,y,2) = fly,@,2) =2

for all x,y € Ej.

(iv) f is a ternary function defined by

fl@y,z)=x+y+z

for an elementary abelian 2-group with addition +.

(v) fisak (> 3)-ary semiprojection. Le., there exists
1 <i<n such that

.f(l’la-”axn):xi

whenever |{x1,...,x,}| < n for any xq,...

Ey.

, Tn €

In this paper we shall only consider minimal func-
tions of type (ii), i.e., binary idempotent minimal func-
tions.

3 Polynomials on Finite Fields

A field F consisting of a finite number of elements is
called a finite field or Galois field. It is well-known
that the cardinality of a finite field must be a power
p¢ of some prime number p. When F is a finite field
with ¢ = p® elements, it is often denoted by GF(q).
It is a basic fact that the finite field GF(q) consists of
elements x satisfying ¢ = x.

In particular, assume that k = p is a prime and Ej
is a prime field. Then the addition and the multiplica-
tion of GF(p) are exactly the addition modulo p and
the multiplication modulo p, respectively, and compu-
tation can be performed easily.

In the sequel, we shall consider binary functions on
E). For a prime k, it is known that a function f € (’),(62)
can be expressed as a polynomial

.
E ag;x'y’

0<i,j<k

f($, y) =

for some a;; € E, (0 <14, j <k).
Note that each f € (’),(62) has a unique expression as

a polynomial.

4 Csakany’s Theorem for k =3

In this section we consider binary idempotent minimal
functions on a three element set, i.e., minimal functions
of type (ii) of Theorem 2.1 for k = 3.

Due to B. Csdkdny [Cs 83|, generators of all mini-
mal clones for k = 3 are known. For all minimal clones
generated by functions of type (ii), we have expressed
generators, i.e., binary minimal functions, as polyno-
mials considering the base set F3 as the finite field
GF(3). In Appendix 1, they are presented in the order
of the number of terms in a polynomial. The names
of the functions such as by1, bg, bgg etc. come from the

Csakany’s naming. From Appendix 1 we could observe



some properties and draw some conjectures on minimal
functions which will be stated in the following section.

The permutations of the base set F3, that is, the
renaming of the elements of E3, can be expressed by
the following mappings:

po=1id : x +— x
¢1 = (012) z— z+1
w2 = (021) x — T+2
w3 =(12) : = — 2z
g = (01) x — 2x+1
w5 = (02) x — 2z +2

Two polynomials are equivalent if one is obtained
More
precisely, f(x,y) is equivalent to g(x,y) if g(z,y) =

from the other by some permutation on FEj3.

0 f(p(x), p(y)) for some permutation ¢ on E3. Ap-
pendix 2 presents the list of representatives from each

equivalence classes of minimal functions of type (ii).

5 Binary Idempotent Minimal
Functions

Throughout this section, we assume that k is a prime
and FJ, is the finite field GF(k). We shall consider only
binary idempotent minimal functions on Ej.

5.1 Irreducible Polynomials

It is obvious that an irreducible polynomial cannot
be obtained from reducible polynomials through (func-
tional) composition. Therefore, if some reducible poly-
nomial g is produced by repeated application of com-
position from an irreducible polynomial f then it im-
mediately implies that f is not a minimal function.
Hence we have:

Lemma 5.1 Let f be an irreducible polynomial over
Ey and g be a reducible polynomial over Ey,. If g € (f)
then f is not a minimal function.

Example. Let k = 3. Consider f(z,y) = 422 +2y>
as a polynomial over FEj3. Clearly, f is an irre-
ducible polynomial over E3, which is idempotent as

well. Define g(z,y) = f(f(z,v),y). Then we have

g(z,y) = xy?® + 2%y% + 2y which is reducible, since
g(z,y) = (z+ 2 + 2)y%.
Lemma 5.1 that f is not a minimal function.

Hence it is concluded by

5.2 Linear Polynomials

A linear polynomial f(z1,...,2,) on Ej is a polyno-

mial of the form
flxy,...,xn) = ao+ a1z + -+ anzy

., an € By
For k = 3, we see from the list in Appendix 1 that the

for some ag,ay, ..

only binary linear polynomial on F3 which is minimal
is 2z + 2y.

In general, we have the following.

Lemma 5.2 Let f(z,y) = ax+by+c be a linear poly-
nomial on Ey, for a,b,c € Ey. If f is idempotent then
a+b=1 (modk) and ¢=0.

The proof follows from f(0,0) =0 and f(1,1) = 1.
Note that Lemma 5.2 is a special case of a more
general result given below.

Proposition 5.3 Let f(x,y) be a polynomial over Ej,
expressed as

f(l‘, y) =

0<i,j<k

for some a;j € E, (0 <14,j<k). Forevery0 </{<k
define ay as follows: ag = agy and ay for 0 < € < k is
the sum of a;; for which i +j=+¢ (modk—1), i.e.,

Q= D iiize (mod k—1) %ij- 1If f(z,y) is idempotent
then

(=1 = a=1
(#1 = aq =0

(mod k)
(mod k)

This can be verified by (i) the assumption f(z,z) =
z, (ii) the basic property 2% = x and (iii) the unique-
ness of polynomial-form expression of a function for a
prime k.

Experiment: For small primes such as k = 3,5, 7 and
11, one can check the following by easy computetion.

The following binary linear polynomials are minimal



and no other binary linear polynomials are minimal
(up to interchange of variables).

2z + 2y
k=5 : 2x+4y, 3x+3y

(Both generate the same minimal clone.)

k=17 2+ 6y, 3zx+5y, 4dx-+4y
(All generate the same minimal clone.)
k=11: ar+(12—a)y forall 1<a<11

(All generate the same minimal clone.)

Example. For £ = 5, the binary linear polynomial
f(z,y) = 2z + 4y can be expressed by the Cayley
table as follows:

flz,y) = 2z +4y

(e[ o1 ]2]3][4]
0 [0 |43 ]2]1
1 21043
5 4 [3 [ 2|10
3 [ 10432
132104

From the above observation, we are lead to conjec-
ture more generally that a similar situation holds for
any prime k. In fact, this turns out to be true from
the result of A. Szendrei [Sze 05].

Theorem 5.4 Let k be a prime. Let f(xz,y) be a bi-
nary linear polynomial on Ey. Then f is minimal if
and only if

flx,y)=ax+ (k+1—a)y

for some 1 < a < k.

5.3 Monomials

Now we consider the monomials on Fj which are min-
imal. A monomial f(21,...,2,) on Ej is a polynomial
consisting of a single term, i.e., it is a polynomial of

the form

flay,...,z,) = ax’f xfl

for some a,iq,...,i, € Ey.

For the case of k = 3, from Appendix 1 we see that
the only binary monomial on F3 which is minimal is
the monomial xy? (up to interchange of variables).

For a prime k, we shall consider a binary monomial

flz,y) =2yt
for1<s<t<k.

Lemma 5.5 For any ¢, s,t € Ey, let f(x,y) be a
monomial f(x,y) = ca’yt. If f is idempotent then
(i) c=1and (ii) s+t = k.

Proof. (i) Obvious. (Substitute z =y =1 to f(z,y).)
(ii) This follows from the basic fact on a finite field
that 2% = z for every = € E}. O

For the minimality of a binary monomial, we have a
following example.

Proposition 5.6 If f(z,y) = zy*~! then f is mini-

mal.

Example. For k = 5, f(z,y) = xy* is a function
which can be expressed by the Cayley table as follows:

f(x,y)zxy4
(e[ 0]1[2]3[4]
0 0 0 0 0 0
1 0 1 1 1 1
2 0 2 2 2 2
3 0 3 3 3 3
4 0 4 4 4 4

Proof of Proposition 5.6. First, notice that 2-
variable functions obtained from f by repeated appli-
cation of functional composition are either f(z,y) or
f(y,z). This can be verified in a straghtforward way:
Eg., f(f(z,v),y) = f(z,y), f(f(y,2),y) = f(y,2),
[, f(z,y)) = f(z,y), ete.

Secondly, one might get n(> 2)-variable function
g(z1,...,2,) by repeated application of functional
composition from f. Let h(z,y) be a 2-variable func-
tion obtained from g, e.g., h(z,y) = g(z,y,...,y).
Then, since f is a monomial, h can never be essen-

tially unary, but essentially binary.



These facts show that from any function g € (f)\ Jx
one can recover f, i.e., f € (g). This concludes that
(f) is a minimal clone. a

Experiment. It has been verified that xy*~! is the
only monomial which is minimal (up to interchange of

variables) for small primes such as k = 3,5,7,11.

This experiment suggests us to go a step further and
conjecture the following: For any prime k, zy*~! is the
only monomial which is minimal (up to interchange of
variables). In the rest of the paper, we show that this
in fact holds true (Theorem 5.8).

Lemma 5.7 For any 1 < s < k we have

k—1

xyPl e (afyF o).

Proof. There are two cases to be considered.
Case 1: ged(s,k—1)=1
Fermat’s theorem asserts that

s#*k=D =1 (mod k —1)

where ¢ is the Euler’s function, which implies

gelk=1) . ge(k=1) k—1

::L’y

. (k—1) _ge(k=1)
It is easy to see that z* yk=s”

can be ob-
tained from x°y*~° by repeated application of func-
tional composition. So the assertion of the lemma fol-
lows.

Now put t =k —sfor 1 <s < k.

The case ged(t, k — 1) =1 is handled similarly.
Case 2: ged(s,k—1) # 1 and ged(t,k—1) #1
In this case we prove the following claim.

Claim. For some ¢ > 1, s°+t—(st)°=1 (mod k—1)

Proof of Claim. Since k is a prime, ged(s,t) = 1.
Let k —1 = a- - v such that ged(s,y) = 1 and
ged(t, ay) = 1. Then, again, by Fermat’s theorem we
have
52BN =1 (mod fBy) and t*(@)=1
Let ¢ = p(a7y) - ¢(B7v) then ¢ > 1 and ¢ satisfies
s*=1 (modfy) and t°=1
This means that there exists m,n € N such that

s=14+m(By) and t¢=1+n(ay),

(mod avy).

(mod ).

from which it follows that
(s = 1)(t° = 1) = (afy) (mn7).
Hence we have
sC4tc—(st)=1 (mod k—1)

for some ¢ > 1. This completes the proof of Claim.

As in Case 1, it is not difficult to see that x¥y*—*
for u = s¢ 4 1° — (st)¢ can be obtained from x* y*~* by
repeated application of functional composition. There-
fore the assertion of the lemma holds. O

On the other hand, it is readily verified that z* y*~*
for 1 < s < k cannot be obtained from xy*~!. Hence
we have the following.

Theorem 5.8 Let k be a prime and 1 < s < k.

Then z° y*~° is not minimal. Hence xy* ! is a unique
monomial which is minimal (up to the interchange of
variables).
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Appendix 1

Generators of all minimal clones of type (ii)

over Fj

bll

be24

beg
bo

baag
bses
b692
b33
bay

b7

bag
b3y
bi7

bss

bao

by3

bss

bao
bs30
bi2s
bi1e
bs2s
b206
bas7
ba1s
b2se
bi2o

bss7

ba7

(Originally from B. Csdkény [Cs 83])

l’yQ

2z 4+ 2y
2z + 2x1°
222y + 2xy?

x4y + 2%y

x + y? 4 229>

x + 2% + 2%y?

z 4 222y + xy?

22 4 zy? + 2222

222 + xy? + x2y?

2z + 2% + 2zy + 22%y

2z + 22° + zy + 222y

2z + 22 + 2xy? + 229>
2z + 222 + 2zy® + z2y?
zy + 22%y + 2xy® + 22%y°
2zy + 22y + 2xy? + 2292

x4+ zy + 222y + zy? + 222>
T 4 2zy + 22%y + xy® + 2%y?
x4 zy + 22y + 22y% + 222>
z 4 2y + 2%y + 2xy® + 2%y?
x4y +y? + 222y + 22%y?
x+y+ 2y° + 202y + 2%y?
4y + zy + 2% + 2xy°
z+y+ 2zy + y? + 2xy>

x4 2y + y? + 22y + 222>
x4+ 2y + 2y% + 2Py + 2%y?
T+ 2y + 2zy + y° + xy?

x4+ 2y + xy + 20% + 2y?

y+ 2% + 292 + 222y +

y + 22% + 92 + 222y + 2/
2z + 2% + xy + 222y + 2%y?
2z + 22° + 2zy + 222y + 22°y?

bi7s 22 + 2y + 2% + 2y + 9°
bago 21 4 2y + 222 + 22y + 242

bao 2 + zy + 222y + 22y + 2%y?

bso 222 + 2xy + 222y + 22y + 222>
bsea 22 + zy + % + 22%y + 2ay?
bros 222 4 2xy + 2y° + 222y + 2xy°
ba4s x4y + zy + 2%y + xy® + 207y
bass T4y + 2ay + 2%y + ay? + 2y’
b205 x4+ 2y + zy + v + 2y® + 2%y?
ba96 T+ 2y + 2zy + 2y + xy? + 2222
biss 2r + 2y + x2 + 2zy + y? + 222y?
baso 2z + 2y + 22° + xy + 2y% + 2%y>

bs 2z + 2% + xy + 2%y + 2y + 2%y?

b3 2z + 222 + 2y + 22y + xy? + 222>
birg 2z + 2y + 2”4+ v + &7y + 2zy” + 2%y’
bog1 21 + 2y + 227 + 2% + 2%y + 22y® + 2272
Appendix 2

Representatives of generators of minimal clones

over F3 from each equivalence class

b = ay?
bo 222y + 2xy?
bes 22 + 2xy?
be24 2z + 2y
b1 2?2 + ay? + 20%y?
bses z+y° + 227y
b33 x + 222y + zy?
baag T +y+22%y
b1o zy + 222y + 2xy% + 222>
b7 21 + 2% + 2zy? + 222y°
bie 22 4 2% + zy + 22%y + 2%y?
bi7s 22 + 2y + 22 + zy + o>



