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Abstract

A minimal clone is an atom of the lattice of clones. We
propose a new method to study minimal clones by consid-
ering the base set Ek with k elements as a finite field and
by expressing each function as a polynomial over Ek.

For k = 3 we present the list of all binary minimal poly-
nomials over GF(3) derived from Csákány’s result. Then,
we discuss some properties of binary minimal linear poly-
nomials and of binary minimal monomials.
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1 Introduction

Let k(> 2) be a fixed integer and Ek ={0, 1, . . . , k−1}.
Denote by O(n)

k the set of all functions from (Ek)n into
Ek, and set

Ok =
∞⋃

n=1

O(n)
k .

For any f ∈ O
(n)
k and any g1, . . . , gn ∈ O

(m)
k the (func-

tional) composition f [g1, . . . , gn] of f and g1, . . . , gn is
a function in O

(m)
k defined by

f [g1, . . . , gn](x1, . . . , xm)

= f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

for all x1, . . . , xm ∈ Ek.
Denote by Jk the set of all projections en

i over
Ek, where en

i for every 1 ≤ i ≤ n is defined by
en
i (x1, . . . , xi, . . . , xn) = xi for all x1, . . . , xn ∈ Ek.
A subset C of Ok is a clone on Ek if (i) C is closed

under (functional) composition and (ii) C contains Jk.
Denote by Lk the set of all clones on Ek. The set Lk is
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a lattice with respect to inclusion and called the lattice
of clones on Ek.

An atom of the lattice Lk is called a minimal clone.
In other words, a minimal clone is a minimal element
in the partially ordered set Lk \ {Jk}. It is clear that
a minimal clone C is generated by a single function f

in Ok, i.e., C = 〈f〉. A function in Ok which generates
a minimal clone is called a minimal function.

For k = 2, the structure of L2 is completely known by
E. Post [Po 41] and, consequently, all minimal clones
are known. There are 7 minimal clones in L2.

For k = 3, B. Csákány [Cs 83] discovered all minimal
clones and listed generators, i.e., minimal functions, for
all of them. There are 84 minimal clones in L3.

For k = 4, B. Szczepara [Szc 95] found all minimal
clones which are generated by binary functions. How-
ever, the determination of all minimal clones in L4 is
not yet settled.

Other than the above mentioned works, minimal
clones and minimal functions have been discussed by
several authors: J. Dudek, J. Ježek, K. A. Kearnes,
P. P. Pálfy, R. W. Quackenbush, I. G. Rosenberg, Á.
Szendrei, T. Waldhauser, etc. Many of their results
contain interesting aspects of and deep insight to min-
imal clones. However, the problem of determining all
minimal clones seems to be extremely difficult. Even
the determination of minimal clones for any single k

greater than 3 is far beyond our present capability.
In this paper, we propose a new method to attack

this problem of determining minimal functions. If k

is a power of a prime number, i.e., k = pe for some
prime p and e ≥ 1, we can introduce the algebraic
structure of a field into the set Ek and Ek may be
viewed as a finite field (Galois field) GF(pe). An n-ary
function on Ek is then expressed as a polynomial in n

variables over GF(pe). Polynomials corresponding to
minimal functions may have some common characteris-
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tics which distinguish them from polynomials that are
not minimal functions. Although we have not yet ful-
filled, the aim of our work, which has just been started,
is to discover such common characteristics embraced
by minimal functions. Our hope is to find common
characteristics with respect to the form of polynomials
shared by all, or possibly some, of minimal functions.

In the sequel, we shall concentrate on polynomials of
binary idempotent minimal functions. Here a function
f ∈ Ok is idempotent if it satisfies f(x, . . . , x) = x for
all x ∈ Ek.

As an intial step of this work, we present the list
of polynomials over GF(3) in 2 variables correspond-
ing to generators of all minimal clones generated by
binary functions, which is derived from Csákány’s list
[Cs 83] and, then, determine all binary minimal linear
polynomials as well as all binary minimal monomials.

2 Type Theorem for Minimal
Clones

The following theorem due to I. G. Rosenberg [Ro 86]
is sometimes called the type theorem for minimal
clones.

Theorem 2.1 A minimal function f on Ek whose ar-
ity is minimum among arities of functions in 〈f〉 \ Jk

is of one of the following five types.

(i) f is a unary function.

(ii) f is a binary idempotent function.

(iii) f is a ternary majority function. I.e., f satisfies

f(x, x, y) = f(x, y, x) = f(y, x, x) = x

for all x, y ∈ Ek.

(iv) f is a ternary function defined by

f(x, y, z) = x + y + z

for an elementary abelian 2-group with addition +.

(v) f is a k (≥ 3)-ary semiprojection. I.e., there exists
1 ≤ i ≤ n such that

f(x1, . . . , xn) = xi

whenever |{x1, . . . , xn}| < n for any x1, . . . , xn ∈
Ek.

In this paper we shall only consider minimal func-
tions of type (ii), i.e., binary idempotent minimal func-
tions.

3 Polynomials on Finite Fields

A field F consisting of a finite number of elements is
called a finite field or Galois field. It is well-known
that the cardinality of a finite field must be a power
pe of some prime number p. When F is a finite field
with q = pe elements, it is often denoted by GF(q).
It is a basic fact that the finite field GF(q) consists of
elements x satisfying xq = x.

In particular, assume that k = p is a prime and Ek

is a prime field. Then the addition and the multiplica-
tion of GF(p) are exactly the addition modulo p and
the multiplication modulo p, respectively, and compu-
tation can be performed easily.

In the sequel, we shall consider binary functions on
Ek. For a prime k, it is known that a function f ∈ O(2)

k

can be expressed as a polynomial

f(x, y) =
∑

0≤ i, j < k

a ij x i y j

for some aij ∈ Ek (0 ≤ i, j < k).
Note that each f ∈ O(2)

k has a unique expression as
a polynomial.

4 Csákány’s Theorem for k = 3

In this section we consider binary idempotent minimal
functions on a three element set, i.e., minimal functions
of type (ii) of Theorem 2.1 for k = 3.

Due to B. Csákány [Cs 83], generators of all mini-
mal clones for k = 3 are known. For all minimal clones
generated by functions of type (ii), we have expressed
generators, i.e., binary minimal functions, as polyno-
mials considering the base set E3 as the finite field
GF(3). In Appendix 1, they are presented in the order
of the number of terms in a polynomial. The names
of the functions such as b11, b0, b68 etc. come from the
Csákány’s naming. From Appendix 1 we could observe
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some properties and draw some conjectures on minimal
functions which will be stated in the following section.

The permutations of the base set E3, that is, the
renaming of the elements of E3, can be expressed by
the following mappings:

ϕ0 = id : x 7−→ x

ϕ1 = (012) : x 7−→ x + 1

ϕ2 = (021) : x 7−→ x + 2

ϕ3 = (12) : x 7−→ 2x

ϕ4 = (01) : x 7−→ 2x + 1

ϕ5 = (02) : x 7−→ 2x + 2

Two polynomials are equivalent if one is obtained
from the other by some permutation on E3. More
precisely, f(x, y) is equivalent to g(x, y) if g(x, y) =
ϕ−1f(ϕ(x), ϕ(y)) for some permutation ϕ on E3. Ap-
pendix 2 presents the list of representatives from each
equivalence classes of minimal functions of type (ii).

5 Binary Idempotent Minimal
Functions

Throughout this section, we assume that k is a prime
and Ek is the finite field GF(k). We shall consider only
binary idempotent minimal functions on Ek.

5.1 Irreducible Polynomials

It is obvious that an irreducible polynomial cannot
be obtained from reducible polynomials through (func-
tional) composition. Therefore, if some reducible poly-
nomial g is produced by repeated application of com-
position from an irreducible polynomial f then it im-
mediately implies that f is not a minimal function.
Hence we have:

Lemma 5.1 Let f be an irreducible polynomial over
Ek and g be a reducible polynomial over Ek. If g ∈ 〈f〉
then f is not a minimal function.

Example. Let k = 3. Consider f(x, y) = x+x2+2y2

as a polynomial over E3. Clearly, f is an irre-
ducible polynomial over E3, which is idempotent as
well. Define g(x, y) = f(f(x, y), y). Then we have

g(x, y) = xy2 + x2y2 + 2y2 which is reducible, since
g(x, y) = (x + x2 + 2)y2. Hence it is concluded by
Lemma 5.1 that f is not a minimal function.

5.2 Linear Polynomials

A linear polynomial f(x1, . . . , xn) on Ek is a polyno-
mial of the form

f(x1, . . . , xn) = a0 + a1x1 + · · ·+ anxn

for some a0, a1, . . . , an ∈ Ek.
For k = 3, we see from the list in Appendix 1 that the

only binary linear polynomial on E3 which is minimal
is 2x + 2y.

In general, we have the following.

Lemma 5.2 Let f(x, y) = ax+by+c be a linear poly-
nomial on Ek for a, b, c ∈ Ek. If f is idempotent then
a + b ≡ 1 (mod k) and c = 0.

The proof follows from f(0, 0) = 0 and f(1, 1) = 1.
Note that Lemma 5.2 is a special case of a more

general result given below.

Proposition 5.3 Let f(x, y) be a polynomial over Ek

expressed as

f(x, y) =
∑

0≤ i, j < k

a ij x i y j

for some aij ∈ Ek (0 ≤ i, j < k). For every 0 ≤ ` < k

define α` as follows: α0 = a00 and α` for 0 < ` < k is
the sum of aij for which i + j ≡ ` (mod k − 1), i.e.,
α` =

∑
i+j≡` (mod k−1) aij. If f(x, y) is idempotent

then

` = 1 =⇒ α` ≡ 1 (mod k)

` 6= 1 =⇒ α` ≡ 0 (mod k)

This can be verified by (i) the assumption f(x, x) =
x, (ii) the basic property xk = x and (iii) the unique-
ness of polynomial-form expression of a function for a
prime k.

Experiment: For small primes such as k = 3, 5, 7 and
11, one can check the following by easy computetion.
The following binary linear polynomials are minimal
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and no other binary linear polynomials are minimal
(up to interchange of variables).

k = 3 : 2x + 2y

k = 5 : 2x + 4y , 3x + 3y

(Both generate the same minimal clone.)

k = 7 : 2x + 6y , 3x + 5y , 4x + 4y

(All generate the same minimal clone.)

k = 11 : ax + (12− a)y for all 1 < a < 11

(All generate the same minimal clone.)

Example. For k = 5, the binary linear polynomial
f(x, y) = 2x + 4y can be expressed by the Cayley
table as follows:

f(x, y) = 2x + 4y

x\y 0 1 2 3 4
0 0 4 3 2 1
1 2 1 0 4 3
2 4 3 2 1 0
3 1 0 4 3 2
4 3 2 1 0 4

From the above observation, we are lead to conjec-
ture more generally that a similar situation holds for
any prime k. In fact, this turns out to be true from
the result of Á. Szendrei [Sze 05].

Theorem 5.4 Let k be a prime. Let f(x, y) be a bi-
nary linear polynomial on Ek. Then f is minimal if
and only if

f(x, y) = ax + (k + 1− a)y

for some 1 < a < k.

5.3 Monomials

Now we consider the monomials on Ek which are min-
imal. A monomial f(x1, . . . , xn) on Ek is a polynomial
consisting of a single term, i.e., it is a polynomial of
the form

f(x1, . . . , xn) = a xi1
1 · · ·xin

n

for some a, i1, . . . , in ∈ Ek.

For the case of k = 3, from Appendix 1 we see that
the only binary monomial on E3 which is minimal is
the monomial x y2 (up to interchange of variables).

For a prime k, we shall consider a binary monomial

f(x, y) = xs yt

for 1 ≤ s ≤ t < k.

Lemma 5.5 For any c, s, t ∈ Ek, let f(x, y) be a
monomial f(x, y) = c xsyt. If f is idempotent then
(i) c = 1 and (ii) s + t = k.

Proof. (i) Obvious. (Substitute x = y = 1 to f(x, y).)
(ii) This follows from the basic fact on a finite field
that xk = x for every x ∈ Ek. 2

For the minimality of a binary monomial, we have a
following example.

Proposition 5.6 If f(x, y) = x yk−1 then f is mini-
mal.

Example. For k = 5, f(x, y) = x y4 is a function
which can be expressed by the Cayley table as follows:

f(x, y) = x y4

x\y 0 1 2 3 4
0 0 0 0 0 0
1 0 1 1 1 1
2 0 2 2 2 2
3 0 3 3 3 3
4 0 4 4 4 4

Proof of Proposition 5.6. First, notice that 2-
variable functions obtained from f by repeated appli-
cation of functional composition are either f(x, y) or
f(y, x). This can be verified in a straghtforward way:
E.g., f(f(x, y), y) = f(x, y), f(f(y, x), y) = f(y, x),
f(x, f(x, y)) = f(x, y), etc.

Secondly, one might get n(> 2)-variable function
g(x1, . . . , xn) by repeated application of functional
composition from f . Let h(x, y) be a 2-variable func-
tion obtained from g, e.g., h(x, y) = g(x, y, . . . , y).
Then, since f is a monomial, h can never be essen-
tially unary, but essentially binary.
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These facts show that from any function g ∈ 〈f〉\Jk

one can recover f , i.e., f ∈ 〈g〉. This concludes that
〈f〉 is a minimal clone. 2

Experiment. It has been verified that xyk−1 is the
only monomial which is minimal (up to interchange of
variables) for small primes such as k = 3, 5, 7, 11.

This experiment suggests us to go a step further and
conjecture the following: For any prime k, xyk−1 is the
only monomial which is minimal (up to interchange of
variables). In the rest of the paper, we show that this
in fact holds true (Theorem 5.8).

Lemma 5.7 For any 1 < s < k we have

xyk−1 ∈ 〈xs yk−s〉.

Proof. There are two cases to be considered.

Case 1: gcd(s, k − 1) = 1

Fermat’s theorem asserts that

sϕ(k−1) ≡ 1 (mod k − 1)

where ϕ is the Euler’s function, which implies

xsϕ(k−1)
yk−sϕ(k−1)

= xyk−1.

It is easy to see that xsϕ(k−1)
yk−sϕ(k−1)

can be ob-
tained from xs yk−s by repeated application of func-
tional composition. So the assertion of the lemma fol-
lows.

Now put t = k − s for 1 < s < k.
The case gcd(t, k − 1) = 1 is handled similarly.

Case 2: gcd(s, k − 1) 6= 1 and gcd(t, k − 1) 6= 1

In this case we prove the following claim.

Claim. For some c > 1, sc+tc−(st)c ≡ 1 (mod k−1)

Proof of Claim. Since k is a prime, gcd(s, t) = 1.
Let k − 1 = α · β · γ such that gcd(s, βγ) = 1 and
gcd(t, αγ) = 1. Then, again, by Fermat’s theorem we
have

sϕ(βγ)≡1 (mod βγ) and tϕ(αγ)≡1 (mod αγ).

Let c = ϕ(αγ) · ϕ(βγ) then c > 1 and c satisfies

sc ≡ 1 (mod βγ) and tc ≡ 1 (mod αγ).

This means that there exists m,n ∈ N such that

sc = 1 + m(βγ) and tc = 1 + n(αγ),

from which it follows that

(sc − 1)(tc − 1) = (αβγ)(mnγ).

Hence we have

sc + tc − (st)c ≡ 1 (mod k − 1)

for some c > 1. This completes the proof of Claim.

As in Case 1, it is not difficult to see that xuyk−u

for u = sc + tc− (st)c can be obtained from xs yk−s by
repeated application of functional composition. There-
fore the assertion of the lemma holds. 2

On the other hand, it is readily verified that xs yk−s

for 1 < s < k cannot be obtained from xyk−1. Hence
we have the following.

Theorem 5.8 Let k be a prime and 1 < s < k.
Then xs yk−s is not minimal. Hence xyk−1 is a unique
monomial which is minimal (up to the interchange of
variables).
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Appendix 1

Generators of all minimal clones of type (ii)
over E3 (Originally from B. Csákány [Cs 83])

b11 = xy2

b624 = 2x + 2y

b68 = 2x + 2xy2

b0 = 2x2y + 2xy2

b449 = x + y + 2x2y

b368 = x + y2 + 2x2y2

b692 = x + 2y2 + x2y2

b33 = x + 2x2y + xy2

b41 = x2 + xy2 + 2x2y2

b71 = 2x2 + xy2 + x2y2

b26 = 2x + x2 + 2xy + 2x2y

b37 = 2x + 2x2 + xy + 2x2y

b17 = 2x + x2 + 2xy2 + 2x2y2

b38 = 2x + 2x2 + 2xy2 + x2y2

b10 = xy + 2x2y + 2xy2 + 2x2y2

b20 = 2xy + 2x2y + 2xy2 + x2y2

b43 = x + xy + 2x2y + xy2 + 2x2y2

b53 = x + 2xy + 2x2y + xy2 + x2y2

b35 = x + xy + x2y + 2xy2 + 2x2y2

b42 = x + 2xy + x2y + 2xy2 + x2y2

b530 = x + y + y2 + 2x2y + 2x2y2

b125 = x + y + 2y2 + 2x2y + x2y2

b116 = x + y + xy + 2y2 + 2xy2

b528 = x + y + 2xy + y2 + 2xy2

b206 = x + 2y + y2 + x2y + 2x2y2

b287 = x + 2y + 2y2 + x2y + x2y2

b215 = x + 2y + 2xy + y2 + xy2

b286 = x + 2y + xy + 2y2 + xy2

b122 = y + x2 + 2y2 + 2x2y + xy2

b557 = y + 2x2 + y2 + 2x2y + xy2

b16 = 2x + x2 + xy + 2x2y + x2y2

b47 = 2x + 2x2 + 2xy + 2x2y + 2x2y2

b178 = 2x + 2y + x2 + xy + y2

b290 = 2x + 2y + 2x2 + 2xy + 2y2

b40 = x2 + xy + 2x2y + 2xy2 + x2y2

b80 = 2x2 + 2xy + 2x2y + 2xy2 + 2x2y2

b364 = x2 + xy + y2 + 2x2y + 2xy2

b728 = 2x2 + 2xy + 2y2 + 2x2y + 2xy2

b448 = x + y + xy + x2y + xy2 + 2x2y2

b458 = x + y + 2xy + x2y + xy2 + x2y2

b205 = x + 2y + xy + y2 + xy2 + x2y2

b296 = x + 2y + 2xy + 2y2 + xy2 + 2x2y2

b188 = 2x + 2y + x2 + 2xy + y2 + 2x2y2

b280 = 2x + 2y + 2x2 + xy + 2y2 + x2y2

b8 = 2x + x2 + xy + x2y + xy2 + x2y2

b36 = 2x + 2x2 + 2xy + x2y + xy2 + 2x2y2

b179 = 2x + 2y + x2 + y2 + x2y + 2xy2 + x2y2

b281 = 2x + 2y + 2x2 + 2y2 + x2y + 2xy2 + 2x2y2

Appendix 2

Representatives of generators of minimal clones
over E3 from each equivalence class

b11 = xy2

b0 = 2x2y + 2xy2

b68 = 2x + 2xy2

b624 = 2x + 2y

b41 = x2 + xy2 + 2x2y2

b368 = x + y2 + 2x2y2

b33 = x + 2x2y + xy2

b449 = x + y + 2x2y

b10 = xy + 2x2y + 2xy2 + 2x2y2

b17 = 2x + x2 + 2xy2 + 2x2y2

b16 = 2x + x2 + xy + 2x2y + x2y2

b178 = 2x + 2y + x2 + xy + y2
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