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Abstract

A minimal clone is an atom of the lattice of clones. A
minimal function is a function which generates a minimal
clone. We consider the base set with k elements, for a prime
k, as a finite field and treat functions as polynomials.

Starting from binary minimal functions over GF(3), we
generalize some of them and obtain binary minimal func-
tions, as polynomials, over GF(k) for any prime k ≥ 3.
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1 Introduction

To begin with, consider two Boolean functions f and
g expressed as polynomials over GF(2) :

f(x, y) = xy + 1

g(x, y) = xy + x + y

The question is : Which function is stronger with re-
spect to the ‘productive power’ by (functional) compo-
sition ?

Answer is clear: f is stronger and g is weaker. In fact,
f(x, y) is NAND(x, y) which is so strong as to produce
all Boolean functions whereas g(x, y) is OR(x, y) which
generates a minimal clone (whose definition appears
below).

Next, consider three polynomials over GF(3):

u(x, y) = x2y2 + xy2 + x2y + 2xy + x + y

v(x, y) = x2y2 + xy2 + x2y + xy + x + y

w(x, y) = x2y2 + xy2 + x2y + 2xy + x + y + 1

The question is : Which function is the weakest ?
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In this case, the answer may not be so obvious. All
these functions look more or less similar, but actually u

is the weakest among these three functions. In fact, (i)
u(x, y) generates a minimal clone, (ii) w(x, y) is Webb
function which is known to generate all functions and
(iii) v(x, y) stays somewhere in-between.

The purpose of our study is to find some nice charac-
terization of polynomials whose productive power is, in
a sense, weakest, i.e., which generate minimal clones.
As indicated by the above example, this is quite a chal-
lenging task.

For an integer k (≥ 2) let Ek = {0, 1, . . . , k− 1}. Let
O(n)

k denote the set of all n-variable functions on Ek,
i.e., mappings from (Ek)n into Ek, and set

Ok =
∞⋃

n=1

O(n)
k .

For any f ∈ O
(m)
k and g1, . . . , gm ∈ O

(n)
k the (func-

tional) composition f [g1, . . . , gm] of f with g1, . . . , gm

is a function in O
(n)
k defined by

f [g1, . . . , gm](x1, . . . , xn)

= f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

for all (x1, . . . , xn) ∈ (Ek)n.
Let Jk be the set of all projections en

i , 1 ≤ i ≤ n, over
Ek where the i-th projection en

i of arity n is defined
by en

i (x1, . . . , xi, . . . , xn) = xi for all (x1, . . . , xn) ∈
(Ek)n.

A subset C of Ok is a clone on Ek if (i) C is closed
under (functional) composition and (ii) C contains Jk.
Denote by Lk the set of all clones on Ek. The set
Lk is an algebraic lattice with respect to inclusion and
called the lattice of clones on Ek. It is obvious that
the greatest element is Ok and the least element is Jk

in the lattice Lk.
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For a subset F of Ok denote by 〈F 〉 the clone gener-
ated by F . Thus, 〈F 〉 is the intersection of all clones
containing F . In particular, when F is a singleton, i.e.,
F = {f} for some f ∈ Ok, we simply write 〈f〉 in stead
of 〈F 〉.

An atom of the lattice Lk is called a minimal clone.
In other words, a minimal clone is a minimal element
in the partially ordered set Lk \ {Jk}. It is clear that
a minimal clone C is generated by a single function f

in Ok, i.e., C = 〈f〉. A function in Ok which generates
a minimal clone is called a minimal function.

For k = 2 there are 7 minimal clones in L2, which
is easily obtained from full knowledge of L2 due to E.
Post [Po 41]. For k = 3 there are 84 minimal clones in
L3. This is due to B. Csákány [Cs 83] who determined
all minimal clones and their generators over E3. Our
complete knowledge on minimal clones with respect
to the size of the base set Ek is, at present, only up
to this point. Even for k = 4, in spite of the work
of B. Szczepara [Szc 95] who found all minimal clones
which are generated by binary functions, the problem
of determining all minimal clones in L4 is still open.

Minimal clones have been studied by many au-
thors, e.g., [Cs 83], [Du 90], [JQ 95], [KS 99], [LP 96],
[Ro 86], [Wa 00], etc. Many of them have revealed
deep and interesting aspects of minimal clones. How-
ever, untill now, the problem of determining all min-
imal clones stands firm, like an unbreakable fortress,
against the attack of those eminent researchers.

This paper is a continuation of our work [MP 06],
where we proposed to tackle minimal clones by consid-
ering minimal functions as polynomials. We assume
that k is a power of a prime and the base set Ek is
a finite field. In this paper we only consider mini-
mal clones generated by binary idempotent functions.
Starting from Csákány’s list of minimal functioins on
E3, expressing them as polynomials over GF(3), we
generalize some of them and obtain polynomials gen-
erating minimal clones over GF(k) for a prime k ≥ 3.
In the course of discussion, we show some conditions
for a function to be minimal.

2 Preliminaries

2.1 Finite Field

A finite field (or Galois field ) is a field F consisting of a
finite number of elements. The number of elements in
F must be a power pe (e ≥ 1) of some prime p. When
F contains q = pe elements, it is denoted by GF(q).
It is fundamental that GF(q) consists of elements x

satisfying xq = x.

In particular, when k is a prime and Ek is a prime
field, the addition and the multiplication of GF(k) are
exactly the addition modulo k and the multiplication
modulo k, respectively.

Note that for a prime k every binary function f ∈
O(2)

k on Ek is uniquely expressed as a polynomial

f(x, y) =
∑

0≤ i, j < k

a ij x i y j

for some aij ∈ Ek (0 ≤ i, j < k).

2.2 Type Theorem for Minimal Func-
tions

I. G. Rosenberg [Ro 86] classified minimal functions
into five types. This is known as the type theorem
for minimal clones. It states that every minimal func-
tion f on Ek whose arity is minimum among arities of
functions in 〈f〉 \ Jk falls in one of the following five
categories (types): (i) unary function, (ii) binary idem-
potent function, (iii) ternary majority function, (iv)
ternary function x + y + z for an elementary abelian
2-group and (v) k (≥ 3)-ary semiprojection.

In the sequel, we concentrate on polynomials of bi-
nary idempotent minimal functions, minimal functions
of type (ii) in the above classification. To recall, a func-
tion f ∈ Ok is idempotent if it satisfies f(x, . . . , x) = x

for all x ∈ Ek. Among five types given above, the sec-
ond type is, without doubt, the richest in a sense that
the number of minimal functions belonging to (ii) is
greater than that of functions belonging to any other
type. For example, there are 84 minimal clones for
k = 3 and 48 of them, more than 57%, are minimal
clones generated by functions of type (ii).
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3 Conditions for Minimality

For f, g ∈ Ok, we shall write f → g if g ∈ 〈f〉. Note
that the binary relation → on Ok is a quasi-order, i.e.,
→ is reflexive and transitive.

A basic fact is the following:

Lemma 3.1 Let f ∈ O(2)
k be an essentially binary

function. If f satisfies the following two conditions
then f is minimal.

(1) f is idempotent.

(2) For any g ∈ O(m)
k , m ≥ 2, satisfying f → g, if g

is not a projection then g → f .

Now, let m ≥ 3 and g ∈ O(m)
k . We shall say that g is

a quasi-projection if g becomes a projection whenever
two arguments of g, say, the i-th argument and the j-
th argument for 1 ≤ i < j ≤ m, are identified, i.e., if
g(x1, . . . , xi, . . . , xi, . . . , xm) is always a projection.

Lemma 3.2 Let f ∈ O(2)
k be a binary idempotent

function. Then f is minimal if and only if the fol-
lowing two conditions hold.

(1) For any g ∈ O(2)
k \ Jk, if f → g then g → f .

(2) For any m ≥ 3 and any g ∈ O(m)
k \ Jk, if f → g

then g is not a quasi-projection.

Proof. (⇒) Let f be minimal. Then (1) follows im-
mediately. To show the second condition (2), suppose
that there exists a function g in O(m)

k \ Jk, m ≥ 3,
which satisfies f → g and is a quasi-projection. If we
prove g 6→ f then we are done, because g 6→ f to-
gether with f → g implies 〈g〉 ⊂ 〈f〉 which is against
the minimality of f .

Now assume on the contrary that g → f . Then f is
composed as

f(x1, x2) = g[α1, α2, . . . , αm](x1, x2)

where αi is an expression constructed by (possibly)
repeated compositions from g and projections, i.e.,
αi ∈ 〈g〉, for i = 1, 2, . . . ,m. We claim that, since
there are only two variables x1, x2 whereas g is an
m (≥ 3) variable function, αi must be a projection for
each i = 1, 2, . . . , m. (More precisely, this is proved by
induction on the depth of composition.) Then at least

two of α1, α2, . . . , αm coincide and g[α1, α2, . . . , αm]
is also a projection. Hence f is a projection which
contradicts the assumption that f is minimal.

(⇐) Suppose f satisfies the conditions (1) and (2),
but is not minimal. Then there must exists g ∈ O(m)

k \
Jk such that

f → g and g 6→ f . (?)

Because of (1), it must be that m ≥ 3. Let m0 ≥ 3 be
the least integer for which there exists g ∈ O(m0)

k \ Jk

with the property (?).
For any i, j, 1 ≤ i < j ≤ m0, let gij denote the

function g(. . . , xi, . . . , xi . . .) where the i-th place and
the j-th place have the same variable. Then we have
gij ∈ O(m0−1)

k and f → gij . By the assumption on
m0, it follows that either (i) gij ∈ Jk or (ii) gij → f .
However, if (ii) holds, then g → f because g → gij

and → is transitive, which is against the assumption
on m0. Therefore (i) must hold, i.e., gij ∈ Jk, which
completes the proof. 2

For f ∈ O(2)
k let Γ(x,y)

f be the following set of expres-
sions:

{ f(f(x, y), x), f(f(x, y), y), f(x, f(x, y)),
f(y, f(x, y)), f(f(x, y), f(y, x)) }

Then Γf = Γ(x,y)
f ∪ Γ(y,x)

f shall be called the basic set
of compositions for f .

Lemma 3.3 Let f ∈ O(2)
k be a binary idempotent

function which is not a projection. Suppose that, for
any γ ∈ Γf , one of the following holds:

γ(x, y) ≈ f(x, y) or γ(x, y) ≈ f(y, x)

Then f is minimal.

Here, by h1(x, y) ≈ h2(x, y) for h1, h2 ∈ O(2)
k we

mean h1(x, y) = h2(x, y) for all (x, y) ∈ E2
k.

Proof. (Sketch) Let g ∈ O(m)
k be constructed from

f and the projections by repeated composition. If
the depth of construction is greater than 1, by suit-
able identification of variables, if necessary, each of
the innermost parts of the construction is altered to
some form γ in Γf . Then γ(x, y) may be replaced by
f(x, y) or f(y, x), reducing the depth of the construc-
tion. Eventually we reach f , showing that g → f . 2
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4 From Csákány’s List

As already mentioned, generators of all minimal clones
for k = 3 are known by B. Csákány [Cs 83]. For
all minimal clones generated by functions of type (ii),
i.e., binary minimal functions, we present generators
as polynomials over the field GF(3) in Appendix. For
the reader’s sake, the names of the functions such as
b11, b0, b68 are preserved from [Cs 83].

5 Binary Minimal Functions

Starting from Csákány’s results for k = 3, we attempt
to generalize and obtain binary idempotent minimal
functions for arbitrary prime k ≥ 3.

Throughout this section, we assume that k (≥ 3) is
a prime and Ek is the finite field GF(k). We consider
only binary idempotent minimal functions.

5.1 Linear Polynomials and Monomials

In [MP 06], we generalized Csákány’s results on linear
polynomials and monomials for k = 3 to any prime
k ≥ 3. (Also, refer to [Szc 95].) Before we go further,
we review those results.

A binary linear polynomial on Ek is a polynomial of
the form a0+a1x+a2y for some a0, a1, a2 ∈ Ek. From
Appendix, we see that 2x+2y is the only binary linear
polynomial on E3 which is minimal. This generalizes
to the following:

Theorem 5.1 For a prime k (≥ 3), let f(x, y) be a
binary linear polynomial on Ek. Then f is minimal
if and only if f(x, y) = ax + (k + 1 − a)y for some
1 < a < k.

Example. For k = 5, the linear polynomial f(x, y) =
2x + 4y is expressed by the Cayley table as follows:

f(x, y) = 2x + 4y

x\y 0 1 2 3 4

0 0 4 3 2 1

1 2 1 0 4 3

2 4 3 2 1 0

3 1 0 4 3 2

4 3 2 1 0 4

Note: Lemma 3.2 can be used to prove Theorem 5.1.

Secondly, a binary monomial on Ek is a polynomial
with two variables consisting of a single term, i.e.,
a xi1yi2 for some a, i1, i2 ∈ Ek. In Appendix, we see
that there is only one binary monomial on E3, x y2,
which is minimal. To generalize, we proved:

Theorem 5.2 For a prime k (≥ 3) and 1 ≤ s ≤ t < k,
let f(x, y) = xsyt be a binary monomial on Ek. Then
f is minimal if and only if s = 1 and t = k − 1.

Hence we see that f(x, y) = x yk−1 is the unique
monomial on Ek which is minimal (up to the inter-
change of variables).

Example. For k = 5, f(x, y) = x y4 is a function
which is expressed by the Cayley table as follows:

f(x, y) = x y4

x\y 0 1 2 3 4

0 0 0 0 0 0

1 0 1 1 1 1

2 0 2 2 2 2

3 0 3 3 3 3

4 0 4 4 4 4

5.2 More Generalizations of Csákány’s
Results

We achieve the following procedure:

Step 1: Take arbitrary f(x, y) ∈ O(2)
3 from Appendix.

Step 2: Search for a polynomial g(x, y) ∈ O(2)
k defined

on Ek for k ≥ 3 whose counterpart for k = 3
is f(x, y).

Step 3: Examine if g is minimal.

(1) From Appendix, we see that x + y + 2 x y2 is min-
imal for k = 3. A generalization is:

Proposition 5.3 For a prime k (≥ 3) the function
f(x, y) = x + y + (k − 1)x yk−1 is minimal.

Proof. For any γ in the basic set Γf of compositions
for f , we can compute and see that

f(f(x, y), y) ≈ f(x, f(x, y)) ≈ f(y, f(x, y)) ≈ f(x, y)

and

f(f(x, y), x) ≈ f(f(x, y), f(y, x)) ≈ f(y, x).
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Hence, by Lemma 3.3, f is minimal. 2

Example. For k = 5, the Cayley table of f(x, y) =
x + y + 4 x y4 is as follows:

f(x, y) = x + y + 4 x y4

x\y 0 1 2 3 4

0 0 1 2 3 4

1 1 1 2 3 4

2 2 1 2 3 4

3 3 1 2 3 4

4 4 1 2 3 4

(2) Take a minimal function x + 2y2 + x2 y2 for k = 3
from Appendix. It generalizes as follows:

Proposition 5.4 For a prime k (≥ 3) the function
f(x, y) = x + (k − 1)yk−1 + xk−1 yk−1 is minimal.

Proof. The proof is similar to the previous proposi-
tion. In this case,

f(f(x, y), x) ≈ f(f(x, y), y) ≈ f(x, f(x, y))

≈ f(f(x, y), f(y, x)) ≈ f(x, y)

and

f(y, f(x, y)) ≈ f(y, x). 2

Example. For k = 5, the Cayley table of f(x, y) =
x + 4 y4 + x4 y4 is as follows:

f(x, y) = x + 4 y4 + x4 y4

x\y 0 1 2 3 4

0 0 4 4 4 4

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

(3) The next target is a minimal function x y2 +2 x2 +
x2 y2 for k = 3. It generalizes as follows:

Proposition 5.5 For a prime k (≥ 3) the function
f(x, y) = x yk−1 +(k−1)xk−1 +xk−1 yk−1 is minimal.

Proof. The proof requires a subtle change in the dis-
cussion as we have:

f(f(x, y), x) ≈ f(f(x, y), y) ≈ f(f(x, y), f(y, x))

≈ f(x, y) and f(y, f(x, y)) ≈ f(y, x),

but

f(x, f(x, y)) ≈ x.

However, this can be overcome without difficulty if x1

and x3 are identified, instead of x1 and x2, when one
needs to modify 3-variable function f(x1, f(x2, x3)) to
2-variable function. 2

Example. For k = 5, the Cayley table of f(x, y) =
x + 4 y4 + x4 y4 is as follows:

f(x, y) = x y4 + 4 x4 + x4 y4

x\y 0 1 2 3 4

0 0 0 0 0 0

1 4 1 1 1 1

2 4 2 2 2 2

3 4 3 3 3 3

4 4 4 4 4 4

(4) Finally, we show an example which requires some-
what better skill even to find a candidate of general-
ization. The target to generalize is a minimal function

2 x2y + 2 x y2

for k = 3. In this case simple replacements of 2 by k−1
does not work. Our generalization is the following:

Proposition 5.6 For a prime k (≥ 3) the function

f(x, y) = (k − 1)
k−1∑

i=1

xk−i yi is minimal.

Proof. First, it is easy to see that f(x, x) = x if we
notice (k − 1)2 = 1. For x 6= y, let D(= D(x, y)) =∑k−1

i=1 xk−i yi. We have

xy−1D = D.

Hence xD = yD and (x − y)D = 0. Since x 6= y, it
follows that D = 0. Therefore f(x, y) = x if x = y and
f(x, y) = 0 if x 6= y. It is not hard to examine that f

is minimal. 2

Example. For k = 5, the Cayley table of f(x, y) =
4 x4 y + 4 x3y2 + 4 x2y3 + 4 x y4 is as follows:

f(x, y) = 4 x4 y + 4 x3y2 + 4 x2y3 + 4 x y4

x\y 0 1 2 3 4

0 0 0 0 0 0

1 0 1 0 0 0

2 0 0 2 0 0

3 0 0 0 3 0

4 0 0 0 0 4
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Appendix

Generators of all minimal clones of type (ii)
over GF(3) (Originally from B. Csákány [Cs 83])

b11 = xy2

b624 = 2x + 2y

b68 = 2x + 2xy2

b0 = 2x2y + 2xy2

b449 = x + y + 2x2y

b368 = x + y2 + 2x2y2

b692 = x + 2y2 + x2y2

b33 = x + 2x2y + xy2

b41 = x2 + xy2 + 2x2y2

b71 = 2x2 + xy2 + x2y2

b26 = 2x + x2 + 2xy + 2x2y

b37 = 2x + 2x2 + xy + 2x2y

b17 = 2x + x2 + 2xy2 + 2x2y2

b38 = 2x + 2x2 + 2xy2 + x2y2

b10 = xy + 2x2y + 2xy2 + 2x2y2

b20 = 2xy + 2x2y + 2xy2 + x2y2

b43 = x + xy + 2x2y + xy2 + 2x2y2

b53 = x + 2xy + 2x2y + xy2 + x2y2

b35 = x + xy + x2y + 2xy2 + 2x2y2

b42 = x + 2xy + x2y + 2xy2 + x2y2

b530 = x + y + y2 + 2x2y + 2x2y2

b125 = x + y + 2y2 + 2x2y + x2y2

b116 = x + y + xy + 2y2 + 2xy2

b528 = x + y + 2xy + y2 + 2xy2

b206 = x + 2y + y2 + x2y + 2x2y2

b287 = x + 2y + 2y2 + x2y + x2y2

b215 = x + 2y + 2xy + y2 + xy2

b286 = x + 2y + xy + 2y2 + xy2

b122 = y + x2 + 2y2 + 2x2y + xy2

b557 = y + 2x2 + y2 + 2x2y + xy2

b16 = 2x + x2 + xy + 2x2y + x2y2

b47 = 2x + 2x2 + 2xy + 2x2y + 2x2y2

b178 = 2x + 2y + x2 + xy + y2

b290 = 2x + 2y + 2x2 + 2xy + 2y2

b40 = x2 + xy + 2x2y + 2xy2 + x2y2

b80 = 2x2 + 2xy + 2x2y + 2xy2 + 2x2y2

b364 = x2 + xy + y2 + 2x2y + 2xy2

b728 = 2x2 + 2xy + 2y2 + 2x2y + 2xy2

b448 = x + y + xy + x2y + xy2 + 2x2y2

b458 = x + y + 2xy + x2y + xy2 + x2y2

b205 = x + 2y + xy + y2 + xy2 + x2y2

b296 = x + 2y + 2xy + 2y2 + xy2 + 2x2y2

b188 = 2x + 2y + x2 + 2xy + y2 + 2x2y2

b280 = 2x + 2y + 2x2 + xy + 2y2 + x2y2

b8 = 2x + x2 + xy + x2y + xy2 + x2y2

b36 = 2x + 2x2 + 2xy + x2y + xy2 + 2x2y2

b179 = 2x + 2y + x2 + y2 + x2y + 2xy2 + x2y2

b281 = 2x + 2y + 2x2 + 2y2 + x2y + 2xy2 + 2x2y2

6


