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Abstract. We calculate the number of unary clones (submonoids of the
full transformation monoid) containing the permutations, on an infinite
base set. It turns out that this number is quite large, on some cardinals
as large as the whole clone lattice. Moreover we find that, with one
exception, even the cardinalities of the intervals between the monoid of
all permutations and the maximal submonoids of the full transformation
monoid are as large. Whether or not the only exception is of the same
cardinality as the other intervals depends on additional axioms of set
theory.

1. Background and the result

Fix a set X and consider for all n ≥ 1 the set O(n) of n-ary operations
on X. If we take the union O =

⋃
n≥1 O(n) over these sets, we obtain the

set of all operations on X of finite arity. A clone is a subset of O which
contains all functions of the form πn

k (x1, . . . , xn) = xk (1 ≤ k ≤ n), called the
projections, and which is closed under composition of functions. With the
order of set-theoretical inclusion, the clones on X form a complete algebraic
lattice Cl(X). We wish to describe this lattice for infinite X, in which case
it has cardinality 22|X| .

A clone is called unary iff it contains only essentially unary functions,
i.e., functions which depend on only one variable. Unary clones correspond
in an obvious way to submonoids of the full transformation monoid O(1)

and we shall not distinguish between the two notions in the following. We
say that a unary clone C 6= O(1) is precomplete or maximal iff C together
with any unary function f ∈ O(1) \ C generates O(1), i.e. iff the smallest
clone containing C as well as f is O(1). In [Pin], the author determined
all precomplete submonoids of the full transformation monoid O(1) that
contain the permutations for all infinite X, which was a generalization from
the countable ([Gav65]). The number of such clones turned out to be rather
small compared with the size of the clone lattice: On an infinite set X of
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cardinality ℵα there exist 2|α|+5 precomplete unary clones, so in particular
there are only five precomplete unary clones on a countably infinite set X.

Theorem 1. Let X be an infinite set of cardinality κ. If κ is regular, then
the precomplete submonoids of O(1) that contain the permutations are exactly
the monoid A and the monoids Gξ and Mξ for ξ = 1 and ℵ0 ≤ ξ ≤ κ, ξ a
cardinal, where

• A = {f ∈ O(1) : f−1[{y}] is small for almost all y ∈ X}
• Gξ = {f ∈ O(1) : f is ξ-injective or not ξ-surjective}
• Mξ = {f ∈ O(1) : f is ξ-surjective or not ξ-injective}

If κ is singular, then the same is true with the monoid A replaced by
• A ′ = {f ∈ O(1) : ∃ξ < κ ( |f−1[{x}]| ≤ ξ for almost all x ∈ X ) }.

In the theorem, a set is small iff it has cardinality smaller than the cardi-
nality of X, a property holds for almost all y ∈ X iff it holds for all y ∈ X
except for a small set, a function f ∈ O(1) is ξ-surjective iff |X \ f [X]| < ξ,
and it is ξ-injective iff there is a set Y ⊆ X of cardinality smaller than ξ
such that the restriction of f to X \ Y is injective.

With this result, the question arose whether it was possible to describe
the whole interval [S ,O(1)] of the clone lattice, where S is the set of per-
mutations of X. We show that compared to the number of its dual atoms,
this interval is quite large. In particular, on a countably infinite set X it
equals the size of the whole clone lattice.

Theorem 2. Let X be an infinite set of cardinality κ = ℵα. Then there
exist 22λ

submonoids of O(1) which contain all permutations, where λ =
max{ |α|,ℵ0}. Moreover, if κ is regular, then |[S , G ]| = 22λ

for every pre-
complete monoid above S ; in fact, |[S ,D ]| = 22λ

, where D is the in-
tersection of the precomplete elements of [S , O(1)]. If κ is singular, then
|[S , G ]| = 22λ

for all precomplete monoids except A ′: If λ < κ, then
|[S , A ′]| = |[S ,D ]| = 22λ

, but if λ = κ, then |[S , A ′]| = |[S ,D ]| = 2(κ<κ)

(where κ<κ = sup{κξ : ξ < κ}).
1.1. Notation. For any set Y , we denote the power set of Y by P(Y ). The
smallest clone containing a set of functions F ⊆ O is denoted by 〈F 〉. If
f ∈ O(1), we write ker(f) ⊆ P(X) for the kernel of f .

2. The proof of Theorem 2

Definition 3. Set K = {ξ : ξ a cardinal and ξ ≤ κ}; then |K | = λ. Define
for every f ∈ O(1) a function

sf : K → K
ξ 7→ |{A ∈ ker(f) : |A| = ξ}|

In words, the function assigns to every ξ ≤ κ the number of equivalence
classes in the kernel of f which have cardinality ξ. We call sf the kernel
sequence of f .
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Lemma 4. If f, g ∈ O(1) are unary functions satisfying sf = sg and |X \
f [X]| = |X \ g[X]|, then there exist β, γ ∈ S such that f = β ◦ g ◦ γ.

Proof. The assumption sf = sg implies that there is γ ∈ S such that
ker(f) = ker(g ◦ γ). Obviously, |f [X]| = |g[X]| = |g ◦ γ[X]| as sf = sg.
Together with the fact that |X \ f [X]| = |X \ g[X]| this implies that we can
find β ∈ S such that f [X] = β ◦ g ◦γ[X], and since ker(f) = ker(g ◦γ) also
so that f = β ◦ g ◦ γ. ¤
Proposition 5. The number µ of submonoids of O(1) containing S is at
most 22λ

.

Proof. By the preceding lemma, the clone a function f ∈ O(1) generates
together with S is determined by sf and the cardinality of X \f [X]. There
exist at most λλ different kernel sequences and λ possibilities for the cardi-
nality of the complement of the range of a function in O(1). Thus, modulo
S there are only λλ · λ = λλ = 2λ different functions in O(1). Therefore,
µ ≤ 22λ

. ¤
We will now show the other inequality. Fix any sequence (ni)i∈ω of natural

numbers such that
∑

j<i nj < ni for all i ∈ ω. Set R = {ni}i∈ω ∪ {ξ ∈
K : ξ infinite successor}. Then |R| = |K | = λ. For all f ∈ O(1), write
s̃f = sf ¹R for the restriction of its kernel sequence to R.

Observe that for all ξ ∈ R we have that
∑

η<ξ,η∈R η < ξ: For ξ finite, this
is because we chose the finite elements of R that way, and if ξ is infinite,
then it is a successor cardinal so that the left side of the inequality is clearly
bounded by its predecessor.

We say that A ⊆ R is unbounded iff
∑

ξ∈A ξ = κ. Assign to every
unbounded A ⊆ R a function fA ∈ O(1) satisfying sfA

(ξ) = 1 whenever
ξ ∈ A, and sfA

(ξ) = 0 whenever ξ ∈ K \ A. The fact that A is unbounded
guarantees the existence of fA.

Lemma 6. If A ⊆ R is unbounded and g ∈ O(1), then s̃g◦fA
≤ s̃fA

.

Proof. Consider an arbitrary B ∈ ker(g ◦ fA) with |B| = ξ ∈ R. We claim
there exists C ⊆ B of cardinality ξ such that C ∈ ker(fA). For suppose
to the contrary this is not the case. Being an element of ker(g ◦ fA), B
is the union of sets in the kernel of fA: B =

⋃
i∈δ Bi, for Bi ∈ ker(fA)

and some ordinal δ. By our assumption, |Bi| < ξ for all i ∈ δ. Thus,
|B| = |⋃i<δ Bi| ≤

∑
D∈ker(fA),|D|<ξ |D| =

∑
η∈A,η<ξ η < ξ, contradiction.

So for all B ∈ ker(g ◦ fA) with |B| = ξ ∈ R we injectively find C ∈ ker(fA)
of the same cardinality, which proves the lemma. ¤
Lemma 7. Let A,A1, . . . , An ⊆ R be unbounded and such that A * Ai for
all 1 ≤ i ≤ n. Then fA /∈ 〈{fA1 , . . . , fAn} ∪S 〉.
Proof. Clearly, every unary t ∈ 〈{fA1 , . . . , fAn} ∪ S 〉 which is not a per-
mutation has a representation of the form t = g ◦ fAi ◦ β, where g ∈ O(1),
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β ∈ S and 1 ≤ i ≤ n. But then s̃t ≤ s̃fAi
by the preceding lemma, so that

s̃t 6= s̃fA
and therefore t 6= fA. ¤

It is a fact that if Y is any set, then there exists a family I ⊆ P(Y )
such that |I | = |P(Y )| = 2|Y | and such that the sets of I are pairwise
incomparable, i.e., A * B holds for all distinct A,B ∈ I . For example, it is
a well-known theorem of Hausdorff that there exist independent families of
subsets of Y of that size, where I ⊆ P(Y ) is called independent iff every
nontrivial Boolean combination of sets from I is nonempty, i.e., whenever
B1,B2 ⊆ I are finite, nonempty and disjoint, then⋂

A∈B1

A ∩
⋂

A∈B2

(Y \A) 6= ∅.

See the textbook [Jec02, Lemma 7.7] for a proof of this.
There is an independent family of unbounded subsets of R which has

cardinality 2λ: If I ⊆ P(R) is independent of size 2λ, then either I or
I ′ = {R \ A : A ∈ I } contains 2λ unbounded sets, the family of which is
independent.

Proposition 8. There is an order embedding from P(2λ) into [S , O(1)].
In particular, the number µ of submonoids of O(1) containing S is at least
22λ

.

Proof. Let I ⊆ P(R) be an independent family of unbounded subsets of R
with |I | = 2λ. Define for every B ⊆ I a monoid CB = 〈{fA : A ∈ B}∪S 〉.
Then for all B1, B2 ⊆ I we have that if B1 * B2, then CB1 * CB2 : Indeed,
by the preceding lemma fA ∈ CB1 \CB2 for any A ∈ B1\B2. Together with
the fact that larger subsets of I yield larger clones, this implies that the
mapping ϕ : P(I ) → [S , O(1)] assigning to every B ⊆ I the clone CB

is an order embedding. Hence, there exist |P(I )| = 22λ
distinct monoids

containing the permutations. ¤
This completes the proof of the first statement of Theorem 2.

Proposition 9. Let κ be regular and let D be the intersection of the pre-
complete submonoids of O(1) containing S . There is an order embedding of
P(2λ) into [S ,D ]. Hence, |[S , D ]| = 22λ

.

Proof. Since in the proof of Proposition 8 we considered only functions f ∈
O(1) with sf (κ) ≤ 1, all those functions were elements of A . Also, we did not
care about the size of the complement of the range of f ; if we assume it to be
of cardinality κ, then all functions of the construction are not κ-surjective
and therefore elements of Gξ, for all cardinals ξ = 1 and ℵ0 ≤ ξ ≤ κ. Since
for any unbounded A ⊆ R and any small Y ⊆ X there is ξ ∈ A with ξ > |Y |,
the fact that fA has a class of size ξ in its kernel yields that fA is not injective
on the complement of Y . Therefore, the fA used in the construction are not
κ-injective and hence are elements of Mξ, for all ξ = 1 and ℵ0 ≤ ξ ≤ κ.
This proves the proposition. ¤
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We now turn to the case when κ is singular. The argument of the pre-
ceding proposition yields

Proposition 10. Let κ be singular and let G 6= A ′ be a precomplete sub-
monoid of O(1) containing S . There is an order embedding of P(2λ) into
[S , G ]. In particular, |[S , G ]| = 22λ

.

Proposition 11. Let κ be singular such that λ < κ. Then |[S , A ′]| = 22λ
.

Proof. Since the functions used in our construction satisfy sf (ξ) ≤ 1 for all
ξ ∈ K , we have |f [X]| ≤ λ < κ, and hence |f−1[{x}]| = 0 for almost all
x ∈ X; therefore those functions are elements of A ′. Hence, |[S , A ′]| = 22λ

.
¤

Proposition 12. Let κ be singular such that λ = κ. Then |[S ,A ′]| =
2(κ<κ).

Proof. We first calculate the number of different kernel sequences of func-
tions in A ′. Let sf : K → K be such a sequence; then f ∈ A ′ iff there is
ξ < κ such that

∑
ξ≤η≤κ sf (η) = τ < κ. Fixing ξ and τ , we have κτ possibil-

ities for the part of sf between ξ and κ. Taking the sum over all τ < κ, we
obtain κ<κ possibilities for sf between ξ and κ. Since below ξ there are no
conditions on sf in order to make f an element of A ′, there are exactly κξ

possibilities for the restriction of sf to ξ, so that we have a total of κξ +κ<κ

kernel sequences of functions f with
∑

ξ≤η≤κ sf (η) < κ. Since ξ < κ can
be arbitrary, we take the sum over all ξ < κ and find that there are κ<κ

distinct kernel sequences of functions in A ′. Hence, |[S , A ′]| ≤ 2(κ<κ).
Claim. There exists a family I of pairwise incomparable small un-

bounded subsets of R which has cardinality κ<κ.
To prove this, we first observe that for all cf(κ) ≤ ξ < κ there exists a

family Iξ of pairwise incomparable unbounded subsets of R of cardinality
ξ such that |Iξ| = κξ (cf(κ) denotes the cofinality of κ). Indeed, write
R = R′ ∪ R′′, where R′ and R′′ are disjoint, and R′′ is unbounded and
of cardinality ξ. Now let I ′

ξ be a family of pairwise incomparable subsets
of R′ of cardinality ξ with |I ′

ξ | = κξ. To see that I ′
ξ exists, observe that

every function f ∈ κξ is a subset of ξ × κ, and that all those functions
are incomparable as subsets of ξ × κ. Thus a family of size κξ of pairwise
incomparable sets of size ξ exists on ξ × κ, and therefore also on R′ since
|R′| = |ξ × κ| = κ. Now we set Iξ = {A ∪ R′′ : A ∈ I ′

ξ} to obtain the
family Iξ having the desired properties. Finally to prove the claim, write R
as a disjoint union R =

⋃
cf(κ)≤ξ<κ Rξ of sets Rξ of cardinality κ (which also

implies that they are unbounded). Fix a family Iξ of pairwise incomparable
unbounded subsets of Rξ of cardinality ξ such that |Iξ| = κξ, for all ξ.
Then the family I =

⋃
cf(κ)≤ξ<κ Iξ consists of pairwise incomparable small

unbounded subsets of R and has cardinality κ<κ.
Having small range, the functions corresponding to the sets in I are all

members of A ′, so that we obtain 2(κ<κ) clones in the interval [S , A ′].
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¤
Proposition 13. Let κ be singular and let D be the intersection of the
precomplete submonoids of O(1) containing S . If λ < κ, then |[S ,D ]| =
22λ

. If λ = κ, then |[S ,D ]| = 2(κ<κ).

Proof. One only needs to combine the proofs of Propositions 9, 10, 11, and
12; we leave the details to the reader. ¤
Remark 14. If GCH holds, then 2(κ<κ) = 22κ

, so in this case we have
[S , D ] = 22λ

on all infinite X. However, for any singular κ it is is also
consistent that 2κ < 2(κ<κ) < 22κ

. Therefore, if κ is singular and λ = κ,
then the intervals [S , A ′] and [S ,D ] can be smaller than 22λ

. In particular
we have that whether or not the intervals [S , A ′] and, say, [S , M1] are of
equal cardinality depends on the set-theoretical universe.
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