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Abstract. We study locally closed transformation monoids which contain the automorphism
group of the random graph. We show that such a transformation monoid is locally generated by
the permutations in the monoid, or contains a constant operation, or contains an operation that
maps the random graph injectively to an induced subgraph which is a clique or an independent
set.

As a corollary, our result yields a new proof of Simon Thomas’ classification of the five
closed supergroups of the automorphism group of the random graph; our proof uses different
Ramsey-theoretic tools than the one given by Thomas, and is perhaps more straightforward.

Since the monoids under consideration are endomorphism monoids of relational structures
definable in the random graph, we are able to draw several model-theoretic corollaries: One
consequence of our result is that all structures with a first-order definition in the random graph
are model-complete. Moreover, we obtain a classification of these structures up to existential
interdefinability.

1. Introduction

The random graph (also called the Rado graph) is the graph G = (V ;E) defined uniquely up
to isomorphism by the property that for all finite disjoint subsets U,U ′ of the countably infinite
vertex set V there exists a vertex v ∈ V \ (U ∪ U ′) such that v is in G adjacent to all vertices
in U and to no vertex in U ′; we will refer to this property of the random graph as the extension
property. For the many remarkable properties of this graph and its automorphism group, and
various connections to many branches of mathematics, see e.g. [7, 8].

Simon Thomas has classified the five locally closed supergroups of the automorphism group of
G in [18]. In this paper we more generally investigate locally closed transformation monoids that
contain the automorphism group of G. We show that every such monoid is either a disguised group
in the sense that it is generated by the largest permutation group which it contains, or it contains
a constant operation, or an injective operation which either deletes all edges or all non-edges of
the random graph. As a by-product of our proof, we obtain a new proof of Thomas’ classification.

Not surprisingly, insights on the behavior of functions on G have consequences for model-
theoretic questions concerning the random graph. Every closed supergroup of the automorphism
group of G is the automorphism group of a relational structure definable in G; such structures
are called reducts of G. Moreover, two reducts Γ1, Γ2 have the same automorphism group iff
they are first-order interdefinable, i.e., iff every relation of Γ1 has a first-order definition in Γ2,
and vice-versa. Thus, Thomas’ theorem is the classification of the reducts of G up to first-order
interdefinability. By considering monoids of self-embeddings instead of automorphism groups, we
obtain a finer classification of these reducts, namely up to existential interdefinability, i.e., we do
not distinguish between two structures Γ1, Γ2 whenever every relation of Γ1 is definable in Γ2 by
an existential first-order formula, and vice versa.

Another consequence of our results is that all reducts Γ of the random graph are model-complete,
i.e., all embeddings between models of the first-order theory of Γ preserve all first-order formulas.
The analogous statement for the reducts of (Q;<), the dense linear order of the rationals, has
been observed in [3]. Model-completeness is a central concept in model theory; see e.g. [11]. For
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example, model-completeness plays an important role when establishing quantifier-elimination
results. Whether or not a structure is model-complete is usually not preserved by first-order
interdefinability. In this light, the result that all reducts of the random graph are model-complete
might be surprising.

The results presented are also relevant for the study of the constraint satisfaction problem for
structures with a first-order definition in the random graph. When Γ is a structure with a finite
relational signature τ , then the constraint satisfaction problem for Γ (CSP(Γ)) is the computational
problem of deciding whether a given primitive positive sentence over τ is true in Γ. A formula is
called primitive positive iff it is of the form ∃x1, . . . , xn.ψ1∧· · ·∧ψm where ψ1, . . . , ψm are atomic.
The complexity of CSP(Γ) does not change when Γ is expanded by finitely many relations with a
primitive positive definition in Γ. Even though expansions by relations with an existential positive
definition might increase the complexity of the constraint satisfaction problem, the classification
of the reducts of (Q;<) up to existential positive interdefinability was an important ingredient in
a recent complexity classification for the CSP of such reducts [3]. The results in this paper pave
the way for a similar classification for reducts of the random graph.

2. Results

We now present our main results, formulated in terms of transformation monoids and permuta-
tion groups; the proofs of these results will be of purely combinatorial nature. The model-theoretic
corollaries of the results presented here will be drawn in Section 3.

A monoid M of mappings from a set D to D is called (locally) closed iff the following holds:
whenever f : D → D is such that for every finite A ⊆ D there exists e ∈ M such that e(x) = f(x)
for all x ∈ A, then f is an element of M . Equivalently, the monoid is a closed set in the product
topology of DD, where D is taken to be discrete. For the purposes of this paper, we call the
smallest closed transformation monoid that contains a set of operations F from V to V and the
automorphism group Aut(G) of the random graph the monoid generated by F .

Similarly, a permutation group acting on D is called (locally) closed iff it is locally closed as a
monoid. As before, we call the smallest closed group containing a set of permutations F on V as
well as Aut(G) the group generated by F .

The random graph contains all countable graphs as induced subgraphs. In particular, it contains
an infinite complete subgraph, denoted by Kω. It is clear that all injective operations from V to
V whose image induces Kω in G locally generate the same monoid. Let eE be one such injective
operation whose image induces Kω in G. Similarly, G contains an infinite independent set, denoted
by Iω. Let eN be an injective operation from V → V whose image induces Iω in G.

Our main result is the following. It states that all closed monoids containing Aut(G) either
contain a quite primitive function, or are generated by their permutations. As it turns out, the
permutations in such a monoid form a closed group.

Theorem 1. For any closed monoid M containing Aut(G), one of the following cases applies.
(1) M contains a constant operation.
(2) M contains eE.
(3) M contains eN .
(4) M is generated by its permutations.

The last case splits into five sub-cases, corresponding to the five locally closed permutation
groups that contain Aut(G). These groups have already been exhibited by Thomas [18]. In our
proof of Theorem 1, we will be forced to re-derive this result. While our proof of that classification,
being the proof of a more general result, is longer than the one in [18], it might be more canonical
(in the sense of Definition 23). We now define the five groups.

It is clear that the complement graph of G is isomorphic to G. Note that any isomorphism
between G and its complement locally generates the same transformation monoid (group). Let −
be one such isomorphism. We write function applications of − without braces.

For any finite subset S of V , if we flip edges and non-edges between S and V \ S in G, then
the resulting graph is isomorphic to G (it is straightforward to verify the extension property). Let
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iS be such an isomorphism for each non-empty finite S. Every such operation generates the same
transformation monoid (group). We also write sw for i{0}, where 0 ∈ V is a fixed element for the
rest of the paper, and refer to this operation as the switch.

Theorem 2 (of [18]). Let G be a closed permutation group containing Aut(G). Then exactly one
out of the following five cases is true.

(1) G equals Aut(G).
(2) G is the group generated by −.
(3) G is the group generated by sw.
(4) G is the group generated by {−, sw}.
(5) G is the group of all permutations on V .

The arguments given in [18] use a Ramsey-theoretic result by Nešetřil [15], namely that the
class of all finite graphs excluding finite cliques of a fixed size forms a Ramsey class (in the
sense of [16]). We also use a Ramsey-theoretic result, shown by Rödl and Nešetřil [13, 14] (and
independently by [1]), which is different: we need the fact that finite ordered vertex-colored graphs
form a Ramsey class. We believe that our approach is canonical, and that the proof techniques
could very well be adapted to show similar classifications for supergroups of automorphism groups
of other infinite structures Γ which have the property that the class of all finite structures that
embed into Γ (possibly equipped with a linear order on the vertices) is a Ramsey class.

3. Model-theoretic corollaries

We now discuss the results of the preceding section in a model-theoretic setting and establish
some corollaries in this language.

One easily verifies that the endomorphism monoid End(∆) (automorphism group Aut(∆)) of
a structure ∆ with domain D is a closed monoid (group) on D, and that every closed monoid
(group) is of this form for an adequate structure ∆. Moreover, the automorphism group of a
reduct Γ of a structure ∆, i.e., of a structure Γ which is first-order definable in ∆, clearly contains
Aut(∆). The following is Theorem 1, restated in terms of structures.

Theorem 3. Let Γ be first-order definable in the random graph. Then one of the following cases
applies.

(1) Γ has a constant endomorphism.
(2) Γ has the endomorphism eE.
(3) Γ has the endomorphism eN .
(4) The endomorphisms of Γ are locally generated by the automorphisms of Γ.

For automorphism groups of reducts of the random graph, we have even more. It is well-
known that the random graph is (ultra-) homogeneous, i.e., every isomorphism between two finite
induced substructures of G can be extended to an automorphism of G. For structures with a finite
signature, homogeneity implies ω-categoricity : all countable models of the first-order theory of G
are isomorphic. Reducts of ω-categorical structures are ω-categorical.

Now, the theorem of Engeler, Ryll-Nardzewski, and Svenonius (see e.g. [9, 11]) states that a
relation R is first-order definable in an ω-categorical structure ∆ if and only if R is preserved by
all automorphisms of ∆. As a consequence, the reducts of an ω-categorical structure ∆ are, up
to first-order interdefinability, in one-to-one correspondence with the locally closed permutation
groups containing Aut(∆). To illustrate this, we restate Theorem 2 by means of this connection.

On the random graph, let R(k) be the k-ary relation that holds on x1, . . . , xk ∈ V if x1, . . . , xk

are pairwise distinct, and the number of edges between these k vertices is odd. Note that R(4) is
preserved by −, R(3) is preserved by sw , and that R(5) is preserved by − and by sw , but not by
all permutations of V .

Theorem 4 (of [18]). Let Γ be a structure with a first-order definition in the random graph (V ;E).
Then exactly one out of the following five cases is true.

(1) Γ is first-order interdefinable with (V ; E).
(2) Γ is first-order interdefinable with (V ; R(4)).
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(3) Γ is first-order interdefinable with (V ; R(3)).
(4) Γ is first-order interdefinable with (V ; R(3), R(4)).
(5) Γ is first-order interdefinable with (V ; =).

For any reduct Γ, a case of Theorem 4 applies iff the case with the same number applies for
Aut(Γ) in Theorem 2. We will not prove this relational description in this paper; however, given
Theorem 2 and the discussion above, verifying the equivalence is merely an exercise.

In the same way as automorphisms can be used to characterize first-order definability, self-
embeddings can be used to characterize existential definability, and endomorphisms can be used
to characterize existential positive definability in ω-categorical structures. This is the content of
the following theorem.

Theorem 5. A relation R has an existential positive (existential) definition in an ω-categorical
structure Γ if and only if R is preserved by the endomorphisms (self-embeddings) of Γ.

Proof. It is easy to verify that existential positive formulas are preserved by endomorphisms, and
existential formulas are preserved by self-embeddings of Γ.

For the other direction, note that the endomorphisms and self-embeddings of Γ contain the
automorphisms of Γ, and hence the theorem of Ryll-Nardzewski shows that R has a first-order
definition in Γ; let φ be a formula defining R. Suppose for contradiction that R is a relation
preserved by all endomorphisms of Γ but has no existential positive definition in Γ. We use the
well-known homomorphism preservation theorem in model theory (see e.g. [9, 11]), which states
that a first-order formula φ is equivalent to an existential positive formula modulo a first-order
theory T if and only if φ is preserved by all homomorphisms between models of T . Since by
assumption φ is not equivalent to an existential positive formula in Γ, there are models Γ1 and
Γ2 of the first-order theory of Γ and a homomorphism h from Γ1 to Γ2 that violates φ. By the
Theorem of Löwenheim-Skolem the first-order theory of the two-sorted structure (Γ1, Γ2, h) has a
countable model (Γ′1, Γ

′
2, h

′). Since both Γ′1 and Γ′2 must be countably infinite, and because Γ is
ω-categorical, we have that Γ′1 and Γ′2 are isomorphic to Γ, and h′ can be seen as an endomorphism
of Γ that violates φ; a contradiction.

The argument for existential definitions and self-embeddings is similar, but we use the preserva-
tion theorem of ÃLos-Tarski (see e.g. [9,11]) instead of the homomorphism preservation theorem. ¤

The following proposition, which links the operational generating process with preservation of
relations of structures, is easy to prove; see e.g. [17].

Proposition 6. Let F,H be sets of mappings from V to V . Then the monoid generated by F
contains H iff every relation definable in G and preserved by F is also preserved by H.

Using Theorem 5, we obtain an interesting and perhaps surprising consequence of our main
result. A theory T is called model-complete if every embedding between models of T is elementary,
i.e., preserves all first-order formulas. It is well-known that a theory T is model-complete if and
only if every first-order formula is modulo T equivalent to an existential formula. A structure
is said to be model-complete iff its first-order theory is model-complete. From the definition of
model-completeness and ω-categoricity it is easy to see that an ω-categorical structure Γ is model-
complete if all embeddings of Γ into itself preserve all first-order formulas. It has been observed
in [3] (based on a proof of [12] of a result by Cameron [6]) that all reducts of the linear order of
the rationals (Q;<) are model-complete. We now see that the same is true for the random graph.

Corollary 7. Every structure Γ with a first-order definition in the random graph is model-
complete.

Proof. An ω-categorical structure Γ is model-complete if and only if all embeddings of Γ into itself
are locally generated by the automorphisms of Γ. To see this, first assume that the automorphisms
of Γ locally generate the self-embeddings of Γ, and let φ be a first-order formula. By the equivalent
characterization of model-completeness mentioned above it suffices to show that φ is equivalent
to an existential formula. Since φ is preserved by automorphisms of Γ, it is by Proposition 6 also
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preserved by self-embeddings of Γ. Then Theorem 5 implies that φ is equivalent to an existential
formula. Conversely, suppose that all first-order formulas are equivalent to an existential formula
in Γ. Since existential formulas are preserved by self-embeddings of Γ, also the first-order formulas
are preserved by self-embeddings of Γ. By Proposition 6, the self-embeddings are locally generated
by the automorphisms of Γ.

We thus show that the embeddings of Γ are generated by its automorphisms. Note that when
we expand Γ by 6= and by ¬R for every relation in Γ, then the resulting structure has the same set
of self-embeddings. Hence, we assume in the following that Γ contains 6= and ¬R for all relations
R, and hence that all endomorphisms of Γ are embeddings. We apply Theorem 1. If Case (4)
of the theorem holds, we are done. Note that Γ cannot have a constant endomorphism since Γ
contains 6=. So suppose that Γ is preserved by eN . The substructure of Γ induced by eN (V )
has a first-order definition in (eN (V );=); but then, since eN is an embedding, Γ has a first-order
definition in (V ; =). The set of self-embeddings of Γ is then the set of all injective mappings from
V to V . It follows that Γ is model-complete, because every injective mapping from V to V is
locally generated by the permutations of V (i.e., the automorphisms of Γ). The argument for eE

is analogous. ¤

In ω-categorical structures, homogeneity is equivalent to having quantifier-elimination: every
first-order formula is in G equivalent to a quantifier-free first-order formula; hence, the random
graph has quantifier elimination. The same is not true for its reducts. For example, any two
2-element substructures of the structure

Γ = (V ; {(x, y, z) | E(x, y) ∧ ¬E(y, z)})

are isomorphic. But since there is a first-order definition of G in Γ, an isomorphism between a
2-element substructure with an edge and a 2-element substructure without an edge cannot be
extended to an automorphism of Γ. However, our results imply that a structure Γ with a first-
order definition in the random graph is homogeneous when Γ is expanded by all relations with an
existential definition in Γ.

Corollary 8. Every structure Γ with a first-order definition in the random graph has quantifier-
elimination if it is expanded by all relations with an existential definition in Γ.

Proof. This follows directly from the fact mentioned above that in model-complete structures
first-order formulas are equivalent to existential formulas (see e.g. [11]). ¤

As another application of our main theorem, we refine Theorem 4 by giving a finer (at least in
theory) classification of the reducts of the random graph.

Corollary 9. Up to existential interdefinability, there are exactly five different structures with a
first-order definition in the random graph.

Proof. In the same way as in the proof of Corollary 9, we can use Theorem 1 to show that either
the self-embeddings of a reduct Γ are generated by the automorphisms, and Γ is existentially
interdefinable with one of the structures described in Theorem 2; or otherwise Γ has an existential
definition in (V ; =), which is again one of the five cases from Theorem 2. ¤

The endomorphism monoid End(G) of the random graph has been studied in [4, 5, 10]. By
Theorem 5, studying closed transformation monoids containing End(G) is equivalent to studying
structures with a first-order definition in G up to existential positive interdefinability. A complete
classification of all locally closed transformation monoids that contain all permutations of V , and
hence of the reducts of (V ; =) up to existential positive interdefinability, has been given in [2];
there is only a countable number of such monoids. The results of the present paper are far
from providing a full classification of the locally closed transformation monoids that contain the
automorphisms of the random graph — this is left for future investigation.



6 MANUEL BODIRSKY AND MICHAEL PINSKER

4. Additional notions and notation

We will write E(x, y) or (x, y) ∈ E to express that two vertices x, y ∈ V are adjacent in the
random graph. The binary relation N(x, y) is defined by ¬E(x, y) ∧ x 6= y. Pairs {x, y} with
N(x, y) are referred to as non-edges.

Often when we have a graph P = (P ;D), and S ⊆ P , then for notational simplicity we write
(S; D) for the subgraph of P induced by S, i.e., we ignore the fact that D would have to be
restricted to S2.

We say that an operation e : V → V (a set F of operations from V to V ) is generated by a set
of operations H from V to V iff it is contained in the monoid generated by H.

5. Ramsey-theoretic Preliminaries

We prepare the proof of our main theorem by recalling some Ramsey-type theorems and ex-
tending these theorems for our purposes. The notions and results of this section are of an abstract
Ramsey-theoretic nature and do not refer to concrete structures such as the random graph.

We start by recalling a theorem on ordered structures due to Nešetřil and Rödl [13] which we
will make heavy use of. Let τ = τ ′ ∪ {≺} be a relational signature, and let C(τ) be the class of all
finite τ -structures S where ≺ denotes a linear order on the domain of S . For τ -structures A , B,
let

(
A
B

)
be the set of all substructures of A that are isomorphic to B (we also refer to members

of
(
A
B

)
as copies of B in A ). For a finite number k ≥ 1, a k-coloring of the copies of B in A is

simply a mapping χ from
(
A
B

)
into a set of size k.

Definition 10. For S , H ,P ∈ C(τ) and k ≥ 1, we write S → (H )P
k iff for every k-coloring χ

of the copies of P in S there exists a copy H ′ of H in S such that all copies of P in H ′ have
the same color (under χ).

Theorem 11 (of [1,13,14]). The class C(τ) of all finite relational ordered τ -structures is a Ramsey
class, i.e., for all H ,P ∈ C(τ) and k ≥ 1 there exists S ∈ C(τ) such that S → (H )P

k .

Corollary 12. For every finite graph H and for all colorings χE and χN of the edges and the
non-edges of G, respectively, by finitely many colors, there exists an isomorphic copy of H in G
which both colorings are constant on.

Proof. Let k be the number of colors used altogether by χE and χN . Let ≺ be any total order
on the domain of H , and denote the structure obtained from H by adding the order ≺ to the
signature by H̄ . Consider the complete graph K2 on two vertices, and order its two vertices
anyhow to arrive at a structure K̄2. Then the coloring χE of the edges of H can be viewed as
a coloring of the copies of K̄2 in H̄ . Let S̄ with S̄ → (H̄ )K̄2

k be provided by the preceding
theorem, and let S be S̄ without the order. Then S is a graph with the property that whenever
we color its edges with k colors, then there is a copy of H in S all of whose edges have the same
color. Now we repeat the argument for the non-edges, starting from S instead of H . We then
arrive at a graph T with the property that whenever we color its edges and non-edges by k colors,
then there is a copy H ′ of H in T such that all edges of H ′ have the same color, and such that
non-edges of H ′ have the same color. T has a copy in G, proving the claim. ¤

We will not only need to color edges of graphs, but also of graphs equipped with additional
structure.

Definition 13. An n-partitioned graph is a structure U = (U ; F,U1, . . . , Un), where (U ;F ) is a
graph and each Ui is a subset of U such that the Ui form a partition of U .

Definition 14. Let U = (U ; F ) be a graph, and let S1, S2 be disjoint subsets of U . Let χ be
a coloring of the two-element subsets of U . We say that χ is canonical on S1 iff the color of a
two-element subset of S1 depends only on whether this set is an edge or a non-edge. Similarly, we
say that χ is canonical between S1 and S2 iff the color of every pair {s1, s2}, where s1 ∈ S1 and
s2 ∈ S2, depends only on whether or not this pair is an edge.



ALL REDUCTS OF THE RANDOM GRAPH ARE MODEL-COMPLETE 7

Definition 15. Let U = (U ;F, U1, . . . , Un) be an n-partitioned graph. We say that a coloring of
the two-element subsets of U is canonical on U iff it is canonical on all Ui and between all distinct
Ui, Uj .

Lemma 16 (The n-partitioned graph Ramsey lemma). Let n, k ≥ 1. For any finite n-partitioned
graph U = (U ;F,U1, . . . , Un) there exists a finite n-partitioned graph Q = (Q; D,Q1, . . . , Qn)
with the property that for all colorings of the two-element subsets of Q with k colors, there exists
a copy of U in Q on which the coloring is canonical.

Proof. We show the lemma for n = 2; the generalization to larger n is straightforward. For n = 2,
we apply Theorem 11 six times: Once for the edges in U1, once for the edges in U2, once for the
edges between U1 and U2, and then the same for all three kinds of non-edges.

In general, we would have to apply the theorem 2 (n +
(
n
2

)
) times: Once for the edges of

each part Ui, once for the edges between any two distinct parts Ui, Uj , and then the same for all
non-edges on and between parts.

So assume n = 2. We exhibit the idea in detail for the edges between U1 and U2. Let ≺ be
any total order on U with the property that u1 ≺ u2 for all u1 ∈ U1, u2 ∈ U2. Consider the
2-partitioned graph L 1 = ({a, b}; {(a, b), (b, a)}, {a}, {b}) and order its vertices by setting a ≺ b;
so L 1 consists of two adjacent vertices which are ordered somehow, and which lie in different
parts. By Theorem 11, there exists an ordered partitioned graph Q1 = (Q1;D1, Q1

1, Q
1
2,≺) such

that Q1 → (U )L 1

k .
Now, if we change the order on Q1 in such a way that r ≺ s for all r ∈ Q1

1 and all s ∈ Q1
2 and

such that the order within the parts Q1
1, Q

1
2 remains unaltered, then the statement Q1 → (U )L 1

k

still holds: For, given a coloring of the copies of L 1 with respect to the new ordering, we obtain
a coloring of (possibly fewer) copies of L 1 with respect to the old ordering. There, we obtain a
copy U ′ of U such that all copies of L 1 in U ′ have the same color. But in this copy, by the
choice of the order on U , we have that r ≺ s for all r ∈ U ′

1 and all s ∈ U ′
2. Therefore, this copy is

also a substructure of Q1 with respect to the new ordering.
Since we can change the ordering on Q1 in the way described above, the colorings of the copies

of L 1 are just colorings of those pairs {r, s}, with r ∈ Q1
1 and s ∈ Q1

2, which are edges.
Now we repeat the process with the structure L 2 = ({a, b}; {(a, b), (b, a)}, {a, b}, ∅), ordered

again by setting a ≺ b, starting with Q1. We then obtain a structure Q2; this step takes care of
the edges which lie within U1. After that we proceed with L 3 = ({a, b}; {(a, b), (b, a)}, ∅, {a, b}),
thereby taking care of the edges within U2. We then apply Theorem 11 three more times with the
structures L 4 = ({a, b}; ∅, {a}, {b}), L 5 = ({a, b}; ∅, {a, b}, ∅), and L 6 = ({a, b}; ∅, ∅, {a, b}), in
order to ensure homogeneous non-edges. ¤

The preceding lemma on partitioned graphs was an auxiliary tool to cope with graphs which
have some distinguished vertices, as defined in the following.

Definition 17. An n-constant graph is a structure U = (U ;F, u1, . . . , un), where U = (U ; F ) is
a graph, and ui ∈ U are distinct.

Observe that n-constant graphs are no relational structures; therefore, in order to apply The-
orem 11, we have to make them relational: To every n-constant graph U = (U ; F, u1, . . . , un) we
can assign an n + 2n-partitioned graph Ũ = (U ;F, {u1}, . . . , {un}, U1, . . . , U2n) in which the ui

belong to singleton sets, and in which for every possible relative position (edge or non-edge) to
the ui we have a set Uj of all elements in U \ {u1, . . . , un} having this position. (In the language
of model theory, every of the n + 2n sets corresponds to a maximal quantifier-free 1-type over the
structure U .) We call the parts Ui the proper parts of Ũ .

Definition 18. Let U = (U ; F, u1, . . . , un) be an n-constant graph. We say that a coloring of
the two-element subsets of U is canonical on U iff it is canonical on the corresponding n + 2n-
partitioned graph.

We now arrive at the goal of this section, namely the following lemma, which we are going to
apply to mappings on the random graph numerous times in the sections to come.
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Lemma 19 (The n-constant graph Ramsey lemma). Let n, k ≥ 1. For any finite n-constant
graph U = (U ; F, u1, . . . , un) there exists a finite n-constant graph Q = (Q; D, q1, . . . , qn) with the
property that for all colorings of the two-element subsets of Q with k colors, there exists a copy of
U in Q on which the coloring is canonical.

Proof. Let Ũ := (U ; F, {u1}, . . . , {un}, U1, . . . , U2n) be the partitioned graph associated with U .
We would like to use the partitioned graph Ramsey lemma (Lemma 16) in order to obtain Q; but
we want the singleton sets {ui} of the partition to remain singletons, which is not guaranteed by
that lemma.

So consider the 2n-partitioned graph R := (U \ {u1, . . . , un}; F, U1, . . . , U2n), and apply the
partitioned graph Ramsey lemma to this graph to obtain a partitioned graph R0.

Equip R0 with any linear order. Now consider the ordered 2n-partitioned graph L 1 which has
just one vertex, and whose first part contains this single vertex. Apply Theorem 11 in order to
obtain an ordered partitioned graph R1 such that R1 → (R0)L 1

kn .
Next, consider the ordered 2n-partitioned graph L 2 which has just one vertex, and whose second

part contains this single vertex. Apply Theorem 11 in order to obtain an ordered partitioned graph
R2 such that R2 → (R1)L 2

kn .
Repeat this procedure with the ordered 2n-partitioned graphs L 3, . . . , L 2n

; L i has its single
vertex in its i-th part. We end up with an ordered partitioned graph R2n

. We now forget its
order and denote the resulting structure by T = (T ; C, T1, . . . , T2n).

T has the following property: Whenever we color its vertices with kn colors, then we find a
copy of R0 in T such that the coloring is constant on each part of this copy. Hence, it has the
property that if we color its two-element subsets and its vertices with k and kn colors, respectively,
then we find in it a copy of R on which the first coloring is canonical, and such that the color of
the vertices depends only on the part the vertex lies in.

Now consider the structure S := (T ∪ {u1, . . . , un}; B, {u1}, . . . , {un}, T1, . . . , T2n), where B
consists of the edges of T , plus edges connecting the ui with the vertices of some parts Ti,
depending on whether ui was in U connected to the vertices in Ui or not. Clearly, S is the
partitioned graph of the n-constant graph Q := (T ∪ {u1, . . . , un}; B, u1, . . . , un). We claim that
Q has the property we want to prove. Assume that we color the two-element subsets of T ∪
{u1, . . . , un} with k colors. We must find a copy of U in Q on which the coloring is canonical.
Divide the coloring into two colorings, namely the coloring restricted to two-element subsets of
T , and the coloring of two-element subsets which contain at least one element ui outside T . The
color of the sets {ui, uj} completely outside T is irrelevant for what we want to prove, so forget
about these.

Now the coloring of those sets which have exactly one element outside T can be encoded in
a coloring of the vertices of T : Each vertex is given one of kn colors, depending on the colors
of its edges leading to u1, . . . , un. So we have encoded the original coloring into a coloring of
two-elements subsets of T and a coloring of the vertices of T . With our observation above, this
proves the lemma. ¤

6. Finding structure in mappings on the random graph

In this section we show how to use the Ramsey-theoretic results from the last section in our
context. To warm up, we prove a simple observation (Proposition 22) applying Corollary 12. The
proposition states that any mapping on the random graph behaves quite simple on arbitrarily
large finite subgraphs.

Definition 20. Let e, f : V → V . We say that e behaves as f on F ⊆ V iff there is an
automorphism α of G such that f(x) = α(e(x)) for all x ∈ F . We say that e interpolates f modulo
automorphisms iff for every finite F ⊆ V there is an automorphism β of G such that e(β(x))
behaves as f on F ; so this is the case iff there exist automorphisms α, β such that α(e(β(x)) = f(x)
for all x ∈ F .

Note that if e interpolates f modulo automorphisms, then it also generates f . We now want to
make precise what it means that arbitrarily large structures have a certain property.
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Definition 21. Let τ be any signature and let C(τ) be a class of finite τ -structures closed under
substructures and with the property that for any two structures in C(τ) there exists a structure in
C (τ) containing both structures. We order C(τ) by the embedding relation ⊆. Let P (w) be any
property. We say that P holds for arbitrarily large elements of C(τ) iff for any F ∈ C(τ) there
exists H ∈ C(τ) such that F ⊆ H and P (H ) holds. We say that P holds for all sufficiently
large elements of C(τ) iff there is an element F of C(τ) such that P holds for H whenever F
embeds into H .

Our properties P (w) will be such that if P (H ) holds, then P also holds for all substructures
of H . The definition then says that P holds for arbitrarily large elements of C(τ) iff for any
F ∈ C(τ) there is F ′ ∈ C(τ) isomorphic to F such that P (F ′) holds.

Observe also that if arbitrarily large structures in C(τ) have one of finitely many properties,
then one property holds for arbitrarily large elements of C(τ).

Proposition 22. Let e : V → V be a mapping on the random graph. Then e interpolates either
the identity, eE, eN , a constant function, or − modulo automorphisms.

Proof. We show that arbitrarily large finite subgraphs of G have the property that e behaves on
them like one of the operations of the proposition. Since there are finitely many operations to
choose from, e then behaves like one fixed operation p from the list on arbitrarily large finite
subgraphs of the random graph. By the homogeneity of the random graph, we can freely move
finite graphs around by automorphisms, proving that e interpolates p.

So let F be any finite graph; we have to find a copy F ′ of F in G such that e behaves like
one of the mentioned operations on this copy.

We color all pairs {x, y} of distinct vertices of G

• by 1 if e(x) = e(y),
• by 2 if E(e(x), e(y)),
• by 3 if N(e(x), e(y)).

By Corollary 12 there exists a copy F ′ of F in G such that all edges and all non-edges of F ′

have the same color χE and χN , respectively. If (χE , χN ) = (1, 1), then e behaves like the constant
function on F ′. If (χE , χN ) = (2, 3), then it behaves like the identity, and if (χE , χN ) = (3, 2),
then e behaves like −. If (χE , χN ) = (2, 2) or (χE , χN ) = (3, 3), then e behaves like eE or eN ,
respectively. Finally, it is easy to see that (χE , χN ) = (1, q) or (χE , χN ) = (q, 1), where q ∈ {2, 3},
is impossible if F contains the two three-element graphs with one and two edges, respectively.

¤
Definition 23. Let U = (U ; F ) be a graph, and let f : U → U . Let S1, S2 be disjoint subsets of
U . We say that f is canonical on S1 iff it behaves the same way on all edges and on all non-edges,
respectively: This is to say that if f collapses one edge in S1, then it collapses all edges; if it makes
an edge a non-edge, then it does so for all edges; etc. Similarly, we say that f is canonical between
S1 and S2 iff the same holds for all edges and non-edges between S1 and S2.

We will often view U as a subgraph of the random graph, and f will be injective. In this
situation, f is canonical on S1 and between S1, S2 iff it behaves like the identity, −, eE , or eN on
S1 and between S1, S2, respectively. Observe that what we really proved in Proposition 22 is that
any e : V → V is canonical on arbitrarily large subgraphs of the random graph.

Definition 24. Let U = (U ;F,U1, . . . , Un) be a partitioned graph, and let f : U → U . We
say that f is canonical on U iff it is canonical on all Ui and between all distinct Ui, Uj . If
U = (U ;F, u1, . . . , un) is an n-constant graph, and f : U → U , then f is canonical on U iff it is
canonical on the corresponding n + 2n-partitioned graph.

Definition 25. We call a countable structure ℵ0-universal iff it embeds all finite structures of
the same signature.

Lemma 26 (The n-partite graph interpolation lemma). Let U = (U ;C,U1, . . . , Un) be an ℵ0-
universal partitioned graph, and let f : U → U . Then every finite partitioned graph has a copy in
U on which f is canonical.
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Proof. This is immediate from the n-partitioned graph Ramsey lemma (Lemma 16): Just like in
the proof of Proposition 22, we color the edges and non-edges of U according to what f does to
them. ¤

Lemma 27 (The n-constant graph interpolation lemma). Let U = (U ;C, u1, . . . , un) be an ℵ0-
universal n-constant graph, and let f : U → U . Then every finite n-constant graph has a copy in
U on which f is canonical.

Proof. This is immediate from the n-constant graph Ramsey lemma (Lemma 19). ¤

7. Proof of the Main theorem

We will apply Lemma 27 to prove

Lemma 28. Let e : V → V be so that it preserves N but not E. Then e generates eN .

Proof. We prove that for every finite subset F of V , e produces an operation which behaves like
eN on F . We first claim that there are adjacent vertices a, b ∈ V such that N(e(a), e(b)). Since e
does not preserve E, there exist u, v with (u, v) ∈ E such that (e(u), e(v)) /∈ E. If N(e(u), e(v)),
then we are done. If e(u) = e(v), then choose w such that E(w, u) and N(w, v). We have
(e(w), e(u)) = (e(w), e(v)) ∈ N , so u,w prove the claim.

Now, U := (V ; E, a, b) is an ℵ0-universal 2-constant graph. Therefore, by Lemma 27, e is
canonical on arbitrarily large substructures of U . Since e preserves N , it is easy to see that if e
is canonical on a 2-constant graph which is large enough, then e must be injective. (For example,
if e is canonical on a graph which contains the three-element graph with two edges, then e cannot
collapse any edges of that graph.) Hence, e is canonical and injective on arbitrarily large 2-constant
subgraphs of U . Since e preserves N , we have that for arbitrarily large substructures of U , it
behaves like the identity or like eN on and between the parts of these structures; in particular, it
does not add any edges. Hence, for any finite 2-constant graph, we can delete the edge between
the two constants without adding any other edges. But that means that starting from any finite
graph, we can delete all edges by repeating this process, choosing any edge we want to get rid of
in each step. This proves the lemma. ¤

The following is just the dual statement.

Corollary 29. Let e : V → V be so that it preserves E but not N . Then e generates eE.

Lemma 30. Let e : V → V be so that it preserves neither E nor N . If e is not injective, then e
generates a constant operation.

Proof. We must show that for any finite subset F of V , e generates an operation which is constant
on F . Using the fact that e preserves neither E nor N , it is easy to check that e generates
operations g, h which collapse an edge and a non-edge, respectively.

Having this, once proceeds inductively to collapse all the vertices of F , shifting F around with
automorphisms accordingly and applying g and h. After at most |F | steps, the whole of F is
collapsed to a single vertex. ¤

The following theorem states that there exist five functions on the random graph which are
minimal in the sense that every function which is not an automorphism of G generates one of
these five functions.

Theorem 31. Let Γ be first-order definable in the random graph. Then one of the following cases
applies.

(1) Γ has a constant endomorphism.
(2) Γ has eE as an endomorphism.
(3) Γ has eN as an endomorphism.
(4) Γ has − as an automorphism.
(5) Γ has sw as an automorphism.
(6) All endomorphisms of Γ are locally generated by the automorphisms of the random graph.
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Proof. If Γ has an endomorphism e which preserves E but not N or N but not E, then we can
refer to Lemma 28 and Corollary 29. If all of its endomorphisms preserve both N and E, then
they are all generated by the automorphisms of G. We thus assume henceforth that Γ has an
endomorphism e which violates both E and N .

If e is not injective, then it generates a constant operation, by Lemma 30. So suppose that e is
injective. Fix distinct x, y such that E(x, y) and N(e(x), e(y)).

By Proposition 22, e is canonical on arbitrarily large finite subgraphs of G. If e interpolates −,
eE , or eN modulo automorphisms, then we are done. So assume this is not the case, i.e., there is
a finite graph F0 with the property that on all copies of F0 in G, e does not behave like any of
these operations. Observe that e then behaves like the identity on arbitrarily large subgraphs of
G. Moreover, this assumption implies that if only a finite subgraph F of G is sufficiently large
(i.e., if it embeds F0), and e is canonical on F , then e behaves like the identity on F .

We now make a series of observations which rule out bad behavior of e between subsets of
the random graph, and which follow from our assumptions of the preceding paragraph; the easily
verifiable details are left to the reader.

• If e behaves like − between the parts of arbitrarily large finite 2-partitioned subgraphs of
G, then it generates sw .

• If e behaves like eN between the parts of arbitrarily large finite 2-partitioned subgraphs
of G, then it generates eN .

• If e behaves like eE between the parts of arbitrarily large finite 2-partitioned subgraphs of
G, then it generates eE .

We assume therefore that for sufficiently large finite 2-partitioned subgraphs of G, if e is canon-
ical on such a graph, then e behaves like the identity on and between the parts.

Now observe that Q := (V ;E, x, y) is an ℵ0-universal 2-constant graph. Let F = (F ; D, f1, f2)
be any finite 2-constant graph. By the n-constant interpolation lemma (Lemma 27), there is a copy
F ′ of F in Q on which e is canonical. By our assumption above, if only F is large enough, then
being canonical on a proper part F ′i of the 6-partitioned graph F̃ ′ = (F ′; E, {x}, {y}, F ′1, . . . , F ′4)
corresponding to F ′ means behaving like the identity thereon, and being canonical between proper
parts means behaving like the identity between these parts. Therefore, all 2-constant graphs F
have a a copy F ′ = (F ′;E, x, y) in Q such that e behaves like the identity on and between all of
the parts F ′i , F

′
j of the corresponding partitioned graph F̃ ′ = (F ′; E, {x}, {y}, F ′1, . . . , F ′4).

Of a two-constant graph F , consider the reduct H = (F ;D, f1). This reduct has a copy H ′

in Qx = (V ;E, x) on which e is canonical. The corresponding partitioned graph has two parts
H ′

1, H ′
2, and x is connected to, say, all vertices in H ′

1 and to none in H ′
2. Since e is canonical on

H ′, either all edges leading to H ′
1 are kept or deleted. Similarly with the non-edges between x

and H ′
2. If all edges are deleted and all non-edges kept for arbitrarily large H , then e generates

eN . If all edges are deleted and all non-edges edged for arbitrarily large H , then e interpolates
sw modulo automorphisms. If all edges are kept and all non-edges edged for arbitrarily large H ,
then e generates eE . So we assume that if only H is large enough, then all edges and non-edges
are kept by e on those copies of H on which e is canonical.

We use the same argument with the reduct (F ; D, f2) and Qy = (V ; E, y), and arrive at the
conclusion that if the two-constant graph F is large enough, then on every copy of F in Q which
e is canonical on, the edges and non-edges leading from x and y to the other vertices of the copy
are kept.

Combining this with what we have established before, we conclude that if only F is large
enough, and F ′ is a copy of F in Q which e is canonical on, then e behaves like the identity on
F ′ except between x and y, where it deletes the edge. Hence, for any finite F we can find a copy in
Q on which e behaves that way. But this implies that starting from any finite graph S := (F ; D),
we can pick any edge in S , say between vertices f1, f2, and then find a copy of F := (F ; D, f1, f2)
in Q such that e deletes exactly that edge from the copy whithout changing the rest. Hence, by
shifting finite graphs around with automorphisms, we can delete a single edge from an arbitrary
finite subgraph of G without changing the rest of the graph. Applying this successively, we can
remove all edges from arbitrary finite graphs, proving that e generates eN . ¤
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Proving Theorem 1 now amounts to showing that if cases (1),(2),(3), and (6) of Theorem 31 do
not apply for a structure Γ, and hence if (4) or (5) of that theorem hold, then its endomorphisms
are generated by its automorphisms. This will be accomplished in the three propositions to come.

Proposition 32. Let Γ be first-order definable in the random graph, and suppose Γ is preserved by
− but not by eN , eE, or a constant operation. Then the endomorphisms of Γ are locally generated
by {−} ∪Aut(G), or Γ is preserved by sw.

Proof. Suppose the endomorphisms of Γ are not generated by {−} ∪ Aut(G). Then, by Proposi-
tion 6, there is a relation R invariant under {−}∪Aut(G) and an endomorphism e of Γ which vio-
lates R; that is, there exists a tuple a := (a1, . . . , an) ∈ R such that e(a) = (e(a1), . . . , e(an)) /∈ R.

Since R is definable in the random graph, e violates either an edge or a non-edge. Hence, as in
the proof of Theorem 31, the assumption that e does not generate eN , eE , or a constant operation
implies that e is injective.

Let F = (F ; D, f1, . . . , fn) be any finite n-constant graph. By the n-constant interpola-
tion lemma (Lemma 27), there is a copy F ′ of F in the ℵ0-universal n-constant graph Q :=
(V ; E, a1, . . . , an) such that e is canonical on this copy.

We now make a series of observations on the behavior of e on and between subsets of V where
it is canonical.

• Since by assumption, e does not interpolate eE , eN , or a constant operation modulo
automorphisms, it behaves like − or the identity on sufficiently large finite subgraphs of
G where it is canonical.

• Suppose that for arbitrarily large finite 2-partitioned subgraphs of G, e behaves like the
identity on the parts and like − between the parts. Then e generates sw .

• Suppose that for arbitrarily large finite 2-partitioned subgraphs of G, e behaves like the
identity on the parts and like eN (like eE) between the parts. Then e generates eN (eE).

• Suppose that for arbitrarily large finite 2-partitioned subgraphs of G, e behaves like −
on the parts and like the identity / eN / eE between the parts. Then e and − together
generate sw / eE / eN . This is because we can apply the preceding two observations to
−e.

• Suppose that for arbitrarily large finite 2-partitioned subgraphs of G which e is canonical
on, e behaves like − on one part and like the identity on the other part. Then e and −
together generate eN .

To see the last assertion for the case where e behaves like the identity between the parts, select
an edge within one of the parts that is mapped to a non-edge. For arbitrary finite A ⊆ V we
can now use the operation e to get rid of one edge in the graph induced by A in G and preserve
all other edges, and so eventually generate an operation that behaves like eN on A. For the case
where e behaves like − between the parts, we can apply the same argument to −e. If e behaves
like eN between the parts, then we can all the more delete edges. If it behaves like eE between
the parts, then −e behaves like eN and we are back in the preceding case.

Summarizing our observations, we can assume that for an arbitrary finite n-constant graph F
there is a copy of F in Q such that e behaves like the identity on and between all proper parts F ′i , F

′
j

of the corresponding partitioned graph, or like − on and between all of its parts. If only the second
case holds for arbitrarily large n-constant graphs F , then we simply proceed our argument with
−e instead of e. We can do that since also −e(a) /∈ R: For otherwise, picking an automorphism α
of G such that α(−(−x)) = x for all x ∈ V , we would have α(−(−e(a))) = e(a) ∈ R, contrary to
our choice of a. Thus we assume that for arbitrary finite n-constant graphs F there is a copy of
F in Q such that e behaves like the identity on and between all proper parts of that copy.

As in the proof of Theorem 31, we may assume that if a copy F ′ = (F ′; E, a1, . . . , an) of F in
Q is large enough and e is canonical on F ′ and behaves like the identity on and between all proper
parts F ′i , F

′
j of the corresponding n-partitioned graph F̃ ′, then it leaves the edges and non-edges

between the ai and the vertices in F ′ \ {a1, . . . , an} unaltered. It follows that for arbitrary finite
n-constant graphs F there is a copy of F in Q such that the only edges or non-edges changed by
e on this copy are those between the ai.
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Finally, note that since R is definable in the random graph and e(a) /∈ R, e destroys at least
one edge or one non-edge on {a1, . . . , an}. Without loss of generality, say that a1, a2 are adjacent
but their values under e are not. We have shown that for arbitrarily large 2-constant graphs H ,
there is a copy of H in (V ; E, a1, a2) such that e behaves like the identity on this copy, except for
the edge between a1 and a2, which is destroyed. This clearly implies that e generates eN . ¤
Proposition 33. Let Γ be first-order definable in the random graph, and suppose Γ is preserved by
sw but not by eN , eE, or a constant operation. Then the endomorphisms of Γ are locally generated
by {sw} ∪Aut(G), or Γ is preserved by −.

Proof. The proof is very similar to the proof of the preceding proposition. This time we know that
unless the endomorphisms are locally generated by {sw}∪Aut(G), there exists an endomorphism
e that violates a relation R which is preserved by {sw} ∪Aut(G). Fix a tuple a as before.

As in the preceding proof, we may assume that e is injective. If e interpolates − modulo
automorphisms, we are done. Suppose therefore that if e is canonical on a finite partitioned graph
large enough, then it must behave like the identity on its parts.

If e behaves like eN (eE) between the parts of arbitrarily large finite 2-partitioned subgraphs of
G, then it generates eN (eE). Thus we may assume that it behaves like the identity or − between
such parts.

Suppose that for arbitrarily large finite 3-partitioned subgraphs F = (F ;E,F1, F2, F3) of G
which e is canonical on, e behaves like the − between exactly two of the parts, say between F1, F2,
and like the identity between F2, F3 and F1, F3. Then e is easily seen to generate both eN and eE .
Indeed, if we want to delete1 any edge from a finite graph, then we can view the vertices of the
edge as two parts of a 3-partitioned graph, where the third part contains all the other vertices. If
e behaves like − between the two vertices whose edge we want to delete, and like the identity on
and between the other parts, what happens is exactly that the edge is deleted.

If for arbitrarily large finite 3-partitioned subgraphs F of G which e is canonical on, e behaves
like − between, say, F1, F2 and F1, F3, and like the identity between F2, F3, then by applying a
suitable switch operation iA to e we are back in the preceding case. Note here that there is an
automorphism α of G such that iA(α(iA(x))) = x for all x ∈ V . Therefore, iA(e(a)) /∈ R; for
otherwise, we would have iA(α(iA(e(a))) = e(a) ∈ R, a contradiction.

The latter argument works also if e behaves like − between all three parts. Summarizing, we
may assume that if e is canonical on a finite n-partitioned graph which is large enough, where
n ≥ 3, then it behaves like the identity on and between all of the parts.

As for n-constant graphs which e is canonical on, e might flip edges and non-edges between some
parts and the constants. However, this situation can easily be repaired by a single application of
sw .

Finally, observe that at least one edge or one non-edge on a1, . . . , an is destroyed, and that we
therefore can generate either eN or eE . ¤
Proposition 34. Let Γ be first-order definable in the random graph, and suppose Γ is preserved
by sw and by −, but not by eN , eE, or a constant operation. Then the endomorphisms of Γ are
locally generated by {−, sw} ∪Aut(G), or Γ is preserved by all permutations.

Proof. The argument goes as in the preceding two propositions; we leave the details to the reader.
¤

Theorem 1 now is a direct consequence of Theorem 31, and Propositions 32, 33, 34: If a reduct Γ
of G does not have eE , eN , or a constant operation as an endomorphism, and if its endomorphisms
are not generated by the automorphisms of G, then Theorem 31 implies that it has either − or sw
as an endomorphism. Since Aut(Γ) contains Aut(G), once Γ has − or sw as an endomorphism,
it also has its inverse as an endomorphism; thus it has − or sw as an automorphism. But then
by the preceding three propositions, either End(Γ) is generated by Aut(Γ), or Γ is preserved by
all permutations. The latter case, however, is impossible, as this would imply that eE and eN are
among its endomorphisms, which we excluded already.

1for the purposes of the proof, we identify ourselves with the personalized endomorphism monoid
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Observe also how Thomas’ classification of closed permutation groups containing Aut(G) (The-
orem 2) follows from our results: If a group properly contains Aut(G), then it contains − or sw ,
by Theorem 31. If it contains − but is not generated by −, then it contains sw by Proposition 32.
Similarly, if it contains sw but is not generated by sw , then it contains − by Proposition 33. If it
contains both − and sw , but is not generated by these operations, then it must already contain
all permutations (Proposition 34).
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E-mail address: bodirsky@lix.polytechnique.fr

URL: http://www.lix.polytechnique.fr/~bodirsky/
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