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Abstract. The random permutation is the Fräıssé limit of the class of finite structures with
two linear orders. Answering a problem stated by Peter Cameron in 2002, we use a recent
Ramsey-theoretic technique to show that there exist precisely 39 closed supergroups of the
automorphism group of the random permutation, and thereby expose all symmetries of this
structure. Equivalently, we classify all structures which have a first-order definition in the
random permutation.

1. Introduction

1.1. Homogeneous permutations and the random permutation. In a paper in 2002,
Peter Cameron regarded finite permutations as two linear orders on a finite set, thereby
taking a more “passive” perspective on permutations than the one which views them as
bijections [Cam02]. He showed that there exist precisely four Fräıssé classes (in the sense
of [Hod97]) of finite permutations in this sense, one of which is the class of all finite structures
with two linear orders. The Fräıssé limit of the latter class, which is called the random permu-
tation and which we denote by Π = (D;<1, <2), therefore is the (up to isomorphism) unique
countable homogeneous structure with two linear orders which contains all finite permuta-
tions as induced substructures. Both linear orders of the random permutation are isomorphic
to the order of the rational numbers, and the random permutation is the result that appears
with probability one in the natural random process that constructs both orders independently.
From this it becomes clear that the random permutation cannot correspond to a single bijec-
tion on its domain D: indeed, it represents a double coset Aut(D;<2) ◦π ◦Aut(D;<1) in the
full symmetric group Sym(D) on D, where π is any isomorphism from (D;<1) to (D;<2),
and Aut(D;<i) denotes the automorphism group of (D;<i), for i = 1, 2.

1.2. Symmetries of the random permutation. The random permutation possesses two
kinds of obvious symmetries. Firstly, it inherits symmetries of the order of the rational
numbers: for example, the structure (D;>1) is obviously isomorphic to (D;<1), and it is
easy to see that likewise (D;>1, <2) is isomorphic to Π = (D;<1, <2). The symmetries of
the order of the rational numbers have been classified by Cameron in a famous paper in
1976 [Cam76]; they are basically composed of two non-trivial symmetries, one of which is
reversing the order, and the other one is turning the order cyclically. The second obvious
symmetry of Π is the fact that not only the orders (D;<1) and (D;<2) are isomorphic, but
also (D;<2, <1) is isomorphic to Π = (D;<1, <2).

The symmetries in the above sense of a structure correspond to those subgroups of the
full symmetric group of its domain which contain the automorphism group of the structure
and which are closed in the topology of pointwise convergence. Combining the two kinds
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of obvious symmetries of Π mentioned above, Cameron counted 37 closed supergroups of
Aut(Π), and asked whether there were any others, stating the following problem:

Problem 1.1 (Problem 2 in [Cam02], rephrased). Determine the closed subgroups of Sym(D)
which contain Aut(Π).

In this paper, we solve this problem, showing that there exist precisely 39 closed super-
groups of Aut(Π). While there turn out be a few groups which had not been considered
in [Cam02], some of those counted in that paper actually coincide.

1.3. Reducts and Thomas’ conjecture. For structures Γ,∆ on the same domain, we
call Γ a reduct of ∆ iff all of its relations and functions have first-order definitions in ∆
without parameters. It follows from the theorem of Ryll-Nardzewski, Engeler, and Sveno-
nius (see e.g. [Hod97] for all standard model-theoretic notions and theorems) that if we
consider two reducts equivalent iff they are reducts of one another, then the reducts of an ω-
categorical structure ∆ correspond precisely to the closed supergroups of the automorphism
group Aut(∆). In this correspondence, every reduct Γ of ∆ is sent to Aut(Γ), defining a
subjective map onto the closed supergroups of Aut(∆) whose kernel is the above-mentioned
equivalence. Since the closed supergroups of Aut(∆) form a complete lattice, so do the reducts
of ∆ up to equivalence, the order being provided by first-order definability.

In 1991, Simon Thomas conjectured that every countable structure which is homogeneous
in a finite relational language has only finitely many reducts up to equivalence [Tho91].
At the time, the reducts of only two interesting structures which fall into the scope of the
conjecture had been classified: those of the order of the rational numbers (5 reducts) [Cam76]
and those of the random graph (5 reducts) [Tho91]. Since then the reducts of the random
hypergraphs [Tho96], the random tournament [Ben97], the order of the rationals with a
constant [JZ08], and more recently those of the random partial order [PPP+11], the Kn-free
graphs with a constant [Pon11] and the random ordered graph [BPP13] have been determined,
in all cases confirming Thomas’ conjecture. Our classification verifies the conjecture for the
random permutation.

1.4. Superpositions of homogeneous structures. Let C1,C2 be Fräıssé classes of finite
structures in disjoint signatures σ1 and σ2, respectively, and assume moreover that both
classes have strong amalgamation. Then the class of finite structures with signature σ1 ∪ σ2

whose restriction to the signature σi is an element of Ci for i = 1, 2 is a Fräıssé class as well.
Moreover, the restriction of its Fräıssé limit ∆ to the signature σi is the Fräıssé limit of Ci

for i = 1, 2. In this situation, we say that ∆ is the free superposition of the Fräıssé limits of
C1 and C2. Using this terminology, the random permutation is the free superposition of two
copies of the order of the rational numbers.

It was only very recently that the reducts of a freely superposed structure, namely the
superposition of the random graph and the order of the rational numbers called the random
ordered graph, were classified up to equivalence [BPP13]. Our result is the second such
classification. One notable contrast between the situation in [BPP13] and our situation is
that the two relations of the random ordered graph are very different, the graph relation
being a quite “free” binary relation as opposed to the order relation, which gives rise to some
asymmetry; in particular, the two relations cannot be flipped.

In the case of the random permutation, another kind of rather surprising asymmetry ap-
pears with respect to possible combinations of the reducts of the two orders. As implied
above, one closed supergroup of Aut(D;<1) is the one consisting of all order preserving and
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all order reversing permutations; another one is the one consisting of all permutations which
turn the order cyclically. While the first group can be combined with the corresponding group
above Aut(D;<2) to the group consisting of all permutations which either reverse or preserve
both orders simultaneously, the groups of cyclic turns have no similar “simultaneous” action
– see the discussion in Section 5 for more details.

1.5. Canonical functions and Ramsey theory. We prove our result using a method orig-
inally invented in the context of constraint satisfaction [BP11b, BP] and further developed
in [BP11a, BPT13]. Based on so-called canonical functions, this method turned out to be
very effective in reduct classifications of homogeneous structures with a Ramsey expansion.
First applied to this kind of problem in 2011 to determine the reducts of the random partial
order [PPP+11], it has since served to find the reducts of the Kn-free graphs with a con-
stant [Pon11] and the random ordered graph [BPP13]. As in the case of the latter structure,
we take the approach of first identifying the join irreducible elements of the lattice of closed
supergroups of Aut(Π) with the help of canonical functions. We then use canonical functions
again to prove that every closed supergroup of Aut(Π) is a join of these groups, exploiting
the fact that Π is itself a Ramsey structure (cf. Section 3).

1.6. A model of the random permutation. It is helpful to visualize Π by means of the
following concrete representation of this structure. Let Q be the rational numbers with the
usual order <. Call a subset S of Q2 independent iff for all x, y ∈ S we have x1 6= y1 and
x2 6= y2. Then the following is easily verified using the fact that Π is, up to isomorphism,
uniquely determined by the expansion property [Hod97].

Fact 1.2. Let D be any dense and independent subset of Q2. Then setting x <i y iff xi < yi
for i = 1, 2, we have that (D;<1, <2) is a model of (the theory of) Π.

1.7. Acknowledgements. The first author would like to thank her advisor Ágnes Szendrei
for her continued guidance and support, and for introducing her to the second author and this
problem. The second author is indebted to Igor Dolinka and Dragan Mašulović for drawing
his attention to Peter Cameron’s question, as well as for valuable discussion and generous
hospitality during his visit at the University of Novi Sad. He would also like to thank Ágnes
Szendrei and Keith Kearnes for their equally generous hospitality during his visit at the
University of Colorado at Boulder.

2. The Reducts of Π

2.1. Generators of closed supergroups of Aut(Π). With the aim of listing the closed
supergroups of Aut(Π), we shall now provide a finite set of permutations on D such that
every closed supergroup of Aut(Π) is generated by a subset of that set, in the following sense.

Definition 2.1. Let F be a set of permutations on D, and let G be a closed permutation
group on D. We say that F generates G (over Aut(Π)) iff G is the smallest closed permutation
group that contains F ∪ Aut(Π); in that case, we write G = 〈F 〉. We always assume
Aut(Π) to be present in the generating process, and will not mention it explicitly. When
F = {f1, . . . , fn}, then we also write 〈f1, . . . , fn〉 for 〈F 〉.

The elements of 〈F 〉 are precisely those permutations g of D with the property that for
all finite A ⊆ D there exists a term function over the set F ∪Aut(Π) which agrees with g on
A. Here, terms are composites of elements of F ∪Aut(Π) and of inverses of such elements.



4 J. LINMAN AND M. PINSKER

As noted before, the structures (D;>1, <2), (D;<1, >2), and (D;>1, >2) are all isomor-

phic to Π. Let
(

rev
id

)
,
(

id
rev

)
and

(
rev
rev

)
be isomorphisms from Π to these structures: that is,(

rev
id

)
reverses <1 while preserving <2,

(
id
rev

)
does the same with the roles of the two orders

interchanged, and
(

rev
rev

)
reverses both orders. Moreover, (D;<2, <1) is isomorphic to Π; let

sw be an isomorphism.
In the model of Π provided in Fact 1.2, we can visualize these permutations as follows.

Observe that if D′ ⊆ Q2 is dense and independent, then there exist automorphisms α1, α2

of (Q;<) such that α := (α1, α2) : Q2 → Q2 maps D′ bijectively onto D. Moreover, if
automorphisms β1, β2 of (Q;<) are so that β := (β1, β2) : Q2 → Q2 maps D′ bijectively onto
D, then there exists γ ∈ Aut(Π) such that α = γ ◦ β. Hence, every function f : Q2 → Q2

with the property that it sends D bijectively onto a set D′ which is dense and independent
induces permutations on D of the form α ◦ f�D, and any two permutations of this form are
equivalent for our purposes since they generate the same closed groups.

In this construction,
(

rev
id

)
is induced by the mapping from Q2 to Q2 which sends any

(x1, x2) to (−x1, x2); we may thus say that geometrically,
(

rev
id

)
corresponds to the mapping

(x1, x2) 7→ (−x1, x2) on Q2. Similarly,
(

id
rev

)
corresponds to (x1, x2) 7→ (x1,−x2), and

(
rev
rev

)
to (x1, x2) 7→ (−x1,−x2), which is just the composite of the preceding two functions. The
function sw is geometrically nothing else but (x1, x2) 7→ (x2, x1).

We use our model of Π in order to define more permutations. Let r ∈ R \ Q be an
irrational number, and let fr be any function which sends the interval (−∞, r)∩Q bijectively
onto (r,∞) ∩Q whilst preserving the order on (−∞, r) ∩Q and (r,∞) ∩Q. Then (x1, x2) 7→
(fr(x1), x2) is a permutation of Q2 which induces a permutation on Π as described above – we
denote this permutation by

(
tr
id

)
. It is straightforward to see that the closed group generated

by such a function is independent of r, and we will thus write
(
t
id

)
whenever there is no need

to refer to r explicitly. Similarly, we define functions
(

id
tr

)
and

(
id
t

)
.

2.2. Closed supergroups of Aut(D;<i). Recall that (D;<i) is isomorphic to the order of
the rational numbers, and that the closed supergroups of the automorphism group of that
order have been classified [Cam76]. In our context, that classification can be stated as follows.

Theorem 2.2 (Cameron [Cam76]). The closed supergroups of Aut(D;<1) are precisely the
following:

(1) Aut(D;<1);
(2) 〈{

(
rev
id

)
} ∪Aut(D;<1)〉;

(3) 〈{
(
t
id

)
} ∪Aut(D;<1)〉;

(4) 〈{
(

rev
id

)
,
(
t
id

)
} ∪Aut(D;<1)〉;

(5) Sym(D).

Of course, the theorem for (D;<2) is similar. If we wish to see these groups as auto-
morphism groups of reducts of (D;<i), then the following relations on D are suitable. For
i ∈ {1, 2}, set

• Btwi(x, y, z)⇔ (x < y < z) ∨ (z < y < x);
• Cyci(x, y, z)⇔ (x < y < z) ∨ (y < z < x) ∨ (z < x < y);
• Sepi(w, x, y, z)⇔ (Cyci(w, x, y) ∧ Cyci(w, z, x)) ∨ (Cyci(w, y, x) ∧ Cyci(w, x, z)).

Corollary 2.3 (Cameron [Cam76]). The closed supergroups of Aut(D;<1) are precisely the
following:
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Aut(D;<i)

Aut(D; Btwi) Aut(D; Cyci)

Aut(D; Sepi)

Sym(D)

Figure 1. Closed supergroups of Aut(D;<i).

(1) Aut(D;<1);
(2) Aut(D; Btw1);
(3) Aut(D; Cyc1);
(4) Aut(D; Sep1).
(5) Aut(D; =).

The groups in Theorem 2.2 and Corollary 2.3 are listed in the same order.

2.3. Join irreducible closed supergroups of Aut(Π). Arbitrary intersections of closed
permutations groups onD yield closed permutation groups. Therefore, the closed permutation
groups on D form a complete lattice with respect to inclusion, and the closed supergroups of
Aut(Π) form an interval L therein. We now provide the set of all completely join irreducible
elements of the lattice L, i.e., of all elements of L which are not the (in theory, possibly
infinite) join of other groups in L.

Definition 2.4. Let JI consist of the following groups:

(1) 〈
(

id
rev

)
〉;

(2) 〈
(

id
t

)
〉;

(3) 〈
(

rev
id

)
〉;

(4) 〈
(
t
id

)
〉;

(5) 〈
(

rev
rev

)
〉;

(6) 〈sw〉;
(7) 〈sw ◦

(
rev
rev

)
〉;

(8) 〈sw ◦
(

id
rev

)
〉;

(9) Aut(D;<1);
(10) Aut(D;<2).

We are going to prove the following theorem, which implies that the closed permutation
groups which properly contain Aut(Π) are precisely the joins of groups in JI. As a conse-

quence, it follows that there are at most 2| JI | + 1 = 210 + 1 closed supergroups of Aut(Π).

Theorem 2.5. Let G ⊇ Aut(Π) be a closed group and let f ∈ Sym(D) be such that f /∈ G .
Then there exists a group H ∈ JI such that H ⊆ 〈{f} ∪ G 〉 and H * G .

Corollary 2.6. Let G ) Aut(Π) be a closed group. Then G is the join of elements of JI. In
particular, L is finite.
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Aut(Π)

efab g c d

acbeefadab bd de h bc cd

bdeabcabd acd bcd

bfbg af

i j

abcdbef bhdi bj ajci

abf abjcdi

Sym(D)

Figure 2. The lattice L of closed supergroups of Aut(Π).

By systematically investigating the joins of elements of JI, we then obtain that there exist
precisely 39 distinct closed supergroups of Aut(Π), and determine the exact shape of L. In
order to show a compact picture of L, we name the elements of JI as follows. First those which
we know from the classification of the symmetries of the order of the rational numbers. . .

Letter a b c d e

Group 〈
(

id
rev

)
〉 〈

(
id
t

)
〉 〈

(
rev
id

)
〉 〈

(
t
id

)
〉 〈

(
rev
rev

)
〉

. . . and then those which we get by switching the orders, or by completely ignoring one of the
orders. In Figure 2, each group in L is labeled by a minimal set of elements of JI whose join
it equals.

f g h i j

〈sw〉 〈sw ◦
(

rev
rev

)
〉 〈sw ◦

(
id
rev

)
〉 Aut(<1) Aut(<2)

Theorem 2.7. The lattice L of closed supergroups of Aut(Π) has 39 elements, and the shape
as represented in Figure 2.
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2.4. Organization of the paper. In the following section (Section 3), we provide the
Ramsey-theoretic preliminaries for the proof of Theorem 2.5, consisting of a Ramsey-type
statement for the class of finite permutations, and the method of canonical functions. After
that, in Section 4, we give the proof of Theorem 2.5. In the final section (Section 5), we show
which joins of element in JI actually coincide, from which we obtain the precise size and shape
of L, proving Theorem 2.7. It is also there that we discuss the shape of L in more detail, and
compare it with Peter Cameron’s count from [Cam02].

3. Ramsey-theoretic Preliminaries.

3.1. Ramsey structures. Our proof exploits a Ramsey-type property of Π, as in the fol-
lowing definition.

Definition 3.1. Let ∆ be a countable relational structure with domain X. For any structure
Γ in the language of ∆, write

(
∆
Γ

)
for the set of all induced substructures of ∆ which are

isomorphic to Γ. Then ∆ is called a Ramsey structure iff for all finite induced substructures
Ω of ∆, all induced substructures Γ of Ω, and all χ :

(
∆
Γ

)
→ 2 there exists Ω′ ∈

(
∆
Ω

)
such that

the restriction of χ to
(

Ω′

Γ

)
is constant.

For example, the order of the rational numbers is Ramsey: this fact is easily seen to be
equivalent to Ramsey’s theorem. It follows that Π is Ramsey, since it is the free superposition
of two copies of a homogeneous relational Ramsey structure whose finite substructures are
rigid and have strong amalgamation. That such superpositions are Ramsey has been proven
in [Bod] using infinitary methods, and later in [Sok] using finite combinatorics. The fact that
Π is Ramsey was, however, proven before in [BF13] and independently in [Sok10].

Fact 3.2. Π is a Ramsey structure.

3.2. Canonical functions. The fact that Π is a relational homogeneous Ramsey structure
implies that distinct closed supergroups of Aut(Π) can be distinguished by so-called canonical
functions. This has been observed in [BP11a, BPT13], and will be our method for proving
our main result.

Definition 3.3. Let ∆ be a structure, and let a be an n-tuple of elements in ∆. The type of
a in ∆ is the set of first-order formulas with free variables x1, . . . , xn that hold for a in ∆.

Definition 3.4. Let ∆ and Γ be structures. A type condition between ∆ and Γ is a pair
(t, s), such that t is the type on an n-tuple in ∆ and s is the type of an n-tuple in Γ, for some
n ≥ 1. A function f : ∆ → Γ satisfies a type condition (t, s) iff the type of f(a) in Γ equals
s for all n-tuples a in ∆ of type t.

A behavior B is a set of type conditions between ∆ and Γ, and a function f : ∆ → Γ has
behavior B iff it satisfies all type conditions in B.

Definition 3.5. Let ∆ and Γ be structures. A function f : ∆→ Γ is canonical iff for every
type t of an n-tuple in ∆ there is a type s of an n-tuple in Γ such that f satisfies the type
condition (t, s). That is, canonical functions send n-tuples of the same type to n-tuples of
the same type, for all n ≥ 1.

Note that any canonical function induces a function from the types over ∆ to the types
over Γ. The canonical functions that are needed are in general not permutations: they fail
to be surjective. In fact, we obtain our classification of the closed supergroups of Aut(Π) by
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an analysis of the closed transformation monoids of injective functions on D which contain
Aut(Π). Here, just as for permutation groups, “closed” means closed in the topology of
pointwise convergence, i.e., the topology of the product space DD, where D is taken to be
discrete. The fact that we have to leave the realm of permutation groups necessitates the
following definition.

Definition 3.6. Let F ⊆ DD. We say that F mon-generates a function g : D → D (over
Aut(Π)) iff g is contained in the smallest closed submonoid of DD which contains F ∪Aut(Π).
In other words, this is the case iff for every finite subset A ⊆ D there exist n ≥ 1 and
f1, . . . , fn ∈ F ∪ Aut(Π) such that f1 ◦ · · · ◦ fn agrees with g on A. In this paper, when we
write that F mon-generates a function then we always mean “over Aut(Π)”. For functions
f, g : D → D we shall say that f mon-generates g rather than {f} mon-generates g.

Our proof relies on the following proposition which is a consequence of [BP11a, BPT13]
and the fact that Π is a Ramsey structure. For c1, . . . , cn ∈ D, let (Π, c1, . . . , cn) denote the
structure obtained from Π by adding the constants c1, . . . , cn to the language.

Proposition 3.7. Let f : D → D be any injective function, and let c1, . . . , cn ∈ D. Then f
mon-generates an injective function g : D → D such that

• g agrees with f on {c1, . . . , cn};
• g is canonical as a function from (Π, c1, . . . , cn) to Π.

Note that any two canonical functions from (Π, c1, . . . , cn) to Π with equal behavior, i.e.,
which satisfy the same type conditions, mon-generate one another: this is a consequence
of the homogeneity of Π. Thus, for a fixed choice of c1, . . . , cn, there are essentially only
finitely many distinct canonical functions, and they are essentially finite objects since they
are determined by their behavior.

Our proof of Theorem 2.5 uses the following idea: if G ∈ JI and f ∈ Sym(D) \ G , then
there exist c1, . . . , cn ∈ D such that no function in G agrees with f on {c1, . . . , cn}. Let g be
the canonical function mon-generated by f by virtue of Proposition 3.7; then g is not mon-
generated by G . By analyzing the possible behaviors of g, we deduce that g mon-generates
all functions of some H ∈ JI which is not contained in G . But then 〈{f} ∪ G 〉 contains H ,
and hence a new element of JI.

4. The Proof

4.1. All canonical functions from Π to Π. We start by investigating all behaviors of
canonical injections from Π to Π. As a matter of fact, this will make us rediscover many of
the functions presented in Section 2.

Definition 4.1. Let g, h : Π → Π be canonical. We say that g behaves like h iff for all
x, x′ ∈ X we have that the type of (g(x), g(x′)) equals the type of (h(x), h(x′)) in Π.

Definition 4.2. Define the following binary relations on D:

• Up(x, y)⇔ x <1 y ∧ x <2 y;
• St(x, y)⇔ Up(x, y) ∨Up(y, x);
• Tw(x, y)⇔ ¬St(x, y);
• Do(x, y)⇔ x <1 y ∧ y <2 x.

We call a subset S ⊆ D diagonal iff either St(x, y) for all distinct x, y ∈ S, or Tw(x, y) for all
distinct x, y ∈ S.
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Proposition 4.3. Let G be a closed supergroup of Aut(Π) and let g : Π→ Π be a canonical
function mon-generated by G . Then either the image of g is diagonal and Aut(D;<i) ⊆ G
for some i ∈ {1, 2}, or g behaves like one of the following functions:

(1) the identity function id on D;

(2)
(

id
rev

)
;

(3)
(

rev
id

)
;

(4)
(

rev
rev

)
;

(5) sw;
(6) sw ◦

(
rev
rev

)
;

(7) sw ◦
(

id
rev

)
;

(8) sw ◦
(

rev
id

)
.

Proof. There are precisely four types of pairs of distinct elements in Π. Let t1, t2, t3 and t4 be
the types of a pair (x, y) with Up(x, y), Do(x, y), Up(y, x), and Do(y, x), respectively. The
behavior of g is fully specified by how it behaves on pairs of types t1 and t2. This gives 16
possible canonical behaviors.

Take any x, y, u, v ∈ D such that the types of (x, y) and (u, v) in Π are t1 and t2, respectively.
Suppose first that (g(x), g(y)) and (g(u), g(v)) both have type t1. Then g sendsD to a diagonal
set while preserving <1. Take any a1, . . . , an, b1, . . . , bn ∈ D with ai <1 ai+1 and bi <1 bi+1

for all 1 ≤ i ≤ n− 1. In order to show that Aut(D;<1) ⊆ G , it suffices to show that there is
a function f mon-generated by G such that f(ai) = bi for all 1 ≤ i ≤ n.

Since g is canonical, for all 1 ≤ i ≤ n − 1, the pairs (g(ai), g(ai+1)) and (g(bi), g(bi+1))
have type t1. Therefore, the tuples (g(a1), . . . , g(an)) and (g(b1), . . . , g(bn)) have the same
type in Π. Since Π is ω-categorical, there exists α ∈ Aut(Π) such that α(g(ai)) = g(bi) for
all 1 ≤ i ≤ n. Moreover, since g is mon-generated by G , there exists h ∈ G which agrees with
g on {b1, . . . , bn}. Let f = h−1 ◦ α ◦ g. Then f is a function mon-generated by G such that
f(ai) = bi for all 1 ≤ i ≤ n, giving that Aut(D;<1) ⊆ G .

If (g(x), g(y)) and (g(w), g(z)) both have type t2, then g also sends D to a diagonal set while
preserving <1. Similarly, if (g(x), g(y)) and (g(w), g(z)) both have type t3 or t4, then g sends
D to a diagonal set while reversing <1. By the same argument as above, Aut(D;<1) ⊆ G
holds in these cases as well.

Now suppose (g(x), g(y)) has type t1 and (g(w), g(z)) has type t3. Then g sends D to
a diagonal set while preserving <2. This is also the case if (g(x), g(y)) has type t4 and
(g(w), g(z)) has type t2. Similarly, if (g(x), g(y)) has type t3 and (g(w), g(z)) has type t1,
or if (g(x), g(y)) has type t2 and (g(w), g(z)) has type t4, then g sends D to a diagonal set
while reversing <2. Using a similar argument as above, in each of these cases we see that
Aut(D;<2) ⊆ G .

This leaves 8 remaining canonical behaviors, corresponding to the behaviors of the 8 func-
tions listed above. �

4.2. Canonical behaviors with constants.

Definition 4.4. Let c1, . . . , cn ∈ D be distinct. For 0 ≤ i ≤ n, define the i-th column of
(Π, c1, . . . , cn), denoted Ci, to be the set of all d ∈ D \ {c1, . . . , cn} such that exactly i of
{c1, . . . , cn} are less than d with respect to the order <1. Similarly, define the i-th row of
(Π, c1, . . . , cn), denoted Ri, to be the set of all d ∈ D \ {c1, . . . , cn} such that exactly i of
{c1, . . . , cn} are less than d with respect to the order <2.
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For distinct c1, . . . , cn ∈ D, the infinite orbits of Aut(Π, c1, . . . , cn) are precisely the sets
Ri ∩Cj , for all 0 ≤ i, j ≤ n. From our model of Π in Fact 1.2, the following becomes evident.

Fact 4.5. Each infinite orbit of Aut(Π, c1, . . . , cn) is isomorphic to Π.

By Proposition 3.7, we know that closed groups containing Aut(Π) can be distinguished
by functions which are canonical from (Π, c1, . . . , cn) to Π, for some c1, . . . , cn ∈ D. Ev-
ery such function behaves like a canonical function from Π to Π on each infinite orbit of
Aut(Π, c1, . . . , cn), in the following sense.

Definition 4.6. Let h : Π→ Π be canonical, let X,Y ⊆ D be disjoint, and let g : D → D be
a function. We say that g behaves like h on X iff for all x, x′ ∈ X we have that the type of
(g(x), g(x′)) equals the type of (h(x), h(x′)) in Π. We say that g behaves like h between X,Y
iff for all x ∈ X, y ∈ Y we have that the type of (g(x), g(y)) equals the type of (h(x), h(y))
in Π.

In this subsection we will show that in a sense, there are only few relevant canonical
functions from (Π, c1, . . . , cn) to Π. More precisely, we will prove Lemma 4.14 which states
that if g is a canonical injection from (Π, c1, . . . , cn) to Π which behaves like id on some infinite

orbit of Aut(Π, c1, . . . , cn), then either g is mon-generated by 〈
(

id
t

)
,
(
t
id

)
〉, or else any closed

group which mon-generates g contains Aut(D;<i) for some i ∈ {1, 2}. From this the proof of
Theorem 2.5 quickly follows.

Definition 4.7. LetR ⊆ Dk be a relation, and letX1, . . . , Xk ⊆ D. We say thatR(X1, . . . , Xk)
holds iff R(x1, . . . , xk) holds for all xi ∈ Xi.

Definition 4.8. Let X,Y ⊆ D be disjoint. We say that X,Y are in diagonal position iff
either St(X,Y ) or Tw(X,Y ) holds. For a function g : D → D, we say that g diagonalizes
X,Y iff g[X], g[Y ] are in diagonal position.

Definition 4.9. Let X,Y be subsets of D, i ∈ {1, 2}, and let g : D → D be a function. We
say that g

(1) preserves <i on X iff x1 <i x2 implies g(x1) <i g(x2), for all x1, x2 ∈ X;
(2) reverses <i on X iff x1 <i x2 implies g(x2) <i g(x1), for all x1, x2 ∈ X;
(3) preserves <i between X and Y iff x <i y implies g(x) <i g(y), for all x ∈ X, y ∈ Y ;
(4) reverses <i between X and Y iff x <i y implies g(y) <i g(x), for all x ∈ X, y ∈ Y .

Lemma 4.10. Let c1, . . . , cn ∈ D and let g : (Π, c1, . . . , cn)→ Π be canonical. Let i, j ∈ {1, 2}
with i 6= j, and let X,Y be infinite orbits of Aut(Π, c1 . . . , cn) with X <i Y . If g behaves like
id on X or on Y , then

(1) g either preserves or reverses <i between X and Y ;
(2) g either preserves <j on X ∪ Y or g diagonalizes X and Y .

Proof. Without loss of generality, suppose i = 1 and that g behaves like id on X. If X and Y
are in diagonal position, then all pairs (x, y) with x ∈ X and y ∈ Y have the same type in Π.
Therefore, all pairs (x′, y′) with x′ ∈ g[X] and y′ ∈ g[Y ] have the same type in Π. It follows
that g[X] and g[Y ] are in diagonal position, verifying (2), and moreover (1) holds. We may
thus henceforth assume that X and Y are not in diagonal position.

We first show (1). If g does not preserve <1 between X and Y , then there exist x ∈ X and
y ∈ Y such that g(y) <1 g(x); without loss of generality we may assume Up(x, y). Pick z ∈ X
such that Do(z, y) and x <1 z. Since g preserves <1 on X, g(x) <1 g(z). So, by transitivity,
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g(y) <1 g(z). Since g is canonical it follows that g reverses <1 between X and Y . Hence, g
either preserves or reverses <1 between X and Y .

To see (2), suppose first that g violates <2 between X and Y . Without loss of generality,
there exist x ∈ X, y ∈ Y with x <2 y and g(y) <2 g(x). Take any u ∈ X, v ∈ Y . If u <2 v,
then since g is canonical, g(v) <2 g(u). If v <2 u, pick w ∈ X with w <2 v. Then by the
above, g(v) <2 g(w). Moreover, since g preserves <2 on X, g(w) <2 g(u). So, by transitivity,
g(v) <2 g(u). Hence, g[Y ] <2 g[X]. This together with (1) shows that g[X] and g[Y ] are in
diagonal position.

Now assume that g preserves <2 between X and Y . Take any x, x′ ∈ X, y, y′ ∈ Y such that
x <2 y <2 x

′ <2 y
′. Since g preserves <2 between X and Y , g(x) <2 g(y) <2 g(x′) <2 g(y′).

Hence, g preserves <2 on X ∪ Y . �

Lemma 4.11. Let G be a closed supergroup of Aut(Π). Let c1, . . . , cn ∈ D and let g be
a function mon-generated by G which is canonical as a function from (Π, c1, . . . , cn) to Π.
Suppose g diagonalizes infinite orbits X,Y of Aut(Π, c1, . . . , cn) which are not in diagonal
position. Then Aut(D;<i) ⊆ G , for some i ∈ {1, 2}.
Proof. Without loss of generality, suppose X <1 Y and g[X] <2 g[Y ]. We claim that g mon-
generates a function g′ which behaves like id on X and Y , and such that Up(g′[X], g′[Y ])
holds.

Since g is canonical as a function (Π, c1, . . . , cn)→ Π, it behaves like a canonical function
from Π to Π on each of X and Y . Say g behaves like h : Π → Π on X and k : Π → Π
on Y . Then h (and similarly k) is mon-generated by G : any self-embedding ι of Π whose
range is contained in X is mon-generated by Aut(Π), and g ◦ ι behaves like h. Therefore,
by Proposition 4.3, either Aut(D;<i) ⊆ G for some i ∈ {1, 2}, or else g behaves like one of

id,
(

id
rev

)
,
(

rev
id

)
,
(

rev
rev

)
, sw, sw ◦

(
rev
rev

)
, sw ◦

(
id
rev

)
, or sw ◦

(
rev
id

)
on X. We may thus assume the latter

holds, for both X and Y . Note that each of h4, k4, (h ◦ k)4, and (k ◦h)4 behaves like id on D.
Let S, T ⊆ D be such that S <1 T . Then there is a self-embedding of Π which sends S

and T into X and Y , respectively. To see this, let H be a <1-downward closed subset of
D without a <1-largest element which contains S and is disjoint from T . Let (Π, H) denote
the structure obtained from Π by adding the unary relation H to the language. Let Π �X∪Y
be the structure induced by X ∪ Y , and let (Π �X∪Y , X) denote the structure obtained from
Π �X∪Y by adding the unary relation X to the language. Then the structures (Π, H) and
(Π �X∪Y , X) are isomorphic, and any isomorphism from the first to the latter is an embedding
of Π as desired.

If g[X] <1 g[Y ], then by the above there exists an embedding ι of Π such that ι◦ g[X] ⊆ X
and ι ◦ g[Y ] ⊆ Y . Let g′ = (ι ◦ g)4. Then since h4 and k4 behave like id on D, g′ is a function
mon-generated by g which behaves like id on X and Y , and such that Up(g′[X], g′[Y ]) holds.

If on the other hand g[Y ] <1 g[X], then pick an embedding ι of Π such that ι ◦ g[Y ] ⊆ X
and ι ◦ g[X] ⊆ Y . Let g′ = (i ◦ g)8. Since (h ◦ k)4 and (k ◦ h)4 both behave like id on
D, g′ is a function mon-generated by g which behaves like id on X and Y , and such that
Up(g′[X], g′[Y ]) holds, thus proving our claim.

Take any a1, . . . , an ∈ D with ai <1 ai+1 for all 1 ≤ i ≤ n − 1. By homogeneity of Π, for
each 1 ≤ i ≤ n there exists α ∈ Aut(Π) such that α(aj) ∈ X for all 1 ≤ j ≤ i and α(aj) ∈ Y
for all i + 1 ≤ j ≤ n. Then g′ ◦ α diagonalizes the sets {a1, . . . , ai} and {ai+1, . . . , an}
while preserving <1 on {a1, . . . , an}. By repeated applications of such functions, we obtain a
function f mon-generated by g such that Up(f(ai), f(ai+1)) holds for all 1 ≤ i ≤ n − 1. It
then follows by homogeneity of Π and topological closure that g mon-generates a canonical
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function from Π to Π whose image is a diagonal set, and Proposition 4.3 implies that G
contains Aut(D;<i) for some i ∈ {1, 2}. �

Lemma 4.12. Let G be a closed supergroup of Aut(Π). Let c1, . . . , cn ∈ D be distinct and let
g be a function mon-generated by G which is canonical as a function from (Π, c1, . . . , cn) to
Π. Suppose g behaves like id on some infinite orbit of Aut(Π, c1, . . . , cn). Then g behaves like
id on all infinite orbits of Aut(Π, c1, . . . , cn), or else Aut(D;<i) ⊆ G , for some i ∈ {1, 2}.
Proof. Let X be an infinite orbit of Aut(Π, c1, . . . , cn) on which g behaves like id. Let Y be
an orbit in the same column as X; without loss of generality, suppose X <2 Y . Then by
Lemmas 4.10 and 4.11, either Aut(D;<i) ⊆ G , for some i ∈ {1, 2}, or g preserves <1 on

X ∪ Y . We may thus assume the latter holds. Therefore, g either behaves like id or
(

id
rev

)
on

Y , and like id or
(

id
rev

)
between X and Y .

We claim that if g behaves like
(

id
rev

)
on Y , then G contains Aut(D;<i) for some i ∈ {1, 2}.

To see this, observe first that in that situation, g mon-generates
(

id
rev

)
. Therefore, if g behaves

like
(

id
rev

)
between X and Y , then we can replace g by

(
id
rev

)
◦g, which behaves like id on Y , like(

id
rev

)
on X, and like id between X and Y . Hence, in any case we may assume that g behaves

like id between X and Y , like id on one of X or Y , and like
(

id
rev

)
on the other. Without loss

of generality, suppose g behaves like id on X and
(

id
rev

)
on Y . Now take any a1, . . . , am ∈ D

with ai <2 ai+1 for all 1 ≤ i ≤ m − 1. By homogeneity of Π, for any 1 ≤ i ≤ m there exists
α ∈ Aut(Π) such that α(aj) ∈ X for all 1 ≤ j ≤ i and α(aj) ∈ Y for all i + 1 ≤ j ≤ m.
Then g ◦ α preserves <2 on {a1, . . . , ai} and reverses <2 on {ai+1, . . . , am}, while preserving
<1 on {a1, . . . , am}. By repeated applications of such functions, we can change the order of
{a1, . . . , am} arbitrarily with respect to <2 while preserving <1. Therefore g mon-generates a
function f such that Up(f(ai), f(ai+1)) for all 1 ≤ i ≤ m− 1. It then follows by homogeneity
of Π and topological closure that g mon-generates a canonical function h : Π → Π whose
image is a diagonal set, and Proposition 4.3 implies that G contains Aut(D;<i) for some
i ∈ {1, 2}.

Now let Z be an infinite orbit in the same row as X. By the same argument as above, either
g behaves like id on Z or Aut(D;<i) ⊆ G for some i ∈ {1, 2}. It follows that g behaves like
id on all infinite orbits of Aut(Π, c1, . . . , cn), or else Aut(D;<i) ⊆ G , for some i ∈ {1, 2}. �

Lemma 4.13. Let G be a closed supergroup of Aut(Π). Let c1, . . . , cn ∈ D be distinct and
g : (Π, c1, . . . , cn) → Π be a canonical function mon-generated by G . Suppose that g behaves
like id on and between all infinite orbits of Aut(Π, c1, . . . , cn). Then g behaves like id every-
where, or else Aut(D;<i) ⊆ G , for some i ∈ {1, 2}.
Proof. Assume that g does not behave like id everywhere, say without loss of generality
that g does not preserve <2 on D. Since g is canonical as a function from (Π, c1, . . . , cn)
to Π and behaves like id on and between all infinite orbits of Aut(Π, c1, . . . , cn), there exist
c ∈ {c1, . . . , cn} and 0 ≤ j ≤ n − 1 such that the rows Rj , Rj+1 satisfy Rj <2 {c} <2 Rj+1

and either {g(c)} <2 g[Rj ] or g[Rj+1] <2 {g(c)}. Suppose without loss of generality the latter
holds.

Let 0 ≤ k ≤ n − 1 be such that the columns Ck, Ck+1 satisfy Ck <1 {c} <1 Ck+1, and let
U = (Rj ∪Rj+1) ∩ (Ck ∪ Ck+1). Then g[U ] <2 {g(c)}.

First suppose that g diagonalizes U and {c}; say without loss of generality that g[U ] <1

{g(c)}. Take any a1, . . . , am ∈ D with ai <1 ai+1 for all 1 ≤ i ≤ m−1. By homogeneity of Π,
for each 1 ≤ i ≤ m there exists α ∈ Aut(Π) such that α(ai) = c and α(al) ∈ U for all l 6= i.
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Then g◦α diagonalizes the sets {a1, . . . , ai−1, ai+1, . . . , am} and {ai}, while behaving like id on
{a1, . . . , ai−1, ai+1, . . . , am}. By repeated applications of such functions, we obtain a function
f mon-generated by g such that Up(f(ai), f(ai+1)) holds for all 1 ≤ i ≤ m − 1. It follows
from the homogeneity of Π and topological closure that g mon-generates a canonical function
from Π to Π whose image is a diagonal set. Therefore, by Proposition 4.3, Aut(D;<i) ⊆ G
for some i ∈ {1, 2}.

It remains to consider the case where g[Ck] <1 {g(c)} <1 g[Ck+1]. Then Aut(D;<1) ⊆ G ,
since by a similar argument as above, we can change the order of the elements of any finite
subset of D with respect to <2 whilst keeping their order with respect to <1 by repeated
applications of functions in {g} ∪Aut(Π). �

Lemma 4.14. Let G be a closed supergroup of Aut(Π). Let c1, . . . , cn ∈ D be distinct and
g : (Π, c1, . . . , cn) → Π be a canonical function mon-generated by G . If g behaves like id

on some infinite orbit of Aut(Π, c1, . . . , cn), then either g is mon-generated by 〈
(

id
t

)
,
(
t
id

)
〉 or

Aut(D;<i) ⊆ G for some i ∈ {1, 2}.

Proof. By Lemma 4.12, either Aut(D;<i) ⊆ G for some i ∈ {1, 2} or g behaves like id
on all infinite orbits of Aut(Π, c1, . . . , cn). We may thus assume the latter holds. Then by
Lemma 4.10, either g diagonalizes two infinite orbits in nondiagonal position, in which case
Aut(D;<i) ⊆ G for some i ∈ {1, 2} by Lemma 4.11, or g behaves like one of id or

(
id
rev

)
between infinite orbits in the same column, and like id or

(
rev
id

)
between infinite orbits in the

same row. Again, we may assume the latter holds.
Suppose that there exist infinite orbits X <2 Y <2 Z in the same column of (Π, c1, . . . , cn)

such that ¬Cyc2(g[X], g[Y ], g[Z]) holds. Suppose g[X] <2 g[Z] <2 g[Y ]. The other cases are
proved similarly.

Take any a1, . . . , am ∈ D with ai <2 ai+1 for all 1 ≤ i ≤ m− 1. By homogeneity of Π, for
each 1 ≤ j ≤ m there exists α ∈ Aut(Π) such that α(ai) ∈ X for all 1 ≤ i ≤ j− 1, α(aj) ∈ Y ,
and α(ai) ∈ Z for all j+1 ≤ i ≤ m. Then g ◦α reverses <2 between {aj} and {aj+1, . . . , am},
while preserving <2 on {a1, . . . , aj−1, aj+1, . . . , am} and preserving <1 on {a1, . . . , am}. By
repeated applications of such functions, we can change the order of {a1, . . . , am} arbitrarily
with respect to <2 while preserving <1. Thus, g mon-generates a function f such that
Up(f(ai), f(ai+1)) holds for all 1 ≤ i ≤ m − 1. It follows from homogeneity of Π and
topological closure that g mon-generates a canonical function from Π to Π whose image is a
diagonal set. Hence, by Proposition 4.3, Aut(D;<i) ⊆ G for some i ∈ {1, 2}.

By the same argument, if there exist infinite orbits X <1 Y <1 Z in the same row of
(Π, c1, . . . , cn) such that ¬Cyc1(g[X], g[Y ], g[Z]) holds, then Aut(D;<i) ⊆ G for some i ∈
{1, 2}.

We may henceforth assume that for i = 1, 2 and for all infinite orbits X <i Y <i Z,
Cyci(g[X], g[Y ], g[Z]) holds. Suppose there exists 0 ≤ j ≤ n − 1 such that g reverses <1

between the columns Cj and Cj+1. Then since Cyc1(g[X], g[Y ], g[Z]) holds for all infinite
orbits with X <1 Y <1 Z, it follows that g[Cj+1] <1 · · · <1 g[Cn] <1 g[C0] <1 · · · <1 g[Cj ].

Furthermore, g mon-generates
(
t
id

)
: for any finite tuple a of elements of D, there exists an

embedding ι of Π into the structure induced by Y ∪Z such that g◦ι sends a to a tuple of equal
type in Π as does

(
t
id

)
; and then we can refer to homogeneity of Π to see that g mon-generates

a function which agrees with
(
t
id

)
on a.

By definition, there are H,H ′ ⊆ D such that H <1 H ′, H ∪ H ′ = D, and such that(
t
id

)
[H ′] <1

(
t
id

)
[H]. We may assume that g[Cn] ⊆ H and g[C0] ⊆ H ′. Then

(
t
id

)
◦ g is
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a function mon-generated by g which is canonical from (Π, c1, . . . , cn) to Π and which pre-
serves <1 on and between all infinite orbits of Aut(Π, c1, . . . , cn). By a similar argument,

we can undo a possible shuffling of rows by applying
(

id
t

)
if necessary, obtaining a canonical

function h : (Π, c1, . . . , cn) → Π which behaves like id on and between all infinite orbits of
Aut(Π, c1, . . . , cn). By Lemma 4.13, either h behaves like id everywhere or Aut(D;<i) ⊆ G
for some i ∈ {1, 2}. We may thus assume the former holds. That means that by composing

g with functions in {
(

id
t

)
,
(
t
id

)
} from the left, we have obtained a self-embedding h of Π. But

then g is itself a composite of h with functions in {
(

id
t

)
,
(
t
id

)
}, and so it is mon-generated by

〈
(

id
t

)
,
(
t
id

)
〉. �

4.3. Proof of Theorem 2.5. We are now ready to prove Theorem 2.5, from which it follows
that every closed group properly containing Aut(Π) is the join of elements of JI.

Proof of Theorem 2.5. Let c1, . . . , cn ∈ D be so that no function in G agrees with f on
{c1, . . . , cn}. Then by Proposition 3.7, there is an injection g : D → D mon-generated by
f which is canonical as a function from (Π, c1, . . . , cn) to Π and which agrees with f on
{c1, . . . , cn}.

Case 1: Suppose Aut(D;<i) ⊆ G for some i ∈ {1, 2}. Without loss of generality, suppose
i = 1. By Theorem 2.2, G and 〈{f} ∪ G 〉 are among the following groups:

• Aut(D;<1);
• 〈Aut(D;<1) ∪ {

(
rev
id

)
}〉;

• 〈Aut(D;<1) ∪ {
(
t
id

)
}〉;

• 〈Aut(D;<1) ∪ {
(

rev
id

)
,
(
t
id

)
}〉.

The result follows, since G ( 〈{f} ∪ G 〉.
Case 2: Suppose Aut(D;<i) * G for i = 1, 2 and letX be an infinite orbit of Aut(Π, c1, . . . , cn).

Then by Proposition 4.3, g behaves like some function h ∈ {id,
(

id
rev

)
,
(

rev
id

)
,
(

rev
rev

)
, sw, sw ◦

(
rev
rev

)
,

sw ◦
(

id
rev

)
, sw ◦

(
rev
id

)
} on X. If h /∈ G , then we are done. Otherwise, h−1 ◦ g is a function which

is not mon-generated by G , is canonical as a function from (Π, c1, . . . , cn) to Π, and behaves
like id on X. So, by replacing g with h−1 ◦ g, we may assume that g behaves like id on X.

Therefore, by Lemma 4.14, g is mon-generated by 〈
(

id
t

)
,
(
t
id

)
〉. Since no function in G agrees

with g on {c1, . . . , cn}, g is not mon-generated by G . Therefore, 〈
(

id
t

)
,
(
t
id

)
〉 * G .

By Lemma 4.13, g does not behave like id between all infinite orbits of Aut(Π, c1, . . . , cn).

Therefore, by Lemma 4.10, g either behaves like
(

id
rev

)
between two infinite orbits in the same

column or like
(

rev
id

)
between two infinite orbits in the same row. Suppose the latter holds.

Then g mon-generates
(
t
id

)
. If

(
t
id

)
/∈ G , then we are done. Otherwise, 〈

(
t
id

)
〉 ⊆ G . In this case,

since g is not mon-generated by G but is mon-generated by 〈
(

id
t

)
,
(
t
id

)
〉, g must also behave

like
(

id
rev

)
between two infinite orbits in the same column. Therefore, g mon-generates

(
id
t

)
.

Since 〈
(

id
t

)
,
(
t
id

)
〉 * G , it follows that

(
id
t

)
∈ 〈{f} ∪ G 〉 \ G . �

5. The 39 closed supergroups of Aut(Π)

We will now determine the precise number of closed supergroups of Aut(Π), proving The-
orem 2.7, and compare our result with the estimate from [Cam02].
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5.1. Proof of Theorem 2.7. In order to see that there are at most 39 closed supergroups
of Aut(Π), we need the following easy to verify results about the behaviors of compositions
of the functions which generate the groups in JI.

Lemma 5.1. Let G be a closed supergroup of Aut(Π). Suppose sw ∈ G . Then

• If G contains one of
(

id
rev

)
or

(
rev
id

)
, then it contains both

(
id
rev

)
and

(
rev
id

)
.

• If G contains one of
(

id
t

)
or

(
t
id

)
, then it contains both

(
id
t

)
and

(
t
id

)
.

• If sw ◦
(

rev
rev

)
∈ G , then

(
rev
rev

)
∈ G .

• If sw ◦
(

id
rev

)
∈ G , then

(
id
rev

)
∈ G .

• If Aut(D;<i) ⊆ G for some i ∈ {1, 2}, then G = Sym(D).

Lemma 5.2. Let G be a closed supergroup of Aut(Π). Suppose sw ◦
(

rev
rev

)
∈ G . Then

• If G contains
(

id
rev

)
,
(

rev
id

)
,
(

rev
rev

)
, or sw ◦

(
id
rev

)
, then it contains sw.

• If G contains one of
(

id
t

)
or

(
t
id

)
, then it contains both

(
id
t

)
and

(
t
id

)
.

• If Aut(D;<i) ⊆ G for some i ∈ {1, 2}, then G = Sym(D).

Lemma 5.3. Let G be a closed supergroup of Aut(Π). Suppose
(

rev
rev

)
∈ G . Then if G contains

one of
(

id
rev

)
or

(
rev
id

)
, then it contains both

(
id
rev

)
and

(
rev
id

)
.

Lemma 5.4. Let G be a closed supergroup of Aut(Π). If sw ◦
(

id
rev

)
∈ G , then

•
(

rev
rev

)
∈ G .

• If G contains one of
(

id
t

)
or

(
t
id

)
, then it contains both

(
id
t

)
and

(
t
id

)
.

• If Aut(D;<i) ⊆ G for some i ∈ {1, 2}, then G = Sym(D).

Proposition 5.5. There are at most 39 closed supergroups of Aut(Π).

Proof. There are at most 25 groups which arise as joins of groups in {〈
(

id
rev

)
〉, 〈

(
id
t

)
〉, 〈

(
rev
id

)
〉,

〈
(
t
id

)
〉,Aut(D;<1),Aut(D;<2)}: by Theorem 2.2, there are 5 closed supergroups of Aut(Π)

which contain Aut(D;<1) and 4 additional groups containing Aut(D;<2); the remaining 16

groups are all possible joins of groups in {〈
(

id
rev

)
〉, 〈

(
id
t

)
〉, 〈

(
rev
id

)
〉, 〈

(
t
id

)
〉}. We remark that these

are precisely the intersections of closed supergroups of Aut(D;<1) with closed supergroups
of Aut(D;<2), as follows from Figure 3.

The remaining closed groups must contain one of sw, sw ◦
(

rev
rev

)
, or

(
rev
rev

)
. By Lemma 5.1,

there are at most 6 additional closed groups containing 〈sw〉:
(26) 〈sw〉;
(27) 〈sw,

(
rev
rev

)
〉;

(28) 〈sw,
(

id
rev

)
〉;

(29) 〈sw,
(

id
t

)
〉;

(30) 〈sw,
(

rev
rev

)
,
(

id
t

)
〉;

(31) 〈sw,
(

id
rev

)
,
(

id
t

)
〉.

By Lemma 5.2, there are at most 2 additional groups containing 〈sw ◦
(

rev
rev

)
〉:

(32) 〈sw ◦
(

rev
rev

)
〉;

(33) 〈sw ◦
(

rev
rev

)
,
(

id
t

)
〉;

Last, by lemmas 5.3 and 5.4, there are at most 6 more groups containing 〈
(

rev
rev

)
〉:

(34) 〈
(

rev
rev

)
〉;
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(35) 〈sw ◦
(

id
rev

)
〉;

(36) 〈
(

rev
rev

)
,
(

id
t

)
〉;

(37) 〈
(

rev
rev

)
,
(
t
id

)
〉;

(38) 〈sw ◦
(

id
rev

)
,
(

id
t

)
〉;

(39) 〈
(

rev
rev

)
,
(

id
t

)
,
(
t
id

)
〉.

�

To see that these groups all are distinct, we need to define some more relations on D.

• R1(x, y, z)⇔ (Up(x, y) ∧Do(y, z) ∧Up(x, z)) ∨ (Do(x, y) ∧Up(z, y) ∧Do(x, z))
∨ (Up(y, x) ∧Do(z, y) ∧Up(z, x)) ∨ (Do(y, x) ∧Up(y, z) ∧Do(z, x));

• R2(x, y, z)⇔ Btw1(x, y, z) ∨ Btw2(x, y, z);
• R3(x, y, z)⇔ Cyc1(x, y, z) ∨ Cyc2(x, y, z);
• R4(x, y, z)⇔ Sep1(x, y, z) ∨ Sep2(x, y, z);
• R5(x, y, z)⇔ ((x <2 y <2 z) ∧ Cyc1(x, y, z)) ∨ ((z <2 y <2 x) ∧ Cyc1(z, y, x));
• R6(x, y, x)⇔ ((x <1 y <1 z) ∧ Cyc2(x, y, z)) ∨ ((z <1 y <1 x) ∧ Cyc2(z, y, x));
• R7(x, y, z)⇔ ((Cyc1(x, y, z) ∧ Cyc2(x, y, z)) ∨ ((Cyc1(z, y, x) ∧ Cyc2(z, y, x));
• R8(x, y, z)⇔ Cyc1(x, y, z) ∧ ¬Cyc2(x, y, z);
• R9(x, y, w, z)⇔ (Cyc1(x, y, w) ∧ Cyc2(x, y, w) ∧ Cyc1(y, w, z) ∧ ¬Cyc2(y, w, z))

∨ (¬Cyc1(x, y, w) ∧ Cyc2(x, y, w) ∧ Cyc1(y, w, z) ∧ Cyc2(y, w, z))
∨ (¬Cyc1(x, y, w) ∧ ¬Cyc2(x, y, w) ∧ ¬Cyc1(y, w, z) ∧ Cyc2(y, w, z))
∨ (Cyc1(x, y, w) ∧ ¬Cyc2(x, y, w) ∧ ¬Cyc1(y, w, z) ∧ ¬Cyc2(y, w, z)).

Figure 3 shows which relations are preserved by the 39 groups listed above. Checking
the table is left to the reader. Since no two groups preserve the same subset of relations,
Theorem 2.7 follows.

5.2. Discussion. In [Cam02], Cameron listed 37 closed supergroups of Aut(Π). His count
included the 25 groups which arise as intersections of closed supergroups of Aut(D;<1) and

Aut(D;<2). He then observed that 〈sw,
(

id
rev

)
〉 behaves like a dihedral group of order 8, with

10 subgroups, 4 of which were already counted in the first 25. This gives 6 additional groups
contained in 〈sw,

(
id
rev

)
〉. By the same argument, he counted 6 additional groups contained in

〈sw,
(

id
t

)
〉.

We discovered that while 〈sw,
(

id
rev

)
〉 behaves like a dihedral group of order 8, 〈sw,

(
id
t

)
〉

does not. It only has 4 proper, nontrivial subgroups: 〈sw〉, 〈
(

id
t

)
〉, 〈

(
t
id

)
〉, and 〈

(
id
t

)
,
(
t
id

)
〉.

Thus there is some asymmetry in the roles of the permutations
(

id
rev

)
and

(
id
t

)
. There

is a closed group consisting of all permutations which either preserve or reverse both or-
ders of Π simultaneously, namely 〈

(
rev
rev

)
〉, but there is no simultaneous action of turns since

〈
(

id
t

)
◦
(
t
id

)
〉 = 〈

(
id
t

)
,
(
t
id

)
〉. Hence, 4 groups counted in [Cam02] actually coincided with oth-

ers listed there. On the other hand, some joins of elements in JI were missing in [Cam02]:

〈
(

rev
rev

)
,
(

id
t

)
〉, 〈

(
rev
rev

)
,
(
t
id

)
〉, 〈

(
rev
rev

)
,
(

id
t

)
,
(
t
id

)
〉, 〈sw,

(
rev
rev

)
,
(

id
t

)
〉, 〈sw ◦

(
id
rev

)
,
(

id
t

)
〉, and 〈sw,

(
id
rev

)
,
(

id
t

)
〉.
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