
THE REDUCTS OF EQUALITY UP TO

PRIMITIVE POSITIVE INTERDEFINABILITY

MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

Abstract. We initiate the study of reducts of relational structures up to
primitive positive interdefinability: After providing the tools for such a study,
we apply these tools in order to obtain a classification of the reducts of the
logic of equality. It turns out that there exists a continuum of such reducts.

Equivalently, expressed in the language of universal algebra, we classify those
locally closed clones over a countable domain which contain all permutations
of the domain.

Contents

1. Introduction 1
1.1. Introduction for model theorists 2
1.2. Introduction for universal algebraists 2
1.3. Introduction for computer scientists 3
2. Back and forth between logic and algebra 4
2.1. Notions from logic 4
2.2. Notions from algebra 4
2.3. The translation 5
3. The result 7
3.1. Additional notation and terminology 11
4. The basis: Monoids 11
5. Clones with essential finite range operations 16
6. Clones with essential infinite range operations 19
6.1. The Horn clone 19
6.2. The bar clone 21
6.3. From the bar clone to the odd clone 23
6.4. Richard 32
6.5. Richard’s many friends 34
7. Clones with essential infinite range operations plus constants 37
8. Open Problems 39
References 39

1. Introduction

Our results have impact on three fields: model theory, universal algebra, and
theoretical computer science. We therefore have a three-fold introduction.

2000 Mathematics Subject Classification. Primary 03C40; secondary 08A40; 08A70; 03D15.
Key words and phrases. relational structure, reduct, primitive positive definition, lattice, in-

variant relation, Galois connection, local clone, permutations.
The third author is grateful for support through project P17812-N12 as well as through Erwin

Schrödinger Fellowship N2742-N18 of the Austrian Science Fund.

1

2 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

1.1. Introduction for model theorists. In model theory, reducts of a relational
structure Γ are usually considered up to first-order interdefinability. To be more
precise, one considers the reducts of the expansion of Γ by all first-order definable
relations, and two reducts Γ′ and Γ′′ are considered to be the same if and only
if there is a first-order definition of Γ′ in Γ′′ and vice versa. It is well-known
that there is a close connection between classifications of reducts up to first-order
interdefinability and the theory of infinite (closed) permutation groups. In 1976,
Cameron [Cam76] showed that the highly set-transitive permutation groups are
exactly the automorphism groups of the reducts of (Q, <). He also showed that
there are exactly five reducts of (Q, <) up to first-order interdefinability. Recently,
Junker and Ziegler gave a new proof of this fact, and showed that (Q, <, a), the
expansion of (Q, <) by a constant a, has 116 reducts [JZ08]. Thomas showed that
the first-order theory of the random graph also has exactly five reducts [Tho91] and
conjectured that every structure with quantifier elimination in a finite relational
signature has a finite number of reducts, up to first-order interdefinability.

In this article, we initiate the systematic study of reducts up to primitive positive
interdefinability. A first-order formula is primitive positive if and only if it is of the
form ∃x(ϕ1 ∧ · · · ∧ ϕl) for atomic formulas ϕ1, . . . , ϕl. Clearly, classifications up
to primitive positive interdefinability are harder to obtain, compared to first-order
interdefinability, since there are far more reducts to distinguish.

The simplest structure where such a classification can be studied is the structure
that has no structure at all except for the equality relation, which is considered
part of first-order logic. Our result classifies the reducts of the structure (X,=),
where X is a countably infinite set, up to primitive positive definability. While this
might look trivial at first sight, we prove that the number of such reducts equals
the continuum. It turns out that the partial order (in fact, the lattice) of these
reducts is quite complex, but can be described reasonably well. We remark that
the classification of the reducts of (X,=) up to primitive positive interdefinability
is the same as the classification for a structure of the form (Y,=), where Y is a set
of arbitrary infinite cardinality.

To show our classification result, we use a concept that is called clone in universal
algebra. A clone is a set of operations on some fixed domain that is closed under
compositions and contains all projections. The clones we are interested in are
moreover locally closed, which means that they are, similarly to closed permutation
groups used for the study of reducts up to first-order interdefinability, closed sets
in the natural topology on the operations. For ω-categorical structures Γ, there is
a one-to-one correspondence between the reducts of Γ and the locally closed clones
that contain the automorphisms of Γ. In order to classify the reducts of (X,=),
we thus classify those locally closed clones which contain all permutations of the
domain.

We believe that several of the results and techniques presented in this article
can be used to also classify reducts of other ω-categorical structures up to primitive
positive definability. Such future classifications are likely to combine existing results
on first-order closed reducts, such as the above-mentioned results on the dense linear
order and the random graph, with the results of the present paper.

1.2. Introduction for universal algebraists. For universal algebraists, the title
of our paper could be “The locally closed clones above the permutations”. In fact,
in this article we describe the lattice of all locally closed clones on a countably
infinite set that contain all permutations of this set.

Traditionally, most work on clones was done for clones on a finite domain, and
only occasionally clones on infinite sets were studied. However recently, the use
of methods from mathematical logic, in particular from set theory, has allowed for

THE REDUCTS OF EQUALITY 3

the production of a considerable number of new results on clones over infinite sets.
Classical results on clones, mostly on finite domains, can be found in the books
[PK79], [Sze86], and [Lau06], while the recent survey paper [GP08] contains much
of what is known on clones over infinite sets.

The clones on a finite domain which contain all permutations were completely
determined in [HR94]; it turns out that the number of such clones is finite. If
one moves on to infinite domains, there are two possible clone lattices which can
be considered: The lattice of local clones, which is closer to the clone lattice on
a finite domain in both size and methodology that can be employed for its study,
and the lattice of all clones, the investigation of which often involves set-theoretical
constructions (as in [GS05], for example).

In the full clone lattice over an infinite set, the interval of those clones which
contain all permutations has been subject to investigation. For example, its dual
atoms have been completely described on domains of regular cardinality ([Hei02],
[Pin05a]). Moreover, its atoms were determined for all infinite domains in [MP07].
However, the number of clones above the permutations has been shown to be huge
([GSS], [Gol], [Pin05b]), and it seems unlikely that all such clones on an infinite set
will ever be classified.

As our results will show, the situation is quite different for local clones which
contain the permutations. These clones had not yet been subject to explicit in-
vestigation and were largely unknown except for a few implicit results, such as
partial results on local clones containing all unary operations in [RS82]. It turns
out that although the lattice of locally closed clones which contain the permutations
is uncountable, one can obtain a reasonable understanding of it.

We remark here that the lattice of all local clones has been shown to be quite
complicated; in particular, already on a countably infinite base set, the class of
lattices which are completely embeddable into it properly contains the class of all
algebraic lattices with a countable number of compact elements ([Pin08], [Pin]).

1.3. Introduction for computer scientists. The satisfiability problem for propo-
sitional logic is one of the most fundamental problems in computer science, and
among the hardest problems in the complexity class NP. Many restrictions of this
problem stay NP-hard – e.g. the problems NOT-ALL-EQUAL-3SAT and ONE-IN-
3-SAT. In a groundbreaking paper in 1978, Schaefer studied a large class of natural
restrictions of the satisfiability problem [Sch78]. For a fixed structure Γ over the
Boolean domain {0, 1}, the computational problem is to decide whether a given
sentence of the form ∃x.ψ1 ∧ · · · ∧ψl is true, where ψi is of the form R(xi1 , . . . , xik)
for a k-ary relation R in Γ. This problem is now known as CSP(Γ), the con-
straint satisfaction problem for the constraint language Γ. (It is easy to see that
3SAT, NOT-ALL-EQUAL-3SAT, and ONE-IN-3-SAT can be modelled as CSP(Γ)
for appropriate Boolean constraint languages Γ.) Schaefer proved that for Boolean
constraint languages Γ the problem CSP(Γ) can either be solved in polynomial
time, or is NP-complete, and he gave a complete description of the tractable and
the hard Boolean constraint languages.

Schaefer’s theorem inspired many other complexity classification projects for
computational problems that are ‘parametrized’ by a constraint language, and sim-
ilar results have been obtained not only for constraint satisfaction, but also for other
computational tasks such as quantified constraint satisfaction, learning of proposi-
tional formulas, counting solutions, and the maximum solution problem. It turns
out that for all these computational problems the computational complexity does
not change if we add relations to the constraint language Γ that have a primitive
positive definition in Γ. This implies that the complexity of these problems only

4 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

depends on the so-called clone consisting of all polymorphisms of the constraint
language, i.e., the set of those operations that preserve all relations in Γ.

The lattice of clones on a two-element set was determined already quite some
time before Schaefer, namely by Post in 1941 [Pos41]. And indeed, Schaefer’s
classification can be formulated in terms of Post’s lattice, see e.g. [BCRV04].

Our result can be viewed as an analog of Post’s lattice for the logic of equal-
ity (rather than for propositional logic). In this analogy, Boolean relations cor-
respond to relations that have a first-order definition in (X,=), where X is an
arbitrary infinite set. Sets of such relations have been called equality constraint
languages [BK08a]. Hence, in this paper we study the lattice of polymorphism
clones of equality constraint languages. Note that equality constraint languages
are exactly those constraint languages that are preserved by all permutations of
the domain; in this sense, we study those constraint languages up to primitive
positive interdefinability that have the maximal possible degree of symmetry.

The constraint satisfaction problem for equality constraint languages has been
investigated in [BK08a]. It was shown that CSP(Γ) is NP-complete if the polymor-
phism clone of the constraint language is the smallest element in the lattice; other-
wise, it is polynomial-time solvable. The quantified constraint satisfaction problem
(QCSP) for equality constraint languages Γ has been investigated in [BC07].

2. Back and forth between logic and algebra

We make the notions of the introduction precise, and fix some definitions and no-
tation from logic and universal algebra. Moreover, we explain how to translate our
classification problem from logic to algebra and vice-versa: That is, we demonstrate
in what way reducts correspond to local clones.

2.1. Notions from logic. Consider the relational structure consisting of a count-
ably infinite domain and the relation of equality only. For notational simplicity, we
will assume that this domain is the set N of natural numbers. By a reduct of (N,=)
we mean a structure Γ = (N,R), where R is a set of finitary relations on N all of
which can be defined by a first-order formula in the language of equality.

Let ϕ be a first-order formula over the relational signature τ . Then ϕ is called
primitive positive or pp iff it is of the form ∃x.ψ1 ∧ · · · ∧ ψl, where ψ1, . . . , ψl are
atomic τ -formulas. For a set R of relations on N, we write pp(R) for the set of
all relations on N which can be defined from R by pp formulas (over the signature
appropriate for R).

We say that a structure Γ1 = (N,R1) is pp-definable from a structure Γ2 =
(N,R2) iff R1 ⊆ pp(R2). We say that Γ1,Γ2 are pp-interdefinable iff they are
pp-definable from each other. The structure Γ1 is pp-closed iff R1 = pp(R1). The
notion of pp-definability imposes a quasiorder on the reducts of (N,=), and the
relation of pp-interdefinability is an equivalence relation on this order. We are
interested in the partial order which is obtained by factoring the quasiorder of
reducts by this equivalence relation. That is, we consider two reducts the same iff
they are pp-interdefinable, or equivalently, we consider the partial order of pp-closed
reducts.

In fact, the pp-closed reducts form a complete lattice, where the meet of a family
of structures (Γi)i∈I is the structure (N,

∩
i∈I Ri), and the join is (N,pp(

∪
i∈I Ri)).

2.2. Notions from algebra. Fix a countably infinite base set; for convenience,
we take the set N of natural numbers. For all n ≥ 1, denote by O(n) the set
NNn

= {f : Nn → N} of n-ary operations on N. Then O =
∪

n≥1 O(n) is the set
of all finitary operations on N. A clone C is a subset of O satisfying the following
two properties:

THE REDUCTS OF EQUALITY 5

• C contains all projections, i.e., for all 1 ≤ k ≤ n the operation πn
k ∈ O(n)

defined by πn
k (x1, . . . , xn) = xk, and

• C is closed under composition, i.e., whenever f ∈ C is n-ary and g1, . . . , gn ∈
C are m-ary, then the operation f(g1, . . . , gn) ∈ O(m) defined by

(x1, . . . , xm) 7→ f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

also is an element of C .

Since arbitrary intersections of clones are again clones, the set of all clones on N,
equipped with the order of inclusion, forms a complete lattice Cl(N). In this paper,
we are interested in certain clones of Cl(N) which satisfy an additional topological
closure property: Equip N with the discrete topology, and O(n) = NNn

with the
corresponding product topology (Tychonoff topology), for every n ≥ 1. A clone
C is called locally closed or just local iff each of its n-ary fragments C ∩ O(n) is a
closed subset of O(n). Equivalently, a clone C is local iff it satisfies the following
interpolation property:

For all n ≥ 1 and all g ∈ O(n), if for all finite A ⊆ Nn there exists
an n-ary f ∈ C which agrees with g on A, then g ∈ C .

Again, taking the set of all local clones on N, and ordering them according to set-
theoretical inclusion, one obtains a complete lattice, which we denote by Clloc(N):
This is because arbitrary intersections of clones are clones, and because arbitrary
intersections of closed sets are closed. The join of a family (Ci)i∈I is calculated
as follows: First, consider the set of all operations on N which can be obtained by
composing operations from

∪
i∈I Ci; this set is a clone, but might not be locally

closed. For this reason, the topological closure of this set has to be formed in
addition in order to arrive at the join in Clloc(N). For a set of operations F ⊆ O,
we write ⟨F ⟩ for the smallest local clone containing F ; if C is a local clone and
C = ⟨F ⟩, then we say that C is generated by F . Observe that ⟨F ⟩ is just the
intersection of all local clones containing F , or equivalently the topological closure
of the set of term operations that can be built from F . Using this notation, the
join of the family (Ci)i∈I is simply ⟨

∪
i∈I Ci⟩.

This paper investigates, and in some sense classifies, those local clones on N
which contain all permutations of N. It turns out that the number of such clones
is uncountable.

2.3. The translation. Let f ∈ O(n) and let ρ ⊆ Nm be a relation. We say that
f preserves ρ iff f(r1, . . . , rn) ∈ ρ whenever r1, . . . , rn ∈ ρ, where f(r1, . . . , rn) is
calculated componentwise. This notion of preservation links finitary relations on N
to finitary operations and is the prime tool for studying the reducts of (N,=), and
indeed of all other ω-categorical structures, up to primitive positive interdefinability.

For a set of relations R, we write Pol(R) for the set of those operations in O
which preserve all ρ ∈ R. The operations in Pol(R) are called polymorphisms of
R. The following is folklore in universal algebra, see e.g. [Sze86].

Proposition 1. Pol(R) is a local clone for all sets of relations R. Moreover, every
local clone is of this form.

We have seen how to assign sets of operations to sets of relations; likewise, we
can go the other way. For an operation f ∈ O(n) and a relation ρ ⊆ Nm, we say
that ρ is invariant under f iff f preserves ρ. Given a set of operations F ⊆ O, we
write Inv(F) for the set of all relations which are invariant under all f ∈ F . The
following is well-known.

Proposition 2. Inv(F) is a pp-closed set of relations for every F ⊆ O.

6 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

Using the Galois connection defined by the operators Pol and Inv which link op-
erations and relations, we obtain the following well-known alternative for describing
the hull operator which assigns to a set of operations the local clone which this set
generates (confer [Sze86]).

Proposition 3. Let F ⊆ O. Then ⟨F ⟩ = Pol Inv(F).

The reader will now expect that our notion of closure for structures Γ, namely
closure under primitive positive definitions, will coincide with the closure operator
Inv Pol of our Galois connection. Although this is not true for infinite structures in
general, the following theorem from [BN06] states that it holds if Γ is not too far
from the finite. (In the following, we often identify structures Γ with their sets of
relations, e.g., when writing Pol(Γ).)

Theorem 4. Let Γ be ω-categorical. Then Inv Pol(Γ) = pp (Γ).

Ordering locally closed permutation groups (just like clones, a permutation group
is called locally closed iff it is a closed subset of O) by set-theoretical inclusion, one
obtains a complete lattice since arbitrary intersections of local permutation groups
are local permutation groups again. Similarly, the first-order closed structures on N
form a complete lattice. Using our notation, we can state the well-known connection
(see e.g. [Cam90]) between locally closed permutation groups and first-order closed
reducts of ω-categorical structures as follows.

Theorem 5. Let Γ be an ω-categorical structure. The mapping G 7→ Inv(G) send-
ing every locally closed permutation group G containing the automorphism group
Aut(Γ) of Γ to its set of invariant relations is an antiisomorphism between the
lattice of such groups and the lattice of those reducts of Γ which are closed under
first-order definitions.

Utilizing local clones, we obtain an analogous statement to Theorem 5 for reducts
up to primitive positive interdefinability.

Theorem 6. Let Γ be an ω-categorical structure. Then we have:

(1) The operator Pol maps every reduct of the first-order expansion of Γ to a
local clone above Aut(Γ).

(2) Two reducts ∆1,∆2 are mapped to the same local clone if and only if they
are equivalent with respect to primitive positive interdefinability.

(3) Every local clone above Aut(Γ) is the polymorphism clone of a reduct of Γ.
(4) The mappings Pol and Inv are antiisomorphisms beween the lattice of lo-

cal clones above Aut(Γ) and the lattice of those reducts of the first-order
expansion of Γ which are closed under primitive positive definitions.

Proof. (1): Let Γ′ be the expansion of Γ by all first-order definable relations and
let ∆ be a reduct of Γ′. Its is easy to see and well-known that Aut(Γ) = Aut(Γ′).
Thus Pol(∆) ⊇ Aut(∆) ⊇ Aut(Γ′) = Aut(Γ). By Proposition 1, Pol(Γ) is a local
clone.
(2): If Pol(∆1) = Pol(∆2), then pp(∆1) = pp(∆2) by Theorem 4. On the other
hand, if Pol(∆1) ̸= Pol(∆2), then ⟨Pol(∆1)⟩ = Pol(∆1) ̸= Pol(∆2) = ⟨Pol(∆2)⟩.
Thus, Pol Inv Pol(∆1) ̸= Pol Inv Pol(∆2) by Proposition 3, and hence Inv Pol(∆1) ̸=
InvPol(∆2). Theorem 4 then implies pp(∆1) ̸= pp(∆2).
(3): Given a local clone C ⊇ Aut(Γ), consider ∆ := Inv(C). By Proposition 3 we
have C = ⟨C ⟩ = Pol(∆). It remains to show that ∆ is a reduct of Γ, i.e., ∆ ⊆ Γ′,
where Γ′ is the first-order expansion of Γ. But this is obvious, since C ⊇ Aut(Γ)
implies ∆ = Inv(C) ⊆ InvAut(Γ) = Γ′.
(4): By (1), (2), and (3), Pol is a bijective mapping from the pp-closed reducts of
Γ onto the local clones containing Aut(Γ). It is obvious from its definition that

THE REDUCTS OF EQUALITY 7

this mapping is antitone. By Theorem 4, the restriction of Inv to the local clones
containing Aut(Γ) is the inverse of Pol. �

The above theorem tells us that classifying reducts of ω-categorical structures up
to primitive positive interdefinability really amounts to understanding the lattice of
local clones containing its automorphisms; in our case, since clearly all permutations
are automorphisms of (N,=), we have to investigate local clones containing all
permutations of N.

3. The result

Via the Galois correspondence Inv–Pol, it is possible to describe the reducts of
(N,=) either on the relational or on the operational side. We will now give the
classification on the clone side in as much detail as is gainful at this point of the
paper; since we still want to spare the reader the technical details, we will have to
be informal at times.

An operation is called essentially unary iff it depends on at most one of its
variables. A unary clone is a clone all of whose operations are essentially unary.
Clearly, unary clones are just disguised monoids of transformations on N. The first
part of our result describes the locally closed unary clones containing the set SN of
all permutations of N.

Theorem 7. Let U be the lattice of locally closed unary clones containing SN.
Then:

(1) U is countably infinite.
(2) U is isomorphic to the lattice of order ideals of a certain partial order P on

the set of finite increasing sequences of positive natural numbers.
(3) In particular, both U and its inverse order are algebraic (that is, isomorphic

to the subalgebra lattice of an algebra), and U is a distributive lattice.
(4) U is a well-quasi-order, that is, there exist no infinite descending chains

and no infinite antichains in U. (In fact, U is a better-quasi-order.)
(5) All elements of U are finitely generated over SN, i.e., for every M ∈ U there

exists a finite set F ⊆ O such that M = ⟨F ∪ SN⟩.

Theorem 7 will be proven in Section 4; it is also there that the partial order
P is defined. We remark that U is an exceptionally well-behaved part of Clloc(N),
since Clloc(N) is far from satisfying any statement of the theorem: |Clloc(N)| = 2ℵ0 ,
Clloc(N) is not algebraic (not even upper continuous), and Clloc(N) does not satisfy
any non-trivial lattice identities [Pin08].

Having described the unary clones, we proceed as follows: Consider any unary
clone. Then this clone has only essentially unary operations, and therefore differs
only formally from a monoid M of transformations. Now it turns out that the
set of all local clones C which have M as their unary fragment, i.e., which satisfy
C ∩ O(1) = M , forms an interval IM of the lattice Clloc(N); intervals of this form
are called monoidal. The smallest element of IM is the unary clone we started
this argument with, namely the clone of those essentially unary operations which
are “elements” of M ; this clone is just ⟨M ⟩. The largest element of IM is called
Pol(M) and contains all f ∈ O satisfying f(g1, . . . , gn) ∈ M whenever g1, . . . , gn ∈
M . (This notation is consistent with our previous use of Pol, if one thinks of
the elements of M as N-ary relations.) Clearly, the monoidal intervals constitute a
natural partition of Clloc(N). Our strategy for describing the local clones containing
SN is to determine the monoidal interval IM for each locally closed monoid M
containing SN; confer Figure 1.

8 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

<O

(1)>

O = Pol(O (1))

Pol(M2)

<M2 >

Pol(I)

Pol(I +)
<M1 >

Pol(M1)

I

I +

Figure 1. Monoidal intervals

The following theorem describes IM for all monoids M which contain an opera-
tion which is neither injective nor constant. We refer the reader to Section 5, which
contains the proof of the theorem, for the definition of quasilinearity.

Theorem 8. Let M be a locally closed monoid containing SN as well as a non-
constant and non-injective operation. Then:

(1) If M = O(1), then IM is a chain of order type ω + 1 with largest element
O.
Its smallest element is the clone ⟨O(1)⟩ of all essentially unary operations.
Its second smallest element is Burle’s clone Q of all operations which are
either essentially unary or quasilinear.
For n ≥ 3, its n-th smallest element is the clone Kn of all operations which
are either essentially unary or whose range contains less than n elements.

(2) If M ̸= O(1), then there exists a maximal natural number k = k(M) ≥ 1
such that M contains all unary operations which take at most k values.
If k = 1, then IM has only one element ⟨M ⟩.
Otherwise, IM is a finite chain of length k + 1, and:
Its smallest element is ⟨M ⟩.
Its second smallest element QM consists of ⟨M ⟩ plus all quasilinear oper-
ations.
For 3 ≤ n ≤ k+ 1, its n-th smallest element K M

n consists of ⟨M ⟩ plus all
operations whose range is smaller than n.

THE REDUCTS OF EQUALITY 9

We now turn to the monoid I locally generated by SN. This, as a quick check
shows, consists of all injections in O(1). Its monoidal interval is the hardest to
understand, and we need a few definitions before stating the theorem describing it.

Definition 9 (The Horn clone H). Let H be the set of operations which are, up
to fictitious variables, injective.

Definition 10 (The Bar clone B). Let f ∈ O(2) and let k ≥ 1. If there exists an
injection p ∈ O(2) such that f(x1, x2) = p(x1, x2) for all x1 ≥ k and f(x1, x2) =
p(x1, 0) = x1 for all x1 < k, then we call f a k-bar function. Let B be the clone
generated (in the sense of 3.1) by any bar function, i.e., the smallest local clone
containing that bar function and all permutations of N (we will see in Section 6.2
that this definition makes sense).

Definition 11 (Richard R). Let 1 ≤ i ≤ n. We call an operation f ∈ O(n)

injective in the i-th direction iff f(a) ̸= f(b) whenever a, b ∈ Xn and ai ̸= bi. We
say that f ∈ O(n) is injective in one direction iff there exists 1 ≤ i ≤ n such that
f is injective in the i-th direction. Let R be the set of all operations which are
injective in one direction.

Definition 12 (The odd clone S). Let f3 ∈ O(3) any operation satisfying the
following:

• f3(x, 1, 1) = 1, f3(2, x, 2) = 2, f3(3, 3, x) = 3, and
• For all other arguments, the function arbitrarily takes a value that is distinct
from all other function values.

We set S to be the clone generated by f3, i.e., the smallest local clone containing
f3 and SN.

The following theorem summarizes the highlights of the monoidal interval cor-
responding to the monoid I generated by SN; confer Figure 2. More detailed
descriptions of the clones of the theorem as well as other clones in that interval can
be found in Section 6.

Theorem 13. The monoid locally generated by SN is the monoid I of injections,
and:

(1) The largest element of II , Pol(I), equals Pol({̸=}), where ̸= is the (bi-
nary) inequality relation.

(2) H is the unique cover of ⟨I ⟩ in II , and all elements of II except ⟨I ⟩ con-
tain H . Moreover, H is generated by any binary injection, and Inv(H)
consists of all relations definable by a Horn formula.

(3) B is the unique cover of H in II , and all elements of II except ⟨I ⟩ and
H contain B.

(4) R,S are incomparable clones in II and every clone in II is either con-
tained in S or contains R.

(5) The number of elements of II containing R equals the continuum: In fact,
the power set of ω, ordered by reverse inclusion, has an order embedding
into the interval [R,Pol(I)]. In particular, the same holds for the interval
II , as well as for the set of local clones above SN.

The last statement of Theorem 13 is among the hardest to prove in this paper,
and has strong consequences for pp classification projects, so that it deserves an
own corollary.

Corollary 14. Let Γ be any relational structure. Then the number of its pp-closed
reducts is uncountable. In fact, there exists an order embedding of the power set of
ω into the lattice of pp-closed reducts of Γ.

10 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

<I >

B

R

Pol({≠})

(2ω,⊇) S

R !S

H

<R "S >

Figure 2. The monoidal interval of I

It is for this reason that we cannot expect to completely characterize the pp-
closed reducts of any relational structure. In our case, we obtain a complete char-
acterization of the closed monoid lattice and of all monoidal intervals except for
those corresponding to the monoids I and I + (see below), where we must content
ourselves with some insights on the structure of those intervals.

It remains to describe the monoidal intervals of those monoids which contain all
injections, and some constant operations. Clearly, there is only one such monoid,
namely the monoid I + consisting of all constants and all injections. In general,
for any set of operations F ⊆ O, write F+ for F plus all constant operations, and
F− for F without all constant operations. It turns out that II + is a complete
sublattice of II , as described in the following theorem:

Theorem 15. Let I + be the monoid of all injective and of all constant operations.
Then:

(1) If C ∈ II + , then C− is a local clone in II .
(2) ⟨I +⟩− = ⟨I ⟩ and (Pol(I +))− = S .
(3) The mapping from II + into the subinterval [⟨I ⟩,S] of II which sends

every clone C to C− is a complete lattice embedding which preserves the
smallest and the largest element.

(4) If C ,D ∈ II + , then C (D iff C− (D−.
(5) For all C ∈ II which do not contain R, ⟨C+⟩ is a local clone in II + .

THE REDUCTS OF EQUALITY 11

(6) All clones C in II + are of this form, as C = (C−)+.
(7) ⟨R+⟩ = O.
(8) H + is the unique cover of ⟨I +⟩ in II + .
(9) B+ is the unique cover of H + in II + .

We remark that the mapping that sends every C ∈ II + to C− is not surjective
onto the interval [⟨I ⟩,S]; see the remark after Proposition 85.

The following sections contain the proof of our result, and of course more de-
tailed definitions of the structures involved. Each theorem corresponds to a section:
Theorems 7, 8, 13 and 15 are proven in Sections 4, 5, 6, and 7, respectively.

3.1. Additional notation and terminology. In addition to the notation intro-
duced so far, we establish the following conventions. If f ∈ O, since we are only
interested in local clones containing SN, we abuse the notation ⟨·⟩ and write ⟨f⟩
for the local clone generated by f together with SN. For f, g ∈ O, we say that f
generates g iff g ∈ ⟨f⟩. Similarly for g ∈ O and F ⊆ O, we say that F generates
g iff g ∈ ⟨F ⟩. If f ∈ O, we write ran(f) for its range.

For a relation R, we will usually write Pol(R) instead of Pol({R}) for the set of
all operations which preserve R. If a is an n-tuple, then we refer by ai to the i-th
component of a, for all 1 ≤ i ≤ n.

4. The basis: Monoids

We prove Theorem 7 describing all unary clones containing SN. Recall that a
unary clone consists only of operations depending on at most one variable, and is
therefore a disguised monoid of transformations. For convenience, we therefore only
deal with unary operations and monoids in this section. In particular, we adjust
the meaning of certain notations for this section: For example, ⟨F ⟩ refers to the
local monoid (rather than the local clone) generated by a set F ⊆ O(1) together
with SN.

The various statements of Theorem 7 are obtained in Propositions 26, 30, 32
and Corollaries 27 and 31.

In a first lemma, we officially state what we already observed in the last section,
namely that SN locally generates all unary injections.

Lemma 16. Let M ⊇ SN be a locally closed monoid. Then M contains the monoid
I of all unary injective operations.

Proof. Clearly, on any finite set every injection can be locally interpolated by a
suitable permutation. �

The following lemma implies that except for the full transformation monoid
O(1), all closed monoids above SN consist of the injections plus some finite range
operations.

Lemma 17. Let f ∈ O(1) have infinite image, and assume it is not injective. Then
f generates all unary operations.

Proof. We skip the fairly easy proof, and refer the reader to the very similar (first
part of the) proof of Lemma 20. �

We thus wish to know, given a finite range operation, which other finite range
operations it generates. For that, we need the following concept.

Definition 18. Let f ∈ O(1) have finite range, and write n = | ran(f)|. Enumerate
the kernel classes of f by C1, . . . , Cn in such a way that their sizes are increasing.
The kernel tuple κf ∈ (ω + 1)n of f is the n-tuple (|C1|, . . . , |Cn|).

12 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

Note that the last entry of a kernel tuple κf always equals ω since f must have
at least one infinite kernel class.

Having assigned a finite sequence with positive values in ω + 1 to every finite
range operation, we are ready to order such sequences and give the definition of P.

Definition 19.

• Let k, n ≥ 1. For a ∈ (ω + 1)k and b ∈ (ω + 1)n we write a ⊑ b iff k ≤ n
and the following holds: There exists a partition {A1, . . . , Ak} of {1, . . . , n}
into k classes such that ai ≤

∑
j∈Ai

bj for all 1 ≤ i ≤ k.
• We write P∞ for the partial order of finite increasing sequences of non-zero
elements of ω + 1 ordered by ⊑.

• We write P for the partial order of the finite increasing sequences of positive
natural numbers (not of values in ω + 1!) ordered by ⊑.

Observe that for finite increasing sequences a, b ∈ (ω+1)n of the same length we
have a ⊑ b iff ai ≤ bi for all 1 ≤ i ≤ n. The following lemma justifies our definition
of ⊑.

Lemma 20. Let f, g ∈ O(1) have finite range. Then f generates g iff κg ⊑ κf .

Proof. Assume first that κg ⊑ κf . Let κf have length n and κg have length k ≤ n.

If k = n, then κgi ≤ κfi for all 1 ≤ i ≤ n. It is then not hard to see that for any
finite set A ⊆ N, there exist permutations α, β such that β ◦ f ◦ α agrees with g
on A. If k < n, then let A1, . . . , Ak be the partition provided by the definition
of ⊑. Enumerate the kernel classes of f by C1, . . . , Cn and in such a way that Cj

contains κfj elements, for all 1 ≤ j ≤ n. Now take any i, j ∈ {1, . . . , n} which are
distinct but equivalent with respect to the partition A1, . . . , Ak. By composing f
with a permutation, we may assume that f maps the classes Ci and Cj into the
class Cn, and all other classes into classes ̸= Cn in such a way that no two classes
are mapped into the same class. Then tn−1 := f ◦ f is a function with n− 1 values
in its range, and κg ⊑ κtn−1 . Proceeding like this, we arrive after n − k steps at
an operation tk which takes k values and which satisfies κgi ≤ κtki for all 1 ≤ i ≤ k.
Thus we are back in the case k = n, and the proof of this direction of the lemma is
finished.

For the other direction, assume that f generates g. Let k, n be as before. Since
the local clone generated by f is the topological closure of the set of term operations
generated by f , we have that for every q ∈ N, there exists a term tq consisting of
permutations and f which agrees with g on the finite set {0, . . . , q}. We can write
each tq as tq = sq ◦ f ◦ αq, where sq consists of permutations and f , and αq is a
permutation. Thus in every term tq, certain classes of f are joined by the application
of sq (and shifted by αq, which we do not care about for the moment); since there
are only finitely many possibilities of joining classes of f , there is one constellation
which appears for infinitely many q. Since q ≤ q′ implies that tq′ agrees with g
on {0, . . . , q}, by replacing terms we may assume that the same classes are joined
for all q ∈ N. Naturally, this partition of classes induces a partition A1, . . . , Aw on
{1, . . . , n} via κf . If p, r ≤ q are equivalent modulo the kernel of g, then the kernel
classes of f containing αq(p) and αq(r), respectively, are equivalent with respect
to the partition A1, . . . , Aw. On the other hand, if p, r ≤ q are not in the same
class of g, then αq(p) and αq(r) will not lie in equivalent f -classes. Thus, taking q
large enough so that {0, . . . , q} meets all kernel classes of g, we can assign to every
g-class (with, say, index 1 ≤ u ≤ k) an equivalence class Ae ∈ {A1, . . . , Aw} in an
injective way; in particular, k ≤ w. For infinitely many q, this assignment is the
same; again, by replacing terms where necessary, we may assume it is always the
same. Since for large enough q arbitrarily large parts of the kernel classes of g are

THE REDUCTS OF EQUALITY 13

hit, we must have κgu ≤
∑

j∈Ae
κfj for all 1 ≤ u ≤ k, where Ae is the class assigned

to u. By joining some classes Ai, we can obtain w = k without changing the latter
fact. �

Lemma 21. Let F ⊆ O(1). If there is no finite bound to the sizes of the ranges of
the finite range operations in F , then F generates O(1).

Proof. Let f be any finite range operation, and let A ⊆ N be finite. Then there
exists a finite range function g which agrees with f on A and whose kernel sequence
κg has only one entry equal to ω. Now there exists a finite range operation h in
F with κg ⊑ κh, so g is generated by F . This proves that f is generated by F ,
and hence F generates all finite range operations. Clearly, any operation in O(1)

can be interpolated on any finite set by a finite range operation, which implies our
assertion. �

The following is a consequence of Lemma 20; it says that if finitely many finite
range operations join forces, the joint generating power is not more than the sum
of the generating powers of the single operations.

Proposition 22. Let F ⊆ O(1) be finite. Then ⟨F ⟩ =
∪
{⟨f⟩ : f ∈ F}.

Proof. The non-trivial direction is to show ⟨F ⟩ ⊆
∪
{⟨f⟩ : f ∈ F}. If t is any

term made of operations in F , then it is of the form r ◦ f , where r is a term and
f ∈ F . Clearly, κt ⊑ κf , implying t ∈ ⟨{f}⟩. Thus,

∪
{⟨f⟩ : f ∈ F} contains all

terms that can be built from F . This implies that the union is a monoid. Being a
finite union of (topologically) closed sets

∪
{⟨f⟩ : f ∈ F} is itself closed, and hence

contains even ⟨F ⟩. �

We now assign ideals of P to local monoids containing SN.

Definition 23. For a local monoid M ⊇ SN, we set

Id∞(M) = {κf : f ∈ M , f has finite range} ⊆ P∞.

For a sequence s ∈ P, write s ∗ ∞ ∈ P∞ for the sequence obtained by gluing ω to
the end of s. Now set

Id(M) = {s ∈ P : s ∗∞ ∈ Id∞(M)}.

By Lemma 20, Id(M) is always an ideal of P. Conversely, we show in the
following how to get closed monoids from ideals of P.

Definition 24. Let k ≥ 1 and let (sn)n∈ω be an ascending sequence of k-tuples in
P∞. We write limn(s

n) for the smallest (according to ⊑) k-tuple s in P∞ satisfying
sn ⊑ s for all n ∈ ω.
For an ideal I (P, we let Mon(I) contain all operations in O(1) which are either
injective, or which have finite range and whose kernel sequence is a limit of an
ascending sequence of k-tuples of the form s ∗∞, where s ∈ I.

Lemma 25. Let I (P be an ideal. Then Mon(I) is a local monoid containing SN.

Proof. Observe that if f ∈ Mon(I) is a finite range function, and if g ∈ O(1)

is a finite range function such that κg ⊑ κf , then Mon(I) contains also g. For,
let the range of f have n elements, let the range of g have k ≤ n elements, and
let A1, . . . , Ak be the partition of {1, . . . , n} provided by the definition of ⊑. A
quick check shows that we may assume Ak = {n}. Let (si)i∈ω be the sequence of
(n − 1)-tuples in I such that limi(s

i ∗ ∞) = κf . Set tij :=
∑

r∈Aj
sir, for all i ∈ ω

and all 1 ≤ j ≤ k − 1. Since ti ⊑ si, all ti are elements of I, provided they are
actually increasing tuples. Fixing i, define inductively wi

j := max{tir : r ≤ j}, for

14 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

all 1 ≤ j ≤ k− 1. It is not hard to see that the wi are in I, too, and that κg is the
limit of the increasing sequence (wi ∗∞)i∈ω, so g ∈ Mon(I).

Using Lemma 20 and Proposition 22, one now readily derives from this that
Mon(I) is indeed a monoid. It remains to show that Mon(I) is local. Let f ∈ O(1),
and assume it can be interpolated on all finite sets by operations from Mon(I);
assume also that it is not injective. If f has infinite range, then Mon(I) must
contain non-injections of arbitrarily large finite range, which in turn implies that
I contains tuples of arbitrary length. The definition of P then shows that I = P,
a contradiction. Thus, all non-injections in the local closure of Mon(I) have finite
range. Assume again that f is such a non-injection, and assume κf has length k.
Fix for every set {0, . . . , n} an operation fn ∈ Mon(I) which agrees with f on this
set. From some n on, the fn will have to take at least k values, so we take the
liberty of assuming that all fn have this property. An easy manipulation of the fn
using the fact that g ∈ Mon(I) whenever κg ⊑ κfn allows us to assume that every
fn takes exactly k values and that κfn ⊑ κf for all n ∈ ω. By thinning out the
sequence, we may also assume that the kernel sequences of the fn are increasing
with respect to ⊑. We then have limn(κ

fn) = κf . Now replace each k-tuple κfn by
a (k−1)-tuple sn ∈ P with sn∗∞ ⊑ κfn in such a way that limn(s

n∗∞) = limn(κ
fn)

and that the sequence (sn)n∈ω is still ascending. Clearly, sn ∈ I for all n ∈ ω, and
so κf = limn s

n implies f ∈ Mon(I). Hence, Mon(I) is locally closed. �

Proposition 26. The mapping σ : M 7→ Id(M) is an isomorphism from the lattice
U of locally closed monoids that contain SN onto the lattice of ideals of P.

Proof. That Id(M) is an ideal of P for all monoids M follows directly from Lemma 20.
From Lemma 21 we know that Id(M) = P iff M = O(1), and obviously Id(M) = ∅
iff M contains only injections. We have seen in Lemma 25 that for any proper
ideal I of P, Mon(I) is a local monoid, and a straightforward verification shows
Id(Mon(I)) = I, thus σ is onto. Also, an easy check using Lemma 20 shows that
Mon(Id(M)) = M for every local monoid which contains SN and all of whose non-
injections have finite range, so σ is injective. It is obvious that both σ and σ−1 are
order-preserving. �

Recall that a lattice is algebraic iff it is isomorphic to the subalgebra lattice of
an algebra.

Corollary 27. The lattice U of local monoids above SN is distributive. Moreover,
U and its dual order are algebraic.

Proof. By the preceding proposition, U is the lattice of ideals of a partial order.
The assertions then follow from [CD73, p. 83]. �

Definition 28. A partial order is called a well-quasi-order iff there are no infinite
descending chains and no infinite antichains in it.
We call a sequence (an)n∈ω in a partial order with order relation ≤ bad iff for no
i < j ∈ ω we have ai ≤ aj .

A standard application of the infinite Ramsey’s theorem shows that a partial
order is well-quasi-ordered iff it contains no bad sequence (confer e.g. [Die05]).

Lemma 29. The set of finite sequences with values in ω + 1 ordered by ⊑ is a
well-quasi-order. In particular, its suborders P∞ and P are well-quasi-orders.

Proof. Assume that (an)n∈ω were a bad sequence of such finite sequences. For every
n ∈ ω, let wn be the number of occurrences of ω in the tuple an. If the sequence
(wn)n∈ω were unbounded, then we could find n ∈ ω such that wn is greater than
the length of a0, implying a0 ⊑ an, a contradiction. Thus, we can thin out the

THE REDUCTS OF EQUALITY 15

sequence in such a way that all wn are equal. Let bn be the tuple obtained from
an by leaving away the wn components equal to ω, for all n ∈ ω. Clearly, the bn

form a bad sequence of tuples with values in ω. Now if the sequence of lengths of
the bn were unbounded, then we could find some i ∈ ω such that the length of bi is
greater than the sum of all components of b0, hence b0 ⊑ bi, a contradiction. Thin
out the sequence (bn)n∈ω is such a way that all tuples have the same length k. Now
for all 1 ≤ j ≤ k, we thin out our sequence so that the sequence consisting of the
j-th component of the bn is increasing; we can do this since ω is well-ordered. The
remaining sequence of bn is ascending, a contradiction. �

In general, the ideal lattice of a given well-quasi-order need not be a well-quasi-
order. Certain well-quasi-orders which satisfy a certain strong combinatorial prop-
erty and which are called better-quasi-orders, however, do have the property that
their ideal lattice is well-quasi-ordered. Although giving the definition of a better-
quasi-order (see e.g. [Mil85]) would be out of scope of the present paper, we remark
that it follows from the basic theory of better-quasi-orders that our well-quasi-order
P is in fact a better-quasi-order (as Kruskal states in [Kru72]: “All naturally known
well-quasi-ordered sets which are known are better-quasi-ordered.”). Therefore, the
lattice of ideals of P is a well-quasi-order (and, in fact, even a better-quasi-order as
well). In order to spare the reader the pain of reading the definition of a better-
quasi-order, we prove the following

Proposition 30. The lattice of ideals of P is a well-quasi-order.

Proof. Suppose that (In)n∈ω were a bad sequence of ideals. By taking away the
first element of the sequence, we may assume that In ̸= P for all n ∈ ω. Consider
for all n ∈ ω the set Jn consisting of In plus all limits of ascending chains of tuples
of the same length in In (as in Definition 24): So Jn ⊆ P∞ for all n ∈ ω. In
Jn, every chain is bounded from above: If C is a chain in Jn, then there is some
k ∈ ω such that all tuples in C have length at most k; for otherwise, In contains
sequences of arbitrary length, implying In = P contrary to our assumption. But if
the elements of C all have length at most k, then C is bounded by construction of
Jn (i.e., adding the limits of ascending chains).

Applying Zorn’s lemma, we get that every element of In is below some maximal
tuple of Jn. By construction of Jn, every tuple in P which is below a maximal tuple
of Jn also is an element of In. The maximal elements of Jn form an antichain with
respect to ⊑. By Lemma 29, the set of sequences in ω+1, equipped with the order
⊑, is a well-quasi-order. In particular, the antichain of maximal elements of Jn is
finite. For every n > 0, there exists a tuple in I0 \ In. Thus, there is a maximal
tuple of J0 which is not in Jn. We can thin out our sequence of In so that this
witnessing maximal tuple is the same for all n > 0; denote it by s0. Now we do
the same for J1 and all n > 1, obtaining a maximal tuple s1 ∈ J1 which is not in
any Jn with n > 1. We continue inductively in this fashion, obtaining a sequence
(sn)n∈ω. By construction, this sequence is a bad sequence in the order of finite
(ω + 1)-valued sequences with ⊑, a contradiction. �
Corollary 31. The lattice of local monoids above SN is well-quasi-ordered.

Proposition 32. Every local monoid M above SN is finitely generated over SN,
i.e., there exists a finite F ⊆ O(1) such that M = ⟨F ⟩. Moreover, the number of
such monoids is countable.

Proof. If M = O(1), then it is generated by any non-injective operation with infinite
range, by Lemma 17. Assume henceforth that M contains only injections and finite
range operations. Set J to consist of all kernel sequences of operations in M . By
local closure and what is by now a standard argument, one sees that every chain

16 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

in J has an upper bound in J (confer e.g. the proof of Lemma 25). Hence, Zorn’s
lemma implies that every element of J is below a maximal element of J . The
maximal elements of J form an antichain with respect to ⊑, and therefore are finite
in number by Lemma 29. Pick for each maximal tuple one corresponding operation
in M . The set F of operations thus chosen is as desired, by Lemma 20.

The above argument shows that every local monoid containing SN is determined
by a finite set of finite sequences with values in ω+1. There are only countably many
possibilities for such finite sets, so the number of such monoids is countable. �

5. Clones with essential finite range operations

Having understood the structure of the lattice of local monoids containing SN,
we move on to describe the monoidal interval corresponding to each such monoid.
In this section, we will prove Theorem 8, which deals with those monoids which
contain a non-constant and non-injective operation.

Definition 33. An operation f on a set Y is called essential iff it is not essentially
unary, i.e., it depends on at least two of its variables.

We will see that except for O, all clones whose unary fragment contains a non-
constant and non-injective operation contain only essential operations with finite
range, and none with infinite range; hence the title of this section.

It turns out that the monoidal intervals of the monoids under consideration here
are all chains which can be described nicely. This is essentially a consequence of a
theorem from [HR94] for clones on finite sets, and the power of local closure. In
order to state that theorem, we need the following definition.

Definition 34. Let Y be any set. We call an n-ary operation f on Y quasilinear
iff there exist functions ϕ0 : {0, 1} → Y and ϕ1, . . . , ϕn : Y → {0, 1} such that
f(x1, . . . , xn) = ϕ0(ϕ1(x1)+̇ . . . +̇ϕn(xn)), where +̇ denotes the sum modulo 2.

Theorem 35 ([HR94]). Let Y be a finite set of at least three elements and let f
be an essential operation on Y . Set k := | ran(f)|. Then, writing SY for the set of
all permutations on Y , we have:

• If k ≥ 3, then f together with SY generate all operations on Y which take
at most k values.

• If k = 2 and f is not quasilinear, then f together with SY generate all
operations on Y which take at most two values.

• If k = 2, f is quasilinear, and |Y | is odd, then f together with SY generate
all quasilinear operations on Y .

Observe that there is no such thing as local interpolation on finite Y , so “gener-
ates” in the theorem refers to the term closure.

The following lemma is the infinite local version of this theorem.

Lemma 36. Let f ∈ O(n) be essential, and assume that | ran(f)| = k, where
2 ≤ k < ω.

(1) If k ≥ 3, then f generates all operations which take at most k values.
(2) If k = 2 and f is not quasilinear, then f generates all functions which take

at most k values.
(3) If k = 2 and f is quasilinear, then f generates all quasilinear operations.

Proof. (1): Let any operation g on | ran g| ≤ k be given. It suffices to show that
for every n ∈ ω, f generates an operation h which agrees with g on {0, . . . , n}.
Choosing n large enough, we may assume that the ranges of both f and g are
contained in {0, . . . , n}. Also, again by making n larger, we may assume that the
restriction f ′ of f to {0, . . . , n} is essential and takes k values. Then f ′ is an

THE REDUCTS OF EQUALITY 17

essential operation on {0, . . . , n} which takes k values, and hence generates all such
functions by Theorem 35. In particular, f ′ generates a function h′ which agrees
with g on {0, . . . , n}. The permutations which appear in the term which represents
h′ can be extended to X by the identity; occurrences of f ′ can be replaced by f .
The resulting term h is a function on X which still agrees with g on {0, . . . , n}.
(2): Again, let g and n be given. Enlarge n as before, if necessary, so that the
restriction of f to {0, . . . , n} is not quasilinear. Now we argue as in the preceding
proof.
(3): The proof works as before; n only has to be chosen odd in order to allow
application of Theorem 35. �

With the preceding lemma, we see that it is quite easy to understand what
happens when we add an essential finite range operation to a monoid. We will
now show that to the monoids relevant for this section, we in fact cannot add
an essential infinite range operation without generating O. To establish this, we
distinguish between those operations which preserve the binary inequality relation
̸=, and those which do not. The latter case can be eliminated right away:

Proposition 37. Let f be an essential operation with infinite image. Then f
preserves ̸=, or it generates all operations.

The proposition will follow from the following lemma.

Lemma 38. Let f ∈ O(n) have infinite image, and assume it does not preserve ̸=.
Then f generates a unary non-injective function that has infinite range.

Before proving the lemma we show how the proposition follows from it:

Proof of Proposition 37. By Lemma 38, f generates a unary non-injective operation
with infinite range; Lemma 17 then implies that f generates all unary operations.
Let k ≥ 1 be arbitrary. We can find a unary finite range operation gk such that
gk(f) is essential and takes at least k values. By Lemma 36, this implies that f
generates all operations which take not more than k values. Since k was arbitrary
and by local interpolation, this implies that f generates O. �

Proof of Lemma 38. We only have to prove something if f is essential, for f is itself
a unary non-injective operation with infinite range otherwise. We also assume f to
depend on all of its variables.
Case 1: There exist injective functions g1, . . . , gn ∈ O(1) such that f(g1, . . . , gn) is
injective. Choose S ⊆ X infinite such that X\S and X\(g1[S] ∪ . . . ∪ gn[S]) are
infinite. Since f does not preserve ̸=, there exist c, d ∈ Xn such that ci ̸= di for
all 1 ≤ i ≤ n and such that f(c) = f(d). We may assume that those values are
not in S ∪ g1[S] ∪ . . . ∪ gn[S]. For all 1 ≤ i ≤ n, set g′i = gi on S and g′i(c1) = ci
and g′i(d1) = di. Write T = S ∪ {c1, d1}. On T , F = f(g′1, . . . , g

′
n) is a function

with infinite range which is not injective. Furthermore, the g′i can be extended
to permutations on X since they are injective and have co-infinite domains and
ranges. This completes the first case.
Case 2: f(g1, . . . , gn) is not injective for all injective g1, . . . , gn ∈ O(1). Since f is
not constant, there exist injections u1, . . . , un ∈ O(1) such that f(u1, . . . , un) is not
constant. By assumption for this case we have that f(u1, . . . , un) is not injective.
Thus, f(u1, . . . , un) generates a function r ∈ O(1) which is constant except for one
argument, at which it takes another value. To see this, just observe that for such
an r, the kernel sequence κr satisfies κr ⊑ κh for any non-constant h ∈ O(1), and
apply Lemma 20. Consider arbitrary g1, . . . , gn ∈ O(1) such that f(g1, . . . , gn) is
injective. Such functions exist since f has infinite range. Pick an infinite S ⊆ X on
which each gi is either injective or constant. Observe that it is impossible that all

18 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

those restrictions of gi are constant. Say the restriction of gi to S is constant with
value ci for 1 ≤ i ≤ k, where 1 ≤ k < n.
Since f depends on its first variable, there exist ck+1, . . . , cn ∈ X and a1, . . . , ak ∈ X
such that f(a1, . . . , ak, ck+1, . . . , cn) ̸= f(c). For otherwise the value of f is deter-
mined by the values of the arguments xk+1, . . . , xn, contradicting that f depends
on x1. Choose dk+1, . . . , dn ∈ X such that f(c1, . . . , ck, dk+1, . . . , dn) is distinct
from both f(a1, . . . , ak, ck+1, . . . , cn) and f(c); this is possible as F (xk+1, . . . , xn) =
f(c1, . . . , ck, xk+1, . . . , xn) takes infinitely many values. Set ui(0) = ai and ui(x) =
ci if x ̸= 0, for 1 ≤ i ≤ k. Let moreover vi(1) = di, and vi(x) = ci if x ̸= 1,
for all k + 1 ≤ i ≤ n. All ui and vi are generated by the two-valued func-
tion r and hence by f . Set F (x) = f(u1, . . . , uk, vk+1, . . . , vn)(x). We have
that F (0) = f(a1, . . . , ak, ck+1, . . . , cn) and F (1) = f(c1, . . . , ck, dk+1, . . . , dn) and
F (2) = f(c) are pairwise distinct; also, F has finite range. Hence, f generates a
unary function F that takes exactly three values.
Pick a, b ∈ Xn such that ai ̸= bi for all 1 ≤ i ≤ n and such that f(a) = f(b). For
all 1 ≤ i ≤ k, let hi ∈ O(1) satisfy hi(0) = ai, hi(1) = bi, and hi(x) = ci for all
x /∈ {0, 1}. Clearly, hi is generated by the unary function F with three values, and
hence also by f . For all k+1 ≤ i ≤ n, let αi be any permutation that maps 0 to ai
and 1 to bi. Now we set G(x) = f(h1(x), . . . , hk(x), αk+1(x), . . . , αn(x)) and have
that G(0) = f(a) = f(b) = G(1) and G takes infinitely many values. �

We are thus left with essential infinite range operations which do preserve the
inequality relation. The crucial theorem here has been shown in [BK08a].

Theorem 39. Every essential operation f ∈ Pol(̸=) generates a binary injective
operation.

Able to produce a binary injection, we use this operation in order to enlarge
ranges of unary operations:

Lemma 40. Let f ∈ O(2) be injective, and let g ∈ O be a non-constant function
with finite range. Then f and g together generate O.

Proof. Write k := | ran(g)|. Either g is itself (essentially) unary, or it generates
a non-constant unary operation which takes k values by Lemma 36. Pick such a
unary operation g0, and set k0 := k. The operation t(x, y) := f(g(x), g(y)) takes
k1 := (k0)

2 values. Hence, f and g together also generate a unary operation g1
which takes k1 values. Continuing in this fashion, and since k0 = k > 1, we
obtain unary operations of all finite ranges, and hence also O(1) by Lemma 20.
But clearly, for every operation h ∈ O(2), there exists a unary h′ ∈ O(1) such that
h(x, y) = h′(f(x, y)). Thus, since h was arbitrary, f and g generate O(2), and in
turn also O, as it is well-known and easy to see that ⟨O(2)⟩ = O. �

We are thus ready to prove Theorem 8.

Proof of Theorem 8. We are given a monoid M which contains an operation which
is neither constant nor injective. It follows from Lemma 40 that no clone properly
contained in O and containing M can have a binary injection. Therefore, by
Theorem 39, it cannot have any essential operation which preserves the inequality
relation. Nor can it contain an essential operation with infinite range which does
not preserve the inequality, by Proposition 37. Thus, it cannot contain any essential
operation with infinite range. We now distinguish the two cases of the theorem:
(1): If M = O(1), then the only clones above O(1) can be the ones mentioned in
the theorem, by Lemma 36. That these sets of operations are actually clones is a
straightforward verification and left to the reader.
(2): If M ̸= O(1), then there is a largest natural number k such that M contains all

THE REDUCTS OF EQUALITY 19

unary operations which take at most k values; this follows from Lemma 21. If k = 1,
then no clone having M as its unary fragment can have an essential operation, since
this operation would generate all quasilinear operations by Lemma 36, and hence all
unary operations with at most two values. Consider thus the case k > 1. Again by
Lemma 36, the only clones in IM can be ⟨M ⟩, QM and the K M

n , where n ≤ k+1.
It is easy to verify that these are indeed clones. �

6. Clones with essential infinite range operations

This section deals with the monoidal interval of II , the monoid of all injections,
and contains the proof of Theorem 13. Before we start with an outline of this sec-
tion, let us observe that as a straightforward verification shows, the largest element
of this interval, Pol(I), equals Pol(̸=) (this is statement (1) of Theorem 13). In
particular, all operations of clones in this interval have infinite range; hence the
title of this section.

In Subsection 6.1 we prove that H is the unique cover above ⟨I ⟩ in II , and
that Inv(H) is the set of all relations definable by a Horn formula (Theorem 13,
part (2)).

In Subsection 6.2 we prove that B is the unique cover of H in II (Theorem 13,
part (3)).

In Subsection 6.3 we present an infinite strictly decreasing chain of clones that
contain B, and are contained in S . To this end, we also give relational descriptions
of B and of S .

In Subsection 6.4 we show that R and S are incomparable, and that every clone
in II is either contained in S or contains R (Theorem 13, part (4)).

In Subsection 6.5 we show that the power set of ω embeds into the intervals of
those clones in II that contain R; in particular, the size of this interval equals the
continuum (Theorem 13, part (5)).

6.1. The Horn clone. In this subsection we show that ⟨I ⟩ has the cover H in
the monoidal interval II .

Recall from Definition 9 that H is the clone consisting of all operations f that
are essentially injective, i.e., all operations f that are the composition i(p1, . . . , pn)
of an injective operation i with projections p1, . . . , pn (it is straightforward to verify
that this set of operations indeed forms a locally closed clone). The clone H is also
called the Horn clone; the reason for this name will be given in Proposition 43.

Definition 41. Let Φ be a quantifier-free first-order formula where all atomic
subformulas are of the form x = y. Then Φ is called Horn if ϕ is in conjunctive
normal form (henceforth abbreviated CNF) and each clause in Φ contains at most
one positive literal.

Definition 42. Let ϕ(x1, . . . , xn) be a formula in CNF. We call ϕ reduced iff it
is not logically equivalent to any of its subformulas, i.e., there is no formula ψ
obtained from ϕ by deleting literals or clauses such that ϕ(a) iff ψ(a) for all a ∈ Nn.

Clearly, for every formula ϕ in CNF there exists a logically equivalent reduced
formula.

In the following proposition, the equvalence of (1) and (7) proves item (2) of
Theorem 13, stating that the Horn clone is the unique cover of ⟨I ⟩ in II . More-
over, items (5) and (6) provide finite relational generating systems of Inv(H), and
(2) provides a finite operational generating system (in fact: a continuum of such
systems) of H . Recall that a formula is Horn iff it is in conjunctive normal form
and each of its clauses contains at most one positive literal. Item (4) gives us a
syntactical description of the formulas defining relations in Inv(H).

20 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

Proposition 43. For all relations R with a first-order definition in (N,=) the
following are equivalent.

(1) R is preserved by an essential operation that preserves ̸=.
(2) R is preserved by a binary injective operation.
(3) Every reduced definition of R is Horn.
(4) R has a Horn definition.
(5) R has a pp definition in (N, ̸=, I) where

I := {(a, b, c, d) ∈ N4 | a = b→ c = d}

(6) R has a pp-definition in (N, N) where

N := {(a, b, c, d) ∈ N4 | a = b ̸= c = d ∨ |{a, b, c, d}| = 4}

(7) R is preserved by H .

Proof. The implication from (1) to (2) is Theorem 39.
For the implication from (2) to (3), suppose that Φ is a reduced formula that

defines R but is not Horn. Then there exists a clause ψ of Φ which contains two
equalities xi = xj and xk = xl. Construct ψ′ from ψ by removing the equation
xi = xj , and ψ′′ by removing xk = xl. Since Φ is reduced, there exist a, b ∈ Nn

such that ϕ(a) but not ϕ′(a), and ϕ(b) but not ϕ′′(b). Clearly, ai = aj , ak ̸= al,
bi ̸= bj , and bk = bl. Set c = f(a, b), where f is the binary injection preserving R.
Then ci ̸= cj , ck ̸= cl, and in fact ϕ(c) does not hold. Hence R is not preserved by
f , a contradiction.

The implication from (3) to (4) is trivial.
For the implication from (4) to (5), let Φ be a Horn formula. It suffices to

show that all clauses ψ of Φ have a pp definition in (N, I, ̸=). If ψ is of the form
(u1 = v1 ∧ · · · ∧ ul = vl) → u = v, consider the following pp formula.

∃w1, . . . , wl+1.I(w1, wl, u, v) ∧
∧

1≤i≤l

I(ui, vi, wi, wi+1)(1)

Assume that ui = vi for all 1 ≤ i ≤ l. In this case, the pp formula implies that
w1 = w2 = · · · = wl+1, and hence also implies that u = v. Now, if ui ̸= vi for some
1 ≤ i ≤ l, then for all choices of values for the other free variables the formula can
be satisfied by setting w1, . . . , wl+1 to values that are distinct from all other values.
Hence, the formula is a pp definition of ψ in (N, I). If ψ does not contain a positive
literal, consider the formula ∃u, v.(α ∨ u = v) ∧ u ̸= v, which is equivalent to ψ
(we assume that u and v are fresh variables). We have seen above that the term
in brackets is equivalent to a pp formula. It is then straightforward to rewrite the
whole expression as a pp formula.

For the implication from (5) to (6), it suffices to show that I and ̸= have pp
definitions in (N, N). For ̸=, this is obvious. To express a = b → c = d, consider
the pp formula

∃u, v, w.N(a, b, u, v) ∧N(a, b, v, w) ∧N(u,w, c, d) .

If a = b, the variables u, v, w must denote the same value, and hence the formula
implies c = d. If a ̸= b, then for all choices of values for c and d it is possible to
select values for u, v, w that satisfy the formula. Hence, the above formula is a pp
definition of I in (N, N).

It is straightforward to verify the implication from (6) to (7), because N is
preserved by projections and by injective operations.

The implication from (7) to (1) is immediate, since every at least binary injective
operation is essential and has infinite image. �

THE REDUCTS OF EQUALITY 21

6.2. The bar clone. We show that the bar clone B (confer Definition 10) is the
smallest clone below Pol(̸=) that strictly contains H , thus proving item (3) of
Theorem 13.

A smallest non-empty k-ary relation that is preserved by all permutations of N
is called an orbit of k-tuples. It is clear that every relation that is preserved by all
permutations is the union of a finite number of orbits of k-tuples. The following
lemma will be useful here and in the following subsections, and a proof can be found
in [BK08b].

Lemma 44. Let R be a k-ary relation that consists of m orbits of k-tuples. Then
every operation f that violates R generates an m-ary operation that violates R.

The relation N has been introduced in Proposition 43; we recall it for the con-
venience of the reader: N is the four-ary relation {(a, b, c, d) ∈ N4 | a = b ̸= c =
d ∨ |{a, b, c, d}| = 4}.

Lemma 45. Let f ∈ Pol(̸=)\H . Then f generates a binary operation that violates
N .

Proof. The operation f must violate the relation N . Indeed, otherwise we would
have f ∈ Pol(Inv(H)) = H , since all relations in Inv(H) have a primitive positive
definition in (N, N) by Proposition 43 – a contradiction. Since N consists of two
orbits of tuples, Lemma 44 implies that f generates a binary operation that violates
N . �

Clearly, the binary operation from Lemma 45 is essential and not injective.
Recall from Definition 10 that a binary function f is called a k-bar function iff

there exists an injection p ∈ O(2) such that f(x1, x2) = p(x1, x2) for all x1 ≥ k and
f(x1, x2) = p(x1, 0) = x1 for all x1 < k; recall also that B is the clone generated
by any bar function. We show next that B is well-defined.

Clearly, for fixed k ≥ 1, the k-bar functions generate each other. It is also easy
to see that if 1 ≤ n ≤ k, then any k-bar function generates all n-bar functions.

Lemma 46. Let k ≥ 1, and let f ∈ O(2) be a k-bar function and h ∈ O(2) be a
(k + 1)-bar function. Then f generates h.

Proof. Let f be a k-bar function, and g be a variant of the 1-bar which satisfies
g(k + 1, x2) = k + 1 for all x2 ∈ N, and which is injective otherwise. Clearly, g is
generated by f . Set h(x1, x2) = f(x1, g(x1, x2)). Let j ≤ k. Then h(j, x2) = j for
all x2 ∈ N since f(j, z) = j for all z ∈ N. Also, h(k + 1, x2) = f(k + 1, k + 1) for
all x2 ∈ N. Moreover, if a > k + 1 and b, c, d ∈ N and (a, b) ̸= (c, d), then it is
easy to see that h(a, b) ̸= h(c, d). Hence, h is essentially a (k+1)-bar function, the
only difference to a (k + 1)-bar function being the value of h(k + 1, x2), which can
be undone by composing any permutation which swaps k + 1 and h(k + 1, 0) with
h. �

The next lemma characterizes the binary operations in B. Recall the definition
of “injective in one direction” from Definition 11.

Lemma 47. Let f ∈ O(2). Then f ∈ B iff f is injective in one direction and for
all c ∈ N, each of the unary operations F (x) = f(x, c) and F ′(x) = f(c, x) is either
constant or injective .

Proof. Assume that f is of that form, and let n ≥ 2 be given. We can say without
loss of generality that f is injective in the first direction. Write {0, . . . , n} as a
disjoint union A ∪ B in such a way that f(c, x2) is injective for all c ∈ A, and
constant for all c ∈ B. If |B| = j, then there exist injections α, β and a j-bar
function g such that α(g(β(x1), x2)) agrees with f on {0, . . . , n}. Hence, f ∈ B.

22 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

We use induction over terms to show the other direction. The statement is true
for all bar-functions, including the projections. Assume it holds for f, g1, g2 ∈ B,
and consider t = f(g1, g2). Then t is injective in one direction (this is easy to see,
and also follows from Lemma 65 in Subsection 6.4). Let c ∈ N be arbitrary and
consider T (x) = t(x, c). By induction hypothesis, we have that G1(x) = g1(x, c)
and G2(x) = g2(x, c) are constant or injective. If both G1 and G2 are injective, then
so is T , since f is injective in one direction. If on the other hand both G1 and G2 are
constant, then T is constant as well. Assume therefore without loss of generality
that G1 is injective and G2 is constant with value d. Now if F (x) = f(x, d) is
constant, then so is T , and if F is injective, then the same holds for T again, and
we are done. �

Lemma 48. Let f ∈ Pol(̸=)(2) be essential and non-injective, and let k ≥ 2.
Then f generates a binary function g which is not injective but injective on k =
{0, . . . , k − 1}.

Proof. Without loss of generality we assume f(c, d) = f(c′, d) for some d ∈ N and
distinct c, c′ ∈ N. Pick any binary injection h. By Lemma 43, h is generated by
f . Set f ′(x1, x2) = h(f(x1, x2), x2). Then f ′ satisfies f ′(c, d) = f ′(c′, d), and is
injective in the 2-nd direction. Therefore, replacing f by f ′, we may assume that
f is injective in the 2-nd direction. We use induction over k to prove the assertion
of the lemma.
For the induction beginning, let k = 2. We may assume that there exist s > k
and distinct t, t′ > k with f(t, s) = f(t′, s). Indeed, otherwise f is injective on
the infinite square of pairs from {k + 1, . . .}, in which case we get the assertion by
applying permutations. Since f is essential, we may assume f(0, 0) ̸= f(1, 0). We
have that f(0, 1) /∈ {f(0, 0), f(1, 0)} and f(1, 1) /∈ {f(0, 0), f(1, 0)} as f is injective
in the 2-nd direction. Therefore, the only thing in our way to an injection on {0, 1}
is that possibly f(0, 1) = f(1, 1). In that case, we let a permutation α map f(0, 1)
to 0, f(t, s) to s, and set f ′(x1, x2) = f(x1, α(f(x1, x2))). It is easy to check that
f ′ is injective on 2 and satisfies f(t, s) = f(t′, s).
For the induction step, let f be injective on k, where k ≥ 2. We generate a function
g that is injective on k + 1 and satisfies g(t, s) = g(t′, s) for some s, t, t′ ∈ N with
t ̸= t′. Again, we pick a binary injection h and set f ′(x1, x2) = h(f(x1, x2), x2).
Clearly, f ′ is still injective on k. Moreover, f ′ satisfies f ′(c, d) = f ′(c′, d), and is
injective in the 2-nd direction. Therefore, replacing f by f ′, we may henceforth
assume that f is injective in the 2-nd direction.
As in the induction beginning, we may assume that there exist s > k and distinct
t, t′ > k with f(t, s) = f(t′, s). Since f is injective in the 2-nd direction we have
f(t, s) /∈ f [(k + 1)2].
If f(k, n) = f(i, n) for some i < k and n ≤ k, then we do the following: Choose a
permutation α that exchanges k with some j < k for which j ̸= i, and which is the
identity otherwise. Let β be a permutation that maps {f(0, n), . . . , f(k, n)} into k,
and f(t, s) to s. Now set f ′(x1, x2) = f(α(x1), β(f(x1, x2))). We have:

• All points u, v ∈ N2 that had different values under f still have different
values under f ′; in particular, f ′ is injective in the 2-nd direction, and
injective on k.

• f ′(i, n) ̸= f ′(k, n).
• f ′(t, s) = f ′(t′, s).

If we repeat this procedure for all n ≤ k for which there exists i < k with f(k, n) =
f(i, n), then in the end f(j, n) ̸= f(k, n) for all j < k and all n ≤ k. Now the
only non-injectivity that could be left on k + 1 could be that f(i, k) = f(j, k)
for some distinct i, j < k. One gets rid of this setting a last time g(x1, x2) =

THE REDUCTS OF EQUALITY 23

f(x1, β(f(x1, x2))), where β is a permutation that maps {f(0, k), . . . , f(k, k)} into
k, and f(t, s) to s. �

Lemma 49. Let f ∈ Pol(̸=)(2) be essential and non-injective. Then it generates a
1-bar function.

Proof. Fix a 1-bar function b. We show that for arbitrary k ≥ 2, f generates a
function which agrees with b on k. Define a finite sequence of natural numbers
(mj)j≤k by setting m0 = k, and mj+1 = (mj)

2. By Lemma 48 and the use of
permutations, we can produce a function g which is injective on {1, . . . ,mk−1}×mk

and satisfies g(0, c) = g(0, c′) = c for some distinct c, c′ ∈ N. Moreover, we may
assume that g[{1, . . . ,mk−1 − 1} × mk−1] ⊆ mk. We first want to produce a
function g′ which is injective on {1, . . . ,mk−1 − 1} ×mk−1 and satisfies g′(0, 0) =
g′(0, c) = g′(0, c′) = c. There is nothing to show if g(0, 0) = c. Otherwise, we may
assume g(0, 0) = c′, and set g′(x1, x2) = g(x1, g(x1, x2)); it is easy to check that g′

has the desired properties. Replace g by g′. By repeating this procedure we can
produce a function g′ which is injective on {1, . . . ,mk−2 − 1} ×mk−2 and satisfies
g′(0, 1) = g′(0, 0) = g′(0, c) = g′(0, c′) = c. Doing the same k times, we get g′

which is injective on {1, . . . ,m0 − 1}×m0 and satisfies g′(0, k− 1) = . . . = g′(0, 0).
Clearly, there exists a permutation α such that α(g′) agrees with b on k2. �

The following summarizes the results about B obtained so far. Relational de-
scriptions of B will be given in Proposition 56. Observe that the equivalence
between (1) and (5) is exactly statement (3) of Theorem 13.

Proposition 50. Let R be a relation with a first-order definition in (N,=). Then
the following are equivalent.

(1) R is preserved by an operation from Pol(̸=)\H , i.e., Pol(R)∩Pol(̸=) ̸⊆ H .
(2) R is preserved by a non-injective operation that depends on all its arguments

and preserves ̸=.
(3) R is preserved by an operation from Pol(̸=)(2) that violates N .
(4) R is preserved by a 1-bar function.
(5) R is preserved by B, i.e., B ⊆ Pol(R).

Proof. Given an operation from Pol(̸=)\H , we obtain an operation as described in
(2) by leaving away all fictitious arguments, so (1) implies (2). An operation that
is non-injective and depends on all its arguments is not generated by an injective
operation, and therefore Lemma 45 shows the implication from (1) to (2). Any
binary operation that violates N is necessarily essential and non-injective, and
hence the conditions of Lemma 49 are satisfied, which shows the implication from
(2) to (3). The equivalence of (3) and (4) is Lemma 46, and the implication from
(3) to (1) is immediate. The equivalence of (4) and (5) is by definition. �

6.3. From the bar clone to the odd clone. In this subsection, we explore those
clones in the monoidal interval II which contain the bar clone B, but which are
not contained in R (the clone of operations which are injective in one direction,
cf. Definition 11). It will be necessary to first give a relational description of B.

6.3.1. The bar clone, relationally. In the following it will be convenient to work
with first-order formulas whose atomic formulas are of the form x = y, true, or
false. The graph of a quantifier-free formula Φ with such atomic formulas is the
graph where the vertices are the variables of Φ, and where two vertices x, y are
adjacent iff Φ contains the sub-formula x = y or the sub-formula x ̸= y. We recall
standard terminology. If a formula Φ is in conjunctive normal form, the conjuncts in
Φ are called clauses, and the disjuncts in a clause are called literals. Hence, literals

24 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

are formulas that are either atomic, in which case they are also called positive, or
the negation of an atomic formula, in which case they are also called negative.

Definition 51. Let Φ be a quantifier-free first-order formula where all atomic
formulas are of the form x = y or false. Then Φ is called

• Horn iff Φ is in conjunctive normal form and each clause in Φ contains at
most one positive literal;

• connected Horn iff Φ is Horn and the graph of a clause ψ in Φ has at most
two connected components when ψ has no positive literals, and is connected
when ψ has positive literals.

• extended Horn iff Φ is a conjunction of formulas of the form (ϕ1∧· · ·∧ϕl) →
(ψ1 ∧ · · · ∧ ψk) for l ≥ 1, k ≥ 1 where ϕ1, . . . , ϕl, ψ1, . . . , ψk are atomic
formulas (and hence of the form x = y or false).

• connected extended Horn iff Φ is extended Horn, and if a conjunct ψ of Φ
is connected whenever the right-hand side of the implication in ψ contains
a literal of the form x = y and no literal false.

Clearly, every connected Horn formula can be written as a connected extended
Horn formula. But there are connected extended Horn formulas that are not equiv-
alent to any connected Horn formula; we will even see that there are connected
extended Horn formulas that do not have a pp definition by connected Horn for-
mulas (Lemmas 59 and 60).

The conjuncts in an extended Horn formula are also called extended Horn clauses,
and the literals on the left-hand side (right-hand side) of the implication of an
extended Horn clause are called the negative literals (positive literals, respectively)
of the extended Horn clause. Note that extended Horn formulas can always be
translated into (standard) Horn formulas: if (ϕ1 ∧ · · · ∧ ϕk) → (ψ1 ∧ · · · ∧ ψk) is an
extended Horn clause, then we can replace this clause by the conjunction of Horn
clauses (¬ϕ1 ∨ · · · ∨ ¬ϕl ∨ ψ1) ∧ · · · ∧ (¬ϕ1 ∨ · · · ∨ ¬ϕl ∨ ψk).

It will be convenient to say that a formula is preserved by an operation (or a
set of operations) iff the relation that is defined by the formula is preserved by the
operation (or by the set of operations, respectively). We want to give a syntactic
description of the formulas that are preserved by B. We show that every such
formula is equivalent to a connected extended Horn formula. In fact, we show
the stronger result that every expanded Horn formula preserved by B is itself a
connected extended Horn formula.

Definition 52. A extended Horn formula Φ is called expanded Horn iff it contains
all connected extended Horn clauses on the same set of variables as Φ that are
implied by Φ, and for every disconnected clause ψ1 → ψ2 in Φ where ψ2 does not
contain false and for all variables x, y in Φ

• adding an atomic formula of the form x = y to ψ1, or
• adding an atomic formula of the form x = y to ψ2, or
• setting ψ2 to false

results in a formula that is not equivalent to Φ.

Lemma 53. Every extended Horn formula is equivalent to an expanded Horn for-
mula.

Proof. Let Φ be any given extended Horn formula. We construct the expanded
Horn formula that is equivalent to Φ, as follows. We first add to Φ all connected
extended Horn clauses that are implied by Φ.

Then, if Φ contains an extended Horn clause ψ1 → ψ2 that is not connected and
where ψ2 does not contain false, and Φ is equivalent to a formula Φ′ obtained from
Φ by adding an atomic formula of the form x = y to ψ1 or to ψ2 for variables x, y

THE REDUCTS OF EQUALITY 25

in Φ, or by setting ψ2 to false, then we replace Φ by Φ′. If Φ does not contain such
a clause (which will always happen after a finite number of steps, because there is
only a finite number of formulas of the form x = y for variables x, y in Φ), then Φ
is expanded Horn, and clearly equivalent to the formula we started with. �

Lemma 54. If Φ is an expanded Horn formula, and Φ defines a relation R that is
preserved by B, then Φ is connected extended Horn.

Proof. Suppose for contradiction that Φ(x1, . . . , xn) contains an extended Horn
clause ψ of the form ψ1 → ψ2 whose graph G contains at least two connected
components, and where ψ2 does not contain false and contains at least one positive
literal xi = xj . Let xk be a variable from a connected component of G that does
not contain xi and xj . Let C1, . . . , Cp be the components of G′ := G−H, where H
is the graph of ψ2. Observe that xi and xj are in distinct components: Otherwise,
if we replace the clause ψ by (ψ1∧xi = xk) → ψ2, we obtain an equivalent formula.
Because ψ is disconnected, this is in contradiction to the assumption that Φ is
expanded. Assume for the sake of notation that C1 is the component of xi, and C2

the one of xj .
We claim that there is a tuple s for which Φ(s) is true, for which si ̸= sj , and

for which sl = sm whenever xl, xm are both in C1 or are both in C2. Otherwise,
Φ implies (

∧
(y,z)∈C2

1∪C2
2
y = z) → xi = xj , which is a connected expanded Horn

formula and therefore contained in Φ. Then Φ must be equivalent to the formula
Φ′ obtained from Φ by replacing the disconnected clause ψ by (ψ1 ∧ xi = xj) →
ψ2, again in contradiction to the assumption that Φ is expanded. To show the
equivalence, it clearly suffices to prove that Φ′ implies Φ. So suppose that s satisfies
Φ′ and ψ1. The clause (

∧
(y,z)∈C2

1∪C2
2
y = z) → xi = xj , which is contained in Φ

and in Φ′, shows that si = sj . But then the premise of the new extended Horn
clause of Φ′ is satisfied as well, and therefore s satisfies ψ2, which is what we had
to show.

Next, we claim that there is a tuple t with tk ̸= ti satisfying Φ and where
tl = tm if xl, xm are from the same component Cq for some 1 ≤ q ≤ p. Otherwise,
Φ implies ψ1 → xk = xi. But then the formula Φ′ obtained from Φ by replacing
ψ by ψ1 → (ψ2 ∧ xk = xi) is clearly equivalent to Φ. This again contradicts the
assumption that Φ is expanded.

Let f be a binary operation such that x 7→ f(x, v) is constant for all entries v of
t except for v = ti, and which is injective otherwise. Clearly, modulo permutations
acting on its arguments, f is an n-bar operation, and hence f ∈ B. Now, consider
the tuple r := f(s, t). Note that ti = tj , because t satisfies Φ and t satisfies the
premise of the clause ψ that is contained in Φ; since the conclusion of ψ contains
xi = xj we have that ti = tj . It is straightforward to verify that r does not satisfy
Φ, because r satisfies ψ1, but ri ̸= rj , and therefore ψ is violated. �

The following relations play an important role in the relational description of B
and the clones above B.

Definition 55. For n ≥ 2, let Rn, Rn, and R
̸=
n be the relations defined by

Rn(x1, y1, . . . , xn, yn) ≡
∨

1≤i≤n

xi ̸= yi

Rn(x1, y1, . . . , xn, yn) ≡ Rn(x1, y1, . . . , xn, yn) ∨ x1 = y1 = · · · = xn = yn

R ̸=
n (x1, y1, . . . , xn, yn) ≡ Rn(x1, y1, . . . , xn, yn) ∧

∧
1≤i ̸=j≤n

(xi ̸= yj ∧ xi ̸= xj ∧ yi ̸= yj) .

26 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

Note that all three relations can be defined by connected extended Horn formulas.
Observe also that the expressive power of the relations in each of these sequences in-
creases with increasing n: For example, ∃u, v. (u = v)∧Rn+1(x1, y1, . . . , xn, yn, u, v)
is a pp definition of Rn from Rn+1.

Proposition 56. Let R be a relation with a first-order definition in (N,=). Then
the following are equivalent.

(1) R is preserved by B, i.e., B ⊆ Pol(R).
(2) Every expanded Horn formula that defines R is connected extended Horn.
(3) R can be defined by a connected extended Horn formula.
(4) There exists an n such that R has a pp-definition in (N, Rn, ̸=).

Proof. The implication from (1) to (2) is shown in Lemma 54. For the implication
from (2) to (3), recall that B contains H and hence the relation R has a Horn
definition. By Lemma 53, every Horn formula has an equivalent expanded Horn
formula, and by assumption this formula is a connected extended Horn definition
of R.

To show that (3) implies (4), let R be a relation with a connected extended Horn
definition Φ. We first show that every extended Horn clause ψ1 → ψ2 from Φ can
be pp-defined in (N, Rn), for a sufficiently large n, if ψ2 is non-empty and does not
contain false.

Let G be the graph of ψ1 where we add isolated vertices for each variable that
appears in ψ2 but not in ψ1; in other words, let G be the graph of ψ1 → ψ2 where
we remove an edge between x and y if x = y is a literal of ψ2 and not of ψ1. Let
C1, . . . , Cc be the components of the graph G. We claim that ψ1 → ψ2 can be
pp-defined by Rn where n = |C1|+ · · ·+ |Cc|. A pp definition is obtained from the
formula

Rn(x1, y1, . . . , xn, yn) ∧
∧

(1≤i<c)

∧
(1<j≤|Ci+1|)

ys(i)+1 = xs(i)+1 = xs(i)+j

by existentially quantifying x1, . . . , xn, where s(i) := |C1| + · · · + |Ci|. In this pp
definition, the variables ys(i)+1, . . . , ys(i)+|Ci+1| are the variables in the component
Ci+1 from ψ1 → ψ2.

To see that this is correct, consider a satisfying assignment to the variables of
ψ1 → ψ2. Set for all i the variables xs(i)+1, . . . , xs(i)+|Ci+1| to the same value as
ys(i)+1. Suppose first that there exist two variables yk, yl from the same compo-
nent Ci which are mapped to different values. Then xk = xl cannot be equal
to both yk and yl, and hence either xk ̸= yk or xl ̸= yl. Hence, the conjunct
Rn(x1, y1, . . . , xn, yn) is satisfied, and the assignment satisfies the given pp for-
mula. Suppose now that otherwise all variables which have the same component
are mapped to the same value. Since ψ1 → ψ2 is connected Horn, this implies by
transitivity of equality that all variables that appear in ψ1 → ψ2 must have the
same value. But this assignment clearly satisfies the given pp formula as well, so
we are done with one direction of the correctness proof.

For the other direction, consider a satisfying assignment for the pp formula. If all
variables are set to the same value, then ψ1 → ψ2 will be satisfied by this assignment
as well, because ψ2 does not contain false. Otherwise, xk ̸= yk for some 1 ≤ k ≤ n
because of the conjunct Rn(x1, y1, . . . , xn, yn). Let Ci+1 be the component of yk in
G. Then ys(i)+1 = xs(i)+1 = xk ̸= yk. But since Ci+1 is a connected component,
this implies that one of the equalities in ψ1 must be falsified, showing that ψ1 → ψ2

is satisfied by the assignment.
Now, suppose that Φ contains a clause ψ1 → ψ2 where ψ2 contains false; i.e., the

clause is logically equivalent to a disjunction of literals of the form x ̸= y. We pro-
ceed just as in the case above, but use the relation Rn+1(x1, y1, . . . , xn+1, yn+1)

THE REDUCTS OF EQUALITY 27

instead of Rn(x1, y1, . . . , xn, yn) with two new existentially quantified variables
xn+1 and yn+1 at the two additional arguments, and we also add the conjunct
xn+1 ̸= yn+1 to the formula. We leave the verification that the resulting formula is
equivalent to ψ1 → ψ2 to the reader. As we have seen, any clause from a connected
Horn formula can be pp-defined in (N, Rn+1, ̸=), and thus (3) implies (4).

Finally, (4) implies (1): It is easy to see that for all n ≥ 2 the relations Rn and
the relation ̸= are preserved by 1-Bar operations. �
6.3.2. Above the bar clone. In this section we show that the interval between B and
Pol(̸=) contains an infinite strictly decreasing sequence of clones whose intersection
is B.

Definition 57. For all k ≥ 2, fix an operation fk ∈ O(k) satisfying the following:

fk(x, 1, 1, . . . , 1, 1) = 1

fk(2, x, 2, . . . , 2, 2) = 2

. . .

fk(k, k, . . . , k, x) = k

Moreover, for all other arguments, the function arbitrarily takes a value that is
distinct from all other function values.

Observe that f3 appeared already in Definition 12. We use the fk to define
another sequence of operations.

Definition 58. For all k ≥ 3, fix an operation gk ∈ O(k+1) which satisfies

gk(0, x1, . . . , xk) = fk(x1, . . . , xk)

and which takes distinct values for all other arguments.

Observe that each of the operations gk (and similarly fk) generates B: Obviously,
gk depends on all arguments, is non-injective, and preserves ̸=. By Proposition 50,
all relations that are preserved by gk are also preserved by B, and hence gk generates
B.

We now show that the operations gk, for increasing k, generate smaller and
smaller clones.

Lemma 59. For k ≥ 3, the operations gk and fk preserve Rk−1.

Proof. We show the lemma for gk; the proof for fk is similar and a bit easier,
and left to the reader. Let t0, . . . , tk be (2k − 2)-tuples that all satisfy Rk−1. Let

t := gk(t
0, . . . , tk), and suppose that t1 = t2, . . . , t2k−3 = t2k−2. By the definition

of gk, this implies that t0 = (0, . . . , 0), and that for all 1 ≤ i ≤ k − 1 the tuples
(t12i−1, . . . , t

k
2i−1) and (t12i, . . . , t

k
2i) have equal entries except for at most one position,

call it p(i). Since the function p takes at most k − 1 values, there must be a j ∈
{1, . . . , k} which is not in the range of p. For this j we thus have tj1 = tj2, . . . , t

j
2k−3 =

tj2k−2. Because tj ∈ Rk−1, this implies that tj1 = · · · = tj2k−2. Hence, the tuple

t = gk(t
0, . . . , tk) is constant as well; therefore, gk preserves Rk−1. �

Lemma 60. For k ≥ 3, the operation fk preserves neither Rk nor Rk. The oper-
ation gk does not preserve Rk.

Proof. If we apply fk to the 2k-tuples

t1 = (0, 1, 2, 2, 3, 3, . . . , k, k)

t2 = (1, 1, 0, 2, 3, 3, . . . , k, k)

. . .

tk = (1, 1, 2, 2, 3, 3, . . . , 0, k)

28 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

that all satisfy Rk (and all satisfy Rk), then we obtain (1, 1, 2, 2, 3, 3, . . . , k, k), which
does not satisfy Rk (and does not satisfy Rk). For gk, we define t0 = (0, . . . , 0),
and apply gk to (t0, t1, . . . , tk). �

We have thus seen that Pol(R3, ̸=),Pol(R4, ̸=), . . . is a strictly decreasing chain
of clones (it is decreasing by the remark after the definition of these relations, and
strictly so by the preceding lemma). By Proposition 56 its intersection equals B.

6.3.3. The odd clone. A clone of special interest (see Theorems 13 and 15) is the
clone S generated by f3, which will be called the odd clone (cf. Definition 12). We
will now describe the relations invariant under S by providing a (finite) generating
system of these relations, as well as a syntactic characterization of the formulas
defining such relations.

Definition 61. Let ODD3 be the ternary relation

{(a, b, c) ∈ N3 | a = b = c ∨ |{a, b, c}| = 3} .

Proposition 62. Let R be a relation with a first-order definition in (N,=). Then
the following are equivalent.

(1) R can be defined by a connected Horn formula.
(2) R has a pp definition by R2 and ̸=.
(3) R has a pp definition by ODD3 and ̸=.
(4) R ∈ Inv(S), i.e., R is preserved by f3.

(5) R ∈ Inv(B), but there is no definition of R ̸=
3 in (N, R,R2, ̸=).

Before proving the proposition, we need two proof-theoretical lemmas observing
restrictions on what can be derived from connected extended Horn formulas.

Lemma 63. Suppose Φ is a connected extended Horn formula that does not imply
a = b, but Φ ∧ x = y implies a = b. Then Φ ∧ x = y also implies x = y = a = b.

Proof. We rewrite Φ as a conjunction Ψ of (standard) Horn clauses as described
above. When for an extended clause ϕ → (ψ1 ∧ · · · ∧ ψk) for some i ≤ k we have
ψi = false, then we first remove all positive literals except ψi from the extended
clause, which leads to an equivalent formula.

It is well-known that the restricted form of resolution for predicate logic that
requires that at least one of the parent clauses in a resolution step has to be positive,
also known as P-resolution, is complete (see e.g. [Sch89], p. 102). When we apply
resolution on a formula, we assume that there are always clauses u ̸= v ∨ v ̸=
w ∨ u = w, u ̸= v ∨ v = u, and u = u for universally quantified variables u, v, w
(that axiomatize that the symbol = for equality is an equivalence relation), and
we also assume that all other variables in the formula are in fact constant symbols
(i.e., they are existential variables before skolemization).

Since P -resolution is complete, we have in particular that Ψ ∧ x = y implies
a = b if and only if a = b can be derived by P-resolution from Ψ∧ x = y. We show
that Ψ∧x = y implies x = y = a = b for all formulas a = b that are not implied by
Ψ but implied by Ψ∧ x = y. Suppose for contradiction that there is a literal a = b
that can be derived by P-resolution from Ψ∧ x = y but cannot be derived from Ψ,
and where Ψ ∧ x = y does not imply x = y = a = b. Select a literal a = b with
these properties whose P -derivation from Ψ ∧ x = y is shortest possible.

The literal a = b has either been derived from a clause a1 ̸= b1 ∨ · · · ∨ ak ̸=
bk ∨ a = b in Ψ by resolving with the literals a1 = b1, . . . , ak = bk, or by resolving
with of the three clauses having universally quantified variables (after instantiating
the universal variables). In the second case, suppose that the universal clause was
u ̸= v∨v ̸= w∨u = v, and a = b has been derived by resolving with a = c and c = b,
for some c (for the other two universal clauses, the argument is analogous). Then

THE REDUCTS OF EQUALITY 29

at least one of the literals a = c and c = b cannot be derived from Ψ alone, because
otherwise a = b can be derived from Ψ alone, in contradiction to our assumptions.
Suppose the literal that cannot be derived from Ψ alone is a = c (the other case is
analogous). By the choice of a = b, the formula Ψ ∧ x = y implies x = y = a = c.
At the same time, we have that Ψ ∧ x = y implies a = b, and hence Ψ implies
x = y = a = b, a contradiction.

In the first case, at least one of the literals in the clause a1 ̸= b1 ∨ · · · ∨ ak ̸=
bk ∨ a = b, say ai = bi, cannot be derived from Ψ alone, because otherwise a = b
can be derived from Ψ alone, in contradiction to our assumptions. By the choice
of a = b, Ψ ∧ x = y implies x = y = ai = bi. Let ϕ be the extended Horn clause
in Φ that corresponds to the Horn clause ψ in Ψ (i.e., ψ is among the clauses that
have replaced the clause ϕ when creating Ψ from Φ).

Since ϕ is a connected extended Horn clause, there is a sequence of variables
x1, x2, . . . , xs of ϕ with x1 = a and xs = ai such that xi = xi+1 for 1 ≤ i < s is
either a sub-formula of the right-hand side or of the left-hand side of the implication
ϕ. By construction of Ψ, for each literal xi = xi+1 on the right-hand side there
is the clause a1 ̸= b1 ∨ · · · ∨ ak ̸= bk ∨ xi = xi+1 in Ψ. But then it is clear that
Ψ ∧ a1 = b1 ∧ · · · ∧ ak = bk implies that x1 = · · · = xs, and hence also that
ai = bi = a = b. Therefore, Ψ ∧ x = y implies x = y = a = b, a contradiction. �

The following is a straightforward consequence.

Lemma 64. Let Φ be a connected extended Horn formula and let ψ be a conjunction
of equalities x1 = y1 ∧ · · · ∧ xn = yn. If Φ ∧ ψ implies x0 = y0, but Φ ∧ ψ′

does not imply x0 = y0 for any subconjunction ψ′ of ψ, then Φ ∧ ψ also implies
x0 = y0 = x1 = y1 = · · · = xn = yn.

Proof. We apply Lemma 63 to Φ′ := Φ ∧ x2 = y2 ∧ · · · ∧ xn = yn, x1 = y1, and
x0 = y0 to derive that Φ′ ∧ x1 = y1 implies x0 = y0 = x1 = y1. We can argue
analogously for xi = yi instead of x1 = y1 for all 1 ≤ i ≤ n, and the statement
follows. �

Proof of Proposition 62. To show that (1) implies (2), suppose that Φ is a connected
Horn definition of R. We show that each clause ψ of Φ has a pp definition in
(N,R2, ̸=).

First, consider the case that ψ contains a positive literal x0 = y0. The graph of
ψ without the edge between x0 and y0 has at most two connected components. In
the case that the graph is still connected even after removing the edge between x0
and y0, the clause ψ is a tautology and can be ignored. Otherwise, let x0, . . . , xl be
the variables of the connected component of x0, and let y0, . . . , yk be the variables
of the connected component of y.

Consider the formula ψ′ defined by

∃u1, . . . , ul, v1, . . . , vk. R2(x0, x1, u1, u1) ∧ R2(u1, x2, u2, u2) ∧ · · · ∧ R2(ul−1, xl, ul, ul)

∧R2(y0, y1, v1, v1) ∧ R2(v1, y2, v2, v2) ∧ · · · ∧ R2(vk−1, yk, vk, vk) ∧ ul = vk .

We show that a tuple satisfies ψ if and only if it satisfies ψ′. If the tuple satisfies
no negative literal of ψ, then the only situation where ψ′ is true is x0 = u1 = · · · =
ul = vk = · · · = v1 = y0; hence in this case, ψ′ holds if and only if the tuple satisfies
x0 = y0, which in turn is the case if and only if ψ holds. If on the other hand
the tuple satisfies some negative literal of ψ, then either there is i < l such that
xi ̸= xi+1 or i < k such that yi ̸= yi+1; assume wlog the first is the case. Then
we set (u1, . . . , ui) to (x1, . . . , xi) and (v1, . . . , vk) to (y1, . . . , yk), ul to vk, and set
ui+1, . . . , ul−1 to arbitrary pairwise disjoint values that are also distinct from all
the values taken by any other variable of the clause. It is easy to check that this

30 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

assignment of variables is a satisfying assignment for the existentially quantified
variables in the formula ψ′. Hence, ψ′ is a pp definition of ψ.

If ψ does not contain a positive literal, then the graph of ψ consists of at most
two connected components, because ϕ is connected Horn. Assume first it does have
two components. Let x0, . . . , xl be the variables in the first and y0, . . . , yk be the
variables in the second connected component. As above, it is easy to verify that
the following formula is equivalent to ψ.

∃u1, . . . , ul, v1, . . . , vk, z.R2(x0, x1, u1, u1) ∧ R2(u1, x2, u2, u2) ∧ · · · ∧ R2(ul−1, xl, ul, ul)

∧ R2(y0, y1, v1, v1) ∧ R2(v1, y2, v2, v2) ∧ · · · ∧ R2(vk−1, yk, vk, vk)

∧ R2(xl, ul, z, z) ∧ R2(yk, vk, z, z) ∧ ul ̸= vk .

If the graph of ψ has only one component, then the following formula is equivalent
to ψ:

∃u1, . . . , ulR2(x0, x1, u1, u1) ∧ R2(u1, x2, u2, u2) ∧ · · · ∧ R2(ul−1, xl, ul, ul) ∧ u1 ̸= ul .

For the implication from (2) to (3), note that R2(x1, x2, x3, x4) can be pp defined
by

∃y1, y2, y3, y4, y5. ODD3(x1, x2, y1) ∧ODD3(x1, x2, y2)

∧ODD3(y1, y2, y3) ∧ODD3(y3, y4, y5)

∧ODD3(x3, x4, y4) ∧ODD3(x3, x4, y5)

We check that this formula is indeed equivalent to R2(x1, x2, x3, x4): Let t be a
4-tupel that satisfies R2(x1, x2, x3, x4); we assign values to the yi such that the
formula above is satisfied. If t1 = t2 then set y1, y2, y3 to t1. If t3 = t4 then set
y3, y4, y5 to t3. Note that if both t1 = t2 and t3 = t4 then our choice for y3 is well-
defined, since R2(x1, x2, x3, x4) then implies that t1 = t2 = t3 = t4. If t1 ̸= t2 then
set y1, y2 to distinct values that are also distinct from all entries of t. Similarly, if
t3 ̸= t4, then set y4, y5 to distinct values that are also distinct from all entries of t.
If both t1 ̸= t2 and t3 ̸= t4, then set y3 to any value that is distinct from the values
for y1, y2, y4, y5. It is straightforward to verify that these assignments satisfy all
conjunct in the given formula. Conversely, if a 4-tuple t satisfies the formula, and
t1 = t2 and t3 = t4, then t1 = t2 = t3 = t4, and hence t satisfies R2(x1, x2, x3, x4).

For the implication from (3) to (4) it suffices to verify that f3 preserves ODD3.
Every 3-tuple t from ODD3 either satisfies t1 = t2 = t3 or t1 ̸= t2 ̸= t3 ̸= t1.
To violate ODD3, we would have to find three such tuples a, b, c such that d :=
f3(a, b, c) has two equal entries that are distinct from a third entry, say wlog.
d1 = d2 ̸= d3. The only two ways to have d1 = d2 are when d1 = d2 is from
{0, 1, 2}, or when this is not the case and the tuples (a1, b1, c1) and (a2, b2, c2) are
equal. Consider the first case, and assume wlog. d1 = d2 = 0. Then we know that
b1 = c1 = 0 and b2 = c2 = 0. But then, since b and c are in ODD3, we have
b3 = c3 = 0 as well, and hence d1 = d2 = d3 = 0, a contradiction. The second case
is similar and left to the reader. Hence, f3 preserves ODD3.

For the implication from (4) to (5), containment in Inv(B) follows from the fact
that f3 generates all operations in B (see also the remark after Definition 58).
By Lemma 59, f3 preserves R2 and f3 also clearly preserves ̸=, so it suffices to

show that f3 violates R ̸=
3 . If we apply f3 to the 6-tuples t1 = (0, 1, 2, 2, 3, 3), t2 =

(0, 0, 1, 2, 3, 3), t3 = (0, 0, 2, 2, 1, 3), which all satisfy R ̸=
3 , we obtain (0, 0, 2, 2, 3, 3),

which does not satisfy R ̸=
3 .

Finally, we show the contraposition of the implication from (5) to (1): if R
cannot be defined by a connected Horn formula, but is preserved by B, then there

is a pp-definition of R ̸=
n in (N, R,R2, ̸=) for some n ≥ 3. Because R ̸=

3 clearly has a
pp-definition by R ̸=

n for all n ≥ 3 this will show the statement.

THE REDUCTS OF EQUALITY 31

Let Φ(v1, . . . , vs) be an expanded Horn formula that defines R. By Proposi-
tion 56, we know that Φ is a connected extended Horn formula. We first claim
that if for all extended Horn clauses ψ1 → ψ2 in Φ the graph of ψ1 has at most
two connected components, then Φ has a connected Horn definition, contradicting
our assumption on Φ. To see this, we show that every such clause ψ1 → ψ2 has a
connected Horn definition. If ψ2 contains false or is empty then there is nothing to
show; assume thus that this is not the case. If the graph of ψ1 has exactly two com-
ponents C1 and C2, we know that ψ2 contains a conjunct x = y where x ∈ C1 and
y ∈ C2, because Φ is connected extended Horn. Then ψ1 → ψ2 is equivalent to the
conjunction of the connected Horn clauses ψ1 → x = y and (ψ1 ∧ x = y) → x′ = y′

for every other conjunct x′ = y′ of ψ2. The case that the graph of ψ1 is connected
is easier and left to the reader.

Therefore, Φ must contain a clause ψ1 → ψ2 such that ψ1 consists of n ≥ 3
connected components C1, . . . , Cn. We show that R ̸=

n (x1, y1, . . . , xn, yn) has the
following pp-definition by R, R2 and ̸=.

∃v1, . . . , vs. R(v1, . . . , vs) ∧
∧

1≤i≤n

∧
vk∈Ci

R2(xi, yi, vk, vk)

∧
∧

1≤i ̸=j≤n

(xi ̸= yj ∧ xi ̸= xj ∧ yi ̸= yj) (∗)

To prove the equivalence, assume that t /∈ R ̸=
n . We want to show that t does not

satisfy (∗). If t violates the second line of the formula (∗), we are done. Otherwise,
it must hold that x1 = y1, . . . , xn = yn. Suppose for contradiction that there are
elements v1, . . . , vs as specified in (∗). Then for all 1 ≤ i ≤ n the sub-formula∧

vk∈Ci
R2(xi, yi, vk, vk) implies that all variables vk from Ci must have the same

value as xi = yi. Then the clause ψ1 → ψ2 in Φ implies that x1 = y1 = · · · = xn =
yn (because ψ1 → ψ2 is connected), which contradicts the second line of formula
(∗).

Now assume that t ∈ R ̸=
n . We want to show that t satisfies (∗). If t satisfies

xi ̸= yi for all 1 ≤ i ≤ n, then any tuple from R gives a assignment to the
existentially quantified variables in (∗) that shows that t satisfies (∗). For the sake
of notation, let us thus assume that there is a k with 1 ≤ k < n such that t satisfies
xi = yi for 1 ≤ i ≤ k, and xi ̸= yi for all k < i ≤ n. We claim that there exists a
tuple r ∈ R such that for all i, j ≤ k and all vl ∈ Ci, vm ∈ Cj it holds that rl = rm
if and only if i = j. Otherwise, the formula

Φ(v1, . . . , vs) ∧
∧
i≤k

∧
vl,vm∈Ci

vl = vm ∧
∧

vl∈Ci,vm∈Cj ,1≤i ̸=j≤k

vl ̸= vm

is unsatisfiable. Since P-resolution (also see the proof of Lemma 63) is complete,
there is a P-resolution proof of unsatisfiability. This proof uses at most once a clause
of the form {vp ̸= vq} from this formula, since it resolves only with positive literals
and since therefore every resolution step using {vp ̸= vq} must be the last one,
deriving false. Therefore, Φ(v1, . . . , vs) ∧

∧
i≤k

∧
vl,vm∈Ci

vl = vm implies vp = vq.

Let ϕ be the smallest sub-formula of
∧

i≤k

∧
vl,vm∈Ci

vl = vm such that Φ ∧ ϕ
implies vp = vq. If ϕ is empty, then the clause vp = vq is contained in Φ because
Φ is expanded; but then, adding vp ̸= vq to ψ in the clause ψ1 → ψ2 results in an
equivalent formula, a contradiction to Φ being expanded. If ϕ is not empty, we can
apply Lemma 64 and obtain that Φ ∧ ϕ implies that all variables u1, . . . , ul that
appear in ϕ have the same value as the value of vp = vq. Because Φ is expanded, it
has to contain the connected extended Horn clause ϕ → u1 = · · · = ul = vp = vq;

32 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

again, this shows that adding vp ̸= vq to ψ1 in the clause ψ1 → ψ2 results in an
equivalent formula, a contradiction.

Hence, we have shown the existence of a tuple r ∈ R with the properties as
claimed above. The tuple r gives witnesses for the existentially quantified variables
in (∗) that show that t satisfies (∗). �

6.4. Richard. In this section we show that R and S are incomparable clones, and
that every clone in II is either contained in S or contains R. We start with the
fundamental observation that the set of operations R (see Definition 11) is indeed
a clone.

Lemma 65. R is a clone.

Proof. Clearly, R contains the projections. Let f ∈ R(n) and g1, . . . , gn ∈ R(m).
There exist 1 ≤ i ≤ n and 1 ≤ j ≤ m such that f is injective in the i-th direction
and gi is injective in the j-th direction. It is readily verified that f(g1, . . . , gn) is
injective in the j-th direction. �

Definition 66. Let ϕ be a quantifier-free first-order formula where all atomic
subformulas are of the form x = y. Then ϕ is called negative if ϕ is in conjunctive
normal form and each clause in ϕ either consists of a single positive literal, or does
not contain positive literals.

The following theorem has been stated in equivalent form in [BC07, Lemma 8.6].
For the convenience of the reader, and for completeness, we also present a simplified
proof here.

Theorem 67. Let R be a relation having a reduced Horn definition that is not
negative. Then ODD3 has a pp definition from R and ̸=.

Proof. Let Φ(x1, . . . , xn) be a reduced Horn definition of R which is not negative;
assume moreover that among such definitions of R, Φ is one with the minimal
possible number of occurrences of variables. Since R is not negative, there must be
a clause ψ in Φ of the form xi1 = xj1 ∨ xi2 ̸= xj2 ∨ · · · ∨ xik ̸= xjk for k ≥ 2. Since
Φ is reduced, it contains a tuple a ∈ Nn with ail = ajl for all 1 ≤ l ≤ k: Otherwise,
Φ would imply xi1 ̸= xj1 ∨ xi2 ̸= xj2 ∨ · · · ∨ xik ̸= xjk , and we would obtain an
equivalent formula by removing the literal xi1 = xj1 from ψ. Moreover, R contains
a tuple b ∈ Nn with bi1 ̸= bj1 , bi2 ̸= bj2 , and bil = bjl for all 3 ≤ l ≤ k: Otherwise,
we could remove the literal xi2 ̸= xj2 from ψ.

Now consider the formula

R(x1, . . . , xn) ∧
k∧

l≥3

xil = xjl (∗)

Note that because R is reduced, we have |{i1, j1, i2, j2}| ≥ 3.
We first look at the case where |{i1, j1, i2, j2}| = 3. By appropriately renaming

the variables of Φ, we may assume that i1 = i2 = 1, and that j1 = 2 and j2 = 3.
Let R′(xi, xj1 , xj2) be the ternary relation defined by existentially quantifying all
variables in (*) except for xi,xj1 ,xj2 . Because a ∈ R satisfies ail = ajl for all
3 ≤ l ≤ k, it satisfies (*). Since aj1 = ai1 = ai2 = aj2 , the relation R′ contains
a triple with three equal entries. Moreover, because b ∈ R satisfies (*) too, the
relation R′ contains a tuple (b1, b2, b3) with b1 ̸= b2 and b1 ̸= b3.

Assume first that R′ contains a triple with three distinct entries. We know that
R′ does not contain any tuple of the form (x, x, y) for x ̸= y, because every n-tuple

a with ai1 = aj1 and ai2 ̸= aj2 violates ψ ∧
∧k

l=3 xil = xjl . Hence, the relation
defined by R′(x, y, z) ∧ R′(y, z, x) ∧ R′(z, x, y) only contains the tuples with three

THE REDUCTS OF EQUALITY 33

distinct entries and the tuples with three equal entries, and we have indeed found
a pp-definition of the relation ODD3 in (N, R).

Striving for a contradiction, we suppose now thatR′(xi, xj1 , xj2) does not contain
a triple with three distinct entries. Then it is impossible that there is a tuple r ∈ R′

where r2 ̸= r3: This is because having a Horn definition, R is preserved by a binary
injection, by Proposition 43, and so is R′. But the tuple obtained by applying
a binary injective operation to r and (b1, b2, b3) has three distinct entries, which
contradicts our assumption for this case. Thus the clause xi3 ̸= xj3 ∨ · · · ∨ xik ̸=
xjk ∨ xj1 = xj2 is entailed by Φ. Hence, we could replace the clause ψ in Φ by
this shorter clause and obtain a formula that is equivalent to Φ, because conversely,
xj1 = xj2 implies xi1 = xj1 ∨ xi1 ̸= xj2 (recall that i1 = i2). This contradicts the
choice of Φ.

Now take the case where |{i1, j1, i2, j2}| = 4; say wlog i1 = 1, j1 = 2, i2 =
3, j2 = 4. Let R′(xi1 , xj1 , xi2 , xj2) be the relation defined by (∗) by existentially
quantifying all variables except for xi1 , xj1 , xi2 , xj2 . As before we observe that a′ :=
(ai1 , aj1 , ai2 , aj2) ∈ R′ and b′ := (bi1 , bj1 , bi2 , bj2) ∈ R′. If ai1 = aj1 ̸= ai2 = aj2 ,
then the tuple obtained by applying a binary injective operation to a′ and b′ has
four distinct entries; this tuple is an element of R, by Proposition 43. It is easy to
verify that then the formula

R′(x1, x2, x3, x4) ∧R′(x3, x4, x1, x2) ∧ x1 ̸= x3 ∧ x1 ̸= x4 ∧ x2 ̸= x3 ∧ x2 ̸= x4 (∗∗)

is a pp definition of the relation T (x1, x2, x3, x4) given by

T := {(x1, x2, x3, x4) | x1 = x2 ̸= x3 = x4 ∨ |{x1, x2, x3, x4}| = 4} .

The relation ODD3(x1, x2, x3) has the following pp-definition.

∃y∃z. T (x1, x2, y, z) ∧ T (x2, x3, y, z) ∧ T (x1, x3, y, z) .

Now suppose that aj1 = ai2 and hence a′ is the tuple with four equal entries. As-
sume for a moment that there exist p ∈ {1, 2} and q ∈ {3, 4} such thatR′(x1, . . . , x4)
implies xp = xq. Then the relation obtained from R′(x1, . . . , x4) by existentially
quantifying xq is such that we can proceed as in the case where |{i1, j1, i2, j2}| = 3.
Thus, we may henceforth assume that xp = xq is not entailed for any p ∈ {1, 2}
and q ∈ {3, 4}. For every such pair (p, q), fix a tuple in R′ witnessing that xp ̸= xq
can be satisfied. Now applying a 5-ary injection to these four witnessing tuples and
b′, we obtain a tuple all of whose entries are distinct. This tuple is in R′ as R′ is
preserved by H , by Proposition 43.

Consider the formula R′′(x1, x2, x3, x4) defined by the following formula.

∧
π∈S{1,2,3,4}

R′(xπ(1), xπ(2), xπ(3), xπ(4)),

where S{1,2,3,4} denotes the symmetric group on {1, 2, 3, 4}. We claim that R′′ de-
fines ODD3. Note that tuples of the form (x, x, x, y) and (x, x, y, z), for distinct
x, y, z, are not contained in R′ since every n-tuple d with di1 = dj1 and di2 ̸= dj2 vio-

lates ψ∧
∧k

l=3 xil = xjl . Therefore, the relation R
′′ does not contain tuples with two

values where one value appears three times, or tuples with three values where one
value appears twice. But certainly R′′ does contain all tuples with four equal values,
and all tuples with four pairwise distinct values. If some tuple where two values
occur twice is excluded from R′, then R′′ does not contain any tuple with two val-
ues. Hence in this case, ∃u.R′′(x1, x2, x3, u) is a pp definition of ODD3(x1, x2, x3),
and we are done. Otherwise, R′′ contains all tuples where two values occur twice.
Similarly as before it is easy to verify that then the expression (∗∗) above where
R′ has been replaced by R′′ is a pp definition of T (x1, x2, x3, x4). We have already

34 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

seen that ODD3 has a pp definition from T , so it has a pp definition in (N, R, ̸=)
as well.

�

The following proposition describes the clone R: Item (1) shows that R is finitely
generated (namely, by any binary operation which violates ODD3 but is injective
in one direction); and (2) and (3) provide a syntactical description of the formulas
defining relations in Inv(R).

Proposition 68. Let R be a relation with a first-order definition in (N,=). Then
the following are equivalent.

(1) R is preserved by a binary operation from Pol(̸=) that violates ODD3.
(2) Every reduced definition of R is negative.
(3) R has a negative definition.
(4) R is preserved by R.

Proof. To see that (1) implies (2), fix any reduced definition of R. Since R is
preserved by a binary operation from Pol(̸=), Proposition 43 implies that this
definition is Horn. As there is a binary operation preserving R and ̸= which violates
ODD3, there is no pp definition of ODD3 from R and ̸=. Hence, our reduced
definition must be negative, by Theorem 67.

The implication from (2) to (3) is trivial.
To show that (3) implies (4), fix a negative definition Φ of R. Let f ∈ R(n) and

a1, . . . , an ∈ R be arbitrary. Assume without loss of generality that f is injective
in the 1-st direction. Then b = f(a1, . . . , an) satisfies all inequalities that were
satisfied by a1, which is enough to satisfy Φ as Φ is negative. Hence, f preserves
R.

The implication from (4) to (1) is witnessed by any binary operation which is
not in B but injective in one direction, as is easily verified. �

The following proposition establishes statement (4) of Theorem 13.

Proposition 69. The clones R and S form a maximal antichain in the interval
[B,Pol(̸=)]. In fact, every clone in this interval is either contained in S or contains
R. In particular, R is a cover of R ∩ S .

Proof. First, we have to show that R and S are indeed incomparable. By Propo-
sition 68 it is clear that R is not a subset of S , because it contains an operation
that violates ODD3. To show that S is not a subset of R, it suffices to show that
the operation f3 from Definition 12 is not injective in any direction. Indeed, this
holds as f3(x, 1, 1) = 1 and f3(2, y, 2) = 2 and f3(3, 3, z) = 3 for all x, y, z ∈ N.
Therefore, f /∈ R and hence R and S form an antichain.

Now, let C be any clone from the interval [B,Pol(̸=)] which is not contained in
S . Then it contains an operation in Pol(̸=) that does not preserve ODD3. Since
ODD3 has two orbits, C contains a binary operation with these properties, by
Lemma 44. Thus, Proposition 68 implies that C is above R.

Hence, the antichain that consists of R and S is maximal, and every clone of
the interval not contained in S does contain R. �

6.5. Richard’s many friends. We now prove that there exists an antitone and
injective mapping from the power set of ω into the interval [R,Pol(̸=)]; in particular,
this interval has cardinality 2ℵ0 . This proves the last statement (5) of Theorem 13.

Definition 70. For all n ≥ 3, write

δn := x1 ̸= y1 ∨ . . . ∨ xn ̸= yn.

THE REDUCTS OF EQUALITY 35

For all A ⊆ {1, . . . , n} with 1 < |A| < n, writing A = {j1, . . . , jr} with j1 < j2 <
. . . < jr, we set

κA := yj1 ̸= xj2 ∨ yj2 ̸= xj3 ∨ . . . ∨ yjr ̸= xj1 .

Set

γn := δn ∧
∧

A⊆{1,...,n},1<|A|<n

κA.

Observe that the γn are all negative formulas; hence, by Proposition 68, poly-
morphism clones of sets of relations defined by such γn will always contain R. In
the rest of this section, we will prove that no fixed γn can be defined from the
others by primitive positive definitions. Therefore, distinct sets of such formulas
define distinct clones above R, which is what we want.

Definition 71. We now enumerate tuples c ∈ N2n as c = (c1,x, c1,y, . . . , cn,x, cn,y).
If ϕ(x1, y1, . . . , xn, yn) is a formula, then we say that c satisfies ϕ iff ϕ(c1,x, c1,y, . . . , cn,x, cn,y)
holds; this is to say that we insert ci,u for ui, where u ∈ {x, y} and 1 ≤ i ≤ n.

Moreover, if c1, . . . , cm ∈ N2n, we denote the “(i, x)-th column tuple” (ci,x1 , . . . , ci,xm)
by ci,x.

Definition 72. For all n ≥ 3, we set Cn to be the 2n-ary relation defined by γn.

The operations of the following definition will separate the polymorphism clones
of the Cn.

Definition 73. For all n ≥ 3, the Hubie-violator Hn is an operation defined as
follows: Enumerate Cn ∩ {1, . . . , n + 1}2n, that is, those elements of Cn which
have only entries in {1, . . . , n + 1}, by c1, . . . , cm. Note that m > 0 since Cn al-
ways contains the tuple where xi = 0 and yi = 1, for all i ≤ n. Now we define
Hn ∈ O(m) by Hn(c

j,x) = Hn(c
j,y) = j, for all 1 ≤ j ≤ n; in other words, we set

Hn(c1, . . . , cm) = (1, 1, . . . , n, n). For every other input tuple in Nm, Hn takes a
unique value distinct from all other values in its range.

Lemma 74. Let n ≥ 3. Then the Hubie-violator Hn violates Cn.

Proof. By definition, Hn(c1, . . . , cm) = (1, 1, . . . , n, n), a tuple which does not sat-
isfy δn and which is therefore not an element of Cn.

�

Lemma 75. Let 3 ≤ k < n. Then the Hubie-violator Hn preserves Ck.

Proof. Write m for the arity of Hn. Let t1, . . . , tm ∈ Ck and set s = Hn(t1, . . . , tm).
We must show s ∈ Ck.

We first check that s satisfies the clauses κA. Suppose it does not, and pick any
A ⊆ {1, . . . , k} with 1 < |A| < k witnessing this. We may assume wlog that A =
{1, . . . , p}, where 1 < p < k, and write s = (ap, a1, a1, a2, a2, a3, . . . , ap−1, ap−1, ap, ?, . . .).
Set Q := {aj : 1 ≤ j ≤ p}, and Q1 := Q ∩ {1, . . . , n}, and Q2 = Q \Q1.

If Q1 were empty, then since for every value in Q2 there is only a unique tuple
that Hn sends to that value, we have that the column ti,y equals the column ti+1,x,
for all 1 ≤ i ≤ p (where we set p + 1 := 1). Thus in that case, no row tj would
satisfy κA, a contradiction.

Assuming that Q2 were empty, we now show that there exists 1 ≤ j ≤ m such
that the row tj does not satisfy κ{1,2}. Since Hn(t

1,x) = ap, we have t1,x = cap,u,

for some u ∈ {x, y}. Similarly, t1,y = ca1,w, t2,x = ca1,q, and t2,y = ca2,v, where
w, q, v ∈ {x, y}. Consider first the case where ap ̸= a1 and a2 ̸= a1 (ap may
well equal a2). Pick d ∈ Cn ∩ {1, . . . , n + 1}2n such that da1,x = da1,y = a1,

36 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

dap,u = a2, and da2,v = a2. This is without doubt possible by defining all other
entries to be very unequal. Because in the definition of the Hubie-violator all
tuples of Cn ∩ {1, . . . , n + 1}2n appear, there is 1 ≤ j ≤ m with d = cj . We have:

t1,xj = c
ap,u
j = a2, t

1,y
j = ca1,w

j = a1, t
2,x
j = ca1,q

j = a1, and t
2,y
j = ca2,v

j = a2. Hence,

tj = (a2, a1, a1, a2, ?, . . .) does not satisfy κ{1,2}, a contradiction. The case where
ap = a1 or a2 = a1 is even easier: Say wlog ap = a1, and pick cj ∈ Cn such that

ca1,x
j = ca1,y

j = a1, and c
a2,v
j = a1. We have: t1,xj = ca1,u

j = a1, t
1,y
j = ca1,w

j = a1,

t2,xj = ca1,q
j = a1, and t

2,y
j = ca2,v

j = a1. Hence, in this case tj = (a1, a1, a1, a1, ?, . . .)
does not satisfy κ{1,2} either, a contradiction.

Finally, consider the case where neither Q1 nor Q2 are empty. Assume wlog that
s1,x = ap ∈ Q1 and s1,y = a1 ∈ Q2. We have t1,x = cap,v, for some v ∈ {x, y}.
Let r ≤ p be minimal with the property that sr,y ∈ Q1; write s

r,y = ai. Then
tr,y = cai,u for some u ∈ {x, y}. Pick cj ∈ Cn such that cai,u

j = c
ap,v
j = a1. We then

have that tj does not satisfy κ{1,...,r}: Indeed t
1,x
j = a1 = tr,yj , and th,y = th+1,x for

all 1 ≤ h < r as columns since ah ∈ Q2. A contradiction.
It remains to show that s satisfies δk. Suppose it does not; we claim that under

this assumption, there is 1 ≤ j ≤ m such that tj does not satisfy δk either. Set Q
to consist of all values that appear in s, Q1 := Q ∩ {1, . . . , n}, and Q2 := Q \ Q1.
Write p for the cardinality of Q1; wlog we may assume Q1 = {1, . . . , p}. Observe
that since s has length 2k and since it does not satisfy δk, we have p ≤ k. Consider
the 2n-tuple b = (1, 1, 2, 2, . . . , p, p, p + 1, n + 1, p + 2, n + 1, . . . , n, n + 1). Using
p ≤ k < n, one readily checks that b ∈ Cn, hence b = cj for some 1 ≤ j ≤ m. Thus,
since cj appears in the j-th row of the definition of the Hubie-violator Hn, we have
that for all d ∈ Nm and all 1 ≤ i ≤ p, if Hn(d) = i, then dj = i. In particular, this
holds for the vectors tr,x and tr,y for which Hn(t

r,x) = Hn(t
r,y) ∈ Q1, and we have

tr,xj = tr,yj for those columns. But for the other columns tr,x, tr,y whose (equal)

image under Hn is in Q2, we have t
r,x
j = tr,yj anyway since values outside {1, . . . , n}

are taken by at most one tuple. Summarizing these two observations, we have that
tr,xj = tr,yj for all 1 ≤ r ≤ k, so tj does not satisfy δk. A contradiction. �

We thus know that for all n ≥ 3, Cn has no pp-definition from {C3, . . . , Cn−1}.
For otherwise, the polymorphisms of {C3, . . . , Cn−1} would be contained in those
of Cn, which is not the case by the preceding two lemmas. It remains to show that
Cn cannot be defined from the Ck with k > n either.

Lemma 76. Let 3 ≤ k < n. Then the Hubie-violator Hk preserves Cn.

Proof. Denote the arity of Hk by m. As before, let t1, . . . , tm ∈ Cn and set
s := Hk(t1, . . . , tm). To see that s satisfies the clauses κA, one proceeds as in
the preceding proof, with k and n exchanged. What is more difficult here is to
check that s satisfies δn. Suppose it does not, and define Q,Q1, Q2, as well as
p = |Q1|, as before (only with k and n switched). Now we distinguish two cases,
p < k and p = k.

In the first case, we argue like at the end of the proof of the preceding lemma:
Consider the tuple b = (1, 1, 2, 2, . . . , p, p, p+1, k+1, p+2, k+1, . . . , k, k+1). One
readily checks that b ∈ Ck, so b = cj for some 1 ≤ j ≤ m. Thus, since cj appears in
the j-th line of the definition of Hk, we have that for all d ∈ Nm and all 1 ≤ i ≤ p,
if Hk(d) = i, then dj = i. In particular, this holds for those vectors tr,x and tr,y

which are sent by Hk to a value in Q1. Since t
r,x = tr,y for the other columns (i.e.,

those with value in Q2), this implies that tr,xj = tr,yj for all 1 ≤ r ≤ n, so tj does
not satisfy δn, a contradiction.

To finish the proof, consider the case where p = k. Observe first that for every
1 ≤ i ≤ k, there exists exactly one 1 ≤ r ≤ n such that sr,x = sr,y = i. There is

THE REDUCTS OF EQUALITY 37

at least one such r as p = k; suppose there were distinct r, r′ with this property.
Then tr,x, tr,y, tr

′,x, tr
′,y are all elements of {ci,x, ci,y}. Pick any tuple cj ∈ Ck with

ci,x = ci,y. We have that tr,xj , tr,yj , tr
′,x

j , tr
′,y

j are all equal, hence tj does not satisfy
κ{r,r′}, a contradiction. We may therefore wlog assume that s looks like this: s =
(1, 1, . . . , k, k, ?, . . .), where all entries starting from the question mark are elements
of Q2. If we had t

i,x = ti,y for some 1 ≤ i ≤ k, then we could derive a contradiction
just like in the case p < k, by taking i out of Q1. So assume this is not the case.
Then the set of vectors {t1,x, t1,y, . . . , tk,x, tk,y} equals {c1,x, c1,y, . . . , ck,x, ck,y}. We
prove that there exists 1 ≤ j ≤ m such that tj does not satisfy κ{1,...,k}. Let σ

be the permutation on the indices of the tuple (c1,x, c1,y, . . . , ck,x, ck,y) which sends
this tuple to (t1,x, t1,y, . . . , tk,x, tk,y). Observe that σ only switches cj,x and cj,y,
if necessary. Now consider the tuple b := (k, 1, 1, 2, 2, . . . , k − 1, k − 1, k) ∈ Ck,
and apply σ−1 to the indices of this tuple, obtaining a new tuple σ−1(b). One
readily checks σ−1(b) ∈ Ck, so σ

−1(b) = cj for some 1 ≤ j ≤ m. Thus the tuple

(t1,xj , t1,yj , . . . , tk,xj , tk,yj), which is obtained by applying σ to cj = σ−1(b), equals b.

But b does not satisfy κ{1,...,k}, so tj /∈ Cn, a contradiction. �

We end this section by the following proposition, which completes the proof of
Theorem 13 and of the corollary after.

Proposition 77. The mapping σ from the power set of ω into Clloc(N) which
sends every A ⊆ ω to the local clone Pol({Cn+3 : n ∈ A}) is injective and antitone
(with respect to inclusion, on both sides). In particular, the number of local clones
containing SN equals the continuum.

Proof. Since Pol is antitone, it follows that the same holds for σ. Now let A,B ⊆ ω
be unequal, say wlog that there is n ∈ A\B. Then the Hubie-violator Hn+3 violates
Cn+3 but preserves all Ck+3, where k ∈ B. Thus Hn+3 ∈ σ(B) \ σ(A), and σ is
indeed injective. �

7. Clones with essential infinite range operations plus constants

It remains to investigate one last monoidal interval, namely the one correspond-
ing to the monoid I + consisting of all unary operations which are either injective
or constant. We will thus be concerned with the proof of Theorem 15 in this sec-
tion. The crucial ingredients to the proof will be Proposition 69 and the following
lemma; the definition of S was given in Definition 12.

Lemma 78. ⟨S +⟩ = S +.

Proof. We have to show that S + is a local clone. Let f ∈ ⟨S +⟩ be an arbitrary
non-constant operation. We claim that f ∈ S . To see this, let A be any finite
subset of Nn, where n is the arity of f . Extend A to a finite set B ⊆ Nn such that
f is non-constant on B. Since f ∈ ⟨S +⟩, and since S is by definition generated
by f3, there exists a term t using f3 and the constants which agrees with f on B.
Since t is non-constant, it can as well be written without constants, using f3 only:
This is because inserting a constant as an argument of f3 gives us an injection
or essentially a bar operation, both of which are generated by f3 without using
constants. Thus, f can be interpolated on B, and hence also on A, by a term in
S . This proves f ∈ S . �

Recall that R consists of all operations which are injective in one direction
(Definition 11). Whereas S + is a local clone, we cannot add constants to R
without generating all operations:

Proposition 79. ⟨R+⟩ = O.

38 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

Proof. Let f(x1, . . . , xn) ∈ O be arbitrary, and let A ⊆ Nn be finite. Define
g(x1, . . . , xn+1) as follows: If xn+1 = 0 and (x1, . . . , xn) ∈ A, then g returns
f(x1, . . . , xn). For every other input tuple, g returns a unique value distinct from
all other values in its range. Clearly, g is injective in the (n + 1)-st direction, so
g ∈ R. Moreover, g(x1, . . . , xn, 0) agrees with f on A, implying f ∈ ⟨R+⟩ as A was
arbitrary. �

Note that the preceding proposition proves item (7) of Theorem 15. We have
found the largest element of our monoidal interval II + :

Lemma 80. Pol(I +) = S +.

Proof. Clearly, the unary fragment of S + equals I +, hence S + is an element of
the corresponding monoidal interval II + . Suppose there was a local clone C in this
interval which properly contains S +. Take any f ∈ C \ S +. Clearly, f must be
essential. Since the only non-injections in the unary fragment of C are constant,
Lemma 36 implies that f must have infinite range. By Proposition 37, f preserves
̸=. Thus, f ∈ Pol(̸=) \ S , so f generates R by Proposition 69. Hence C = O by
the preceding proposition. �

The following proposition proves statement (1) of Theorem 15.

Proposition 81. Let C ∈ II + . Then C− = C ∩ S . In particular, C− is a local
clone in II .

Proof. By Lemma 80, C is a subclone of S +; hence intersecting C with S just
means taking away the constants, which proves our assertion. Since the intersection
of local clones is a local clone, so is C−. Clearly, the unary fragment of C− equals
I , hence C− is an element of II . �

Observe that the second statement of the theorem is trivial. We turn to the
proof of item (3).

Proposition 82. The mapping from II + into the subinterval [⟨I ⟩,S] of II which
sends every clone C to C− is a complete lattice embedding which preserves the
smallest and the largest element.

Proof. It is clear that this mapping preserves the order and by the second state-
ment of Theorem 15, it sends the smallest (largest) element of II + to the smallest
(largest) element of [⟨I ⟩,S]. It is also obvious that the mapping is injective. Let
C ,D ∈ II + . Clearly, (C ∩ D)− = C− ∩ D−, hence the mapping preserves finite
meets; larger meets work the same way. Since (C ∨ D)− contains both C− and
D−, it contains also their join, so (C ∨ D)− ⊇ C− ∨ D−. For the other inclusion,
let f be any non-constant operation in the (not necessarily local) clone generated
by C ∪ D . Then f can be written as a term over C ∪ D . We can assume that in
this term, thinking of it as a tree, the constants appear only as leaves. We may
also assume that except for leaves, no subtree of this tree is constant. That just
means that the nodes above the leaves are operation symbols in C− ∪ D−, some
of whose variables are set to constant values. But these operations in C− ∪ D−

with some variables set to constants are again elements of C− ∪ D−, as they are
non-constant by assumption and since C and D are clones containing all constants.
Summarizing, we can write f as a term over C−∪D− without the use of constants.
Hence, f ∈ C− ∨ D−. This proves (C ∨ D)− ⊆ C− ∨ D−, and hence our mapping
preserves finite joins. Infinite joins work the same way. �

Observe that item (4) of Theorem 15 is clear from the definitions. We prove (5).

Proposition 83. For all C ∈ II which do not contain R, ⟨C+⟩ is a local clone
in II + .

THE REDUCTS OF EQUALITY 39

Proof. By Proposition 69, C is contained in S . Hence, ⟨C+⟩ is contained in S +

by Lemma 78, which equals Pol(I +) by Lemma 80. Therefore ⟨C+⟩ is indeed a
local clone in II + . �

Item (6) is trivial from the definitions. We finish the proof of the theorem by
the following proposition, which restates items (8) and (9):

Proposition 84. H + is the unique cover of ⟨I +⟩ and B+ is the unique cover of
H + in II + .

Proof. Let C be in II + , and assume it has an essential operation f . Then f ∈ S
by Lemma 80, thus f generates H by Proposition 43. It is easy to see that H + is
a local clone, which proves the first assertion. Similarly, if C is in II + and properly
contains H +, then any operation witnessing this generates B, by Proposition 50.
Again, it is straightforward to check that B+ is a local clone. �

We want to close this section with the remark that the mapping which sends
every clone C in the interval [⟨I ⟩,S] of II to ⟨C+⟩ is not injective. In particular,
it collapses all clones between R ∩ S and S .

Proposition 85. ⟨(R ∩ S)+⟩ = S +

Proof. The operation g3 (Definition 58) is injective in the first argument, and hence
contained in R. By Lemma 59, g3 preserves R2, and, being an element of R, it also
preserves ̸=. Proposition 62 then implies that g3 is contained in S : Otherwise, it
would violate a relation preserved by S ; that relation would have a pp definition
from R2 and ̸=, a contradiction. Therefore, the operation g3 is in R ∩ S .

The operation given by g3(0, x1, x2, x3) equals by definition the operation f3
(Definition 12 or 57), which by definition generates S . Hence, ⟨(R∩S)+⟩ contains
S +. The converse containment is trivial. �

Observe that this proposition implies that the complete lattice embedding that
sends every C ∈ II + to C− is not surjective onto the interval [⟨I ⟩,S]: If there
existed a clone C ∈ II + such that C− = R ∩ S , then C = (R ∩ S)+ since
C = (C−)+. Thus (R ∩ S)+ would be a clone and hence equal to S +, implying
R ∩ S = S , a contradiction. In fact the same argument shows that a clone
D ∈ [⟨I ⟩,S] is in the range of this embedding iff D+ is a clone.

8. Open Problems

We have to leave the complete description of the monoidal intervals correspond-
ing to I and I + open; we do not know if a reasonable description of these intervals
is possible at all. Two particular problems seem most important to us at this point:

• Can one effectively decide whether for a given sequence R0, R1, . . . , Rn of
relations that are first-order definable in (N,=) there is a pp-definition of
R0 in the structure (N, R1, . . . , Rn)?

• What is the cardinality of the monoidal interval corresponding to I +?

Acknowledgements. We thank the referee for helpful suggestions.

References

[BC07] M. Bodirsky and H. Chen. Quantified equality constraints. In LICS’07, pages 203–212,
2007.

[BCRV04] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with boolean blocks, part

ii: constraint satisfaction problems. ACM SIGACT-Newsletter, 35(1):22–35, 2004.
[BK08a] M. Bodirsky and J. Kára. The complexity of equality constraint languages. Theory of

Computing Systems, 3(2):136–158, 2008. A conference version of the paper appeared in
the proceedings of the International Computer Science Symposium in Russia (CSR’06).

40 MANUEL BODIRSKY, HUBIE CHEN, AND MICHAEL PINSKER

[BK08b] M. Bodirsky and J. Kára. The complexity of temporal constraint satisfaction problems.
In Proceedings of STOC’08, pages 29–38, 2008.

[BN06] M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable homogeneous tem-
plates. J. Logic Comput., 16(3):359–373, 2006.

[Cam76] P. J. Cameron. Transitivity of permutation groups on unordered sets. Math. Z.,
148:127–139, 1976.

[Cam90] P. J. Cameron. Oligomorphic permutation groups, volume 152 of London Mathematical

Society Lecture Note Series. Cambridge University Press, Cambridge, 1990.
[CD73] P. Crawley and R. P. Dilworth. Algebraic theory of lattices. Prentice-Hall, 1973.
[Die05] R. Diestel. Graph Theory, 3rd edition. Springer–Verlag, New York, 2005.
[Gol] M. Goldstern. Analytic clones. Preprint available from http://arxiv.org/math.RA/

0404214.
[GP08] M. Goldstern and M. Pinsker. A survey of clones on infinite sets. Algebra Universalis,

59:365–403, 2008.
[GS05] M. Goldstern and S. Shelah. Clones from creatures. Trans. Amer. Math. Soc.,

357(9):3525–3551, 2005.
[GSS] M. Goldstern, S. Sági, and S. Shelah. Very many clones above the unary clone. Preprint.
[Hei02] L. Heindorf. The maximal clones on countable sets that include all permutations. Al-

gebra Universalis, 48:209–222, 2002.

[HR94] L. Haddad and I. G. Rosenberg. Finite clones containing all permutations. Canad. J.
Math., 46(5):951–970, 1994.

[JZ08] M. Junker and M. Ziegler. The 116 reducts of (Q, <, a). Journal of Symbolic Logic,

73(3):861–884, 2008.
[Kru72] J. B. Kruskal. The theory of well-quasi-ordering: A frequently discovered concept.

Journal of Combinatorial Theory (A), 13:297–305, 1972.
[Lau06] D. Lau. Function algebras on finite sets. Springer Monographs in Mathematics.

Springer-Verlag, Berlin, 2006.
[MP07] H. Machida and M. Pinsker. The minimal clones above the permutations. Semigroup

Forum, 75:181–211, 2007.
[Mil85] E. C. Milner. Basic wqo and bqo theory. In Graphs and Orders (I. Rival, ed.), Reidel,

Boston, Mass., pages 487–502, 1985.
[Pin] M. Pinsker. More sublattices of the lattice of local clones. Preprint available from

http://dmg.tuwien.ac.at/pinsker/.
[Pin05a] M. Pinsker. Maximal clones on uncountable sets that include all permutations. Algebra

Universalis, 54(2):129–148, 2005.
[Pin05b] M. Pinsker. The number of unary clones containing the permutations on an infinite

set. Acta Sci. Math., 71:461–467, 2005.
[Pin08] M. Pinsker. Sublattices of the lattice of local clones. In Proceedings of the ROGICS’08

conference, pages 80–87, 2008.
[PK79] R. Pöschel and L. Kalužnin. Funktionen- und Relationenalgebren. VEB Deutscher Ver-

lag der Wissenschaften, 1979.

[Pos41] E. L. Post. The two-valued iterative systems of mathematical logic. Annals of Math.
Studies, 5, 1941.

[RS82] I. G. Rosenberg and D. Schweigert. Locally maximal clones. Elektron. Informationsver-
arb. Kybernet., 18(7-8):389–401, 1982.

[Sch78] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of STOC’78,
pages 216–226, 1978.

[Sch89] U. Schöning. Logic for Computer Scientists. Springer, 1989.

[Sze86] Á. Szendrei. Clones in universal algebra. Les Presses de L’Université de Montréal,
1986.

[Tho91] S. Thomas. Reducts of the random graph. Journal of Symbolic Logic, 56(1):176–181,

1991.

THE REDUCTS OF EQUALITY 41

Laboratoire d’Informatique (LIX), CNRS UMR 7161, Ècole Polytechnique, 91128
Palaiseau, France

E-mail address: bodirsky@lix.polytechnique.fr
URL: http://www.lix.polytechnique.fr/~bodirsky/

Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pom-
peu Fabra, Barcelona, Spain

E-mail address: hubie.chen@upf.edu
URL: http://www.tecn.upf.es/~hchen/

Laboratoire de Mathématiques Nicolas Oresme, CNRS UMR 6139, Université de
Caen, 14032 Caen Cedex, France

E-mail address: marula@gmx.at
URL: http://dmg.tuwien.ac.at/pinsker/

