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Abstract. Schaefer’s theorem is a complexity classification result for so-called Boolean
constraint satisfaction problems: it states that every Boolean constraint satisfaction problem
is either contained in one out of six classes and can be solved in polynomial time, or is
NP-complete.

We present an analog of this dichotomy result for the propositional logic of graphs instead
of Boolean logic. In this generalization of Schaefer’s result, the input consists of a set
W of variables and a conjunction Φ of statements (“constraints”) about these variables in
the language of graphs, where each statement is taken from a fixed finite set Ψ of allowed
quantifier-free first-order formulas; the question is whether Φ is satisfiable in a graph.

We prove that either Ψ is contained in one out of 17 classes of graph formulas and the
corresponding problem can be solved in polynomial time, or the problem is NP-complete.
This is achieved by a universal-algebraic approach, which in turn allows us to use structural
Ramsey theory. To apply the universal-algebraic approach, we formulate the computational
problems under consideration as constraint satisfaction problems (CSPs) whose templates
are first-order definable in the countably infinite random graph. Our method for classifying
the computational complexity of those CSPs is based on a Ramsey-theoretic analysis of
functions acting on the random graph, and we develop general tools suitable for such an
analysis which are of independent mathematical interest.

1. Motivation and the result

In an influential paper in 1978, Schaefer [26] proved a complexity classification for sys-
tematic restrictions of the Boolean satisfiability problem. The way in which he restricts the
Boolean satisfiability problem turned out to be very fruitful when restricting other computa-
tional problems in theoretical computer science, and can be presented as follows.

Let Ψ = {ψ1, . . . , ψn} be a finite set of propositional (Boolean) formulas.

Boolean-SAT(Ψ)
INSTANCE: Given a finite set of variables W and a propositional formula of the form
Φ = φ1 ∧ · · · ∧ φl where each φi for 1 ≤ i ≤ l is obtained from one of the formulas ψ in
Ψ by substituting the variables of ψ by variables from W .
QUESTION: Is there a satisfying Boolean assignment to the variables of W (equivalently,
those of Φ)?

The computational complexity of this problem clearly depends on the set Ψ, and is mono-
tone in the sense that if Ψ ⊆ Ψ′, then solving Boolean-SAT(Ψ′) is at least as hard as solving
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Boolean-SAT(Ψ). Schaefer’s theorem states that Boolean-SAT(Ψ) can be solved in polyno-
mial time if Ψ is a subset of one of six sets of Boolean formulas (called 0-valid, 1-valid, Horn,
dual-Horn, affine, and bijunctive), and is NP-complete otherwise.

We prove a similar classification result, but for the propositional logic of graphs instead
of for propositional Boolean logic. More precisely, let E be a relation symbol which denotes
an antireflexive and symmetric binary relation and hence stands for the edge relation of a
(simple, undirected) graph. We consider formulas that are constructed from atomic formulas
of the form E(x, y) and x = y by the usual Boolean connectives (negation, conjunction,
disjunction), and call formulas of this form graph formulas. A graph formula Φ(x1, . . . , xm) is
satisfiable if there exists a graph H and an m-tuple a of elements in H such that Φ(a) holds
in H.

The problem of deciding whether a given graph formula is satisfiable can be very difficult.
For example, the question whether or not the Ramsey number R(5, 5) is larger than 43 (which
is an open problem, see e.g. [19]) can be easily formulated in terms of satisfiability of a single
graph formula. Recall that R(5, 5) is the least number k such that every graph with at least
k vertices either contains a clique of size 5 or an independent set of size 5. So the question
whether or not R(5, 5) is greater than 43 can be formulated as the question of satisfiability of
a graph formula using 43 variables x1, . . . , x43 on which one imposes the following constraints:
all variables denote different vertices in the graph, and for every five-element subset of the
variables we add a constraint that forbids that the variables of this subset form a clique or
an independent set; this can clearly be stated as a graph formula. If this graph formula is
satisfiable, then this implies that R(5, 5) ≤ 43, and otherwise R(5, 5) > 43.

Let Ψ = {ψ1, . . . , ψn} be a finite set of graph formulas. Then Ψ gives rise to the following
computational problem.

Graph-SAT(Ψ)
INSTANCE: Given a set of variables W and a graph formula of the form Φ = φ1 ∧ · · · ∧ φl
where each φi for 1 ≤ i ≤ l is obtained from one of the formulas ψ in Ψ by substituting the
variables from ψ by variables from W .
QUESTION: Is Φ satisfiable?

As an example, let Ψ be the set that just contains the formula

(E(x, y) ∧ ¬E(y, z) ∧ ¬E(x, z))

∨ (¬E(x, y) ∧ E(y, z) ∧ ¬E(x, z))(1)

∨ (¬E(x, y) ∧ ¬E(y, z) ∧ E(x, z)) .

Then Graph-SAT(Ψ) is the problem of deciding whether there exists a graph such that certain
prescribed subsets of its vertex set of cardinality at most three induce subgraphs with exactly
one edge. This problem is NP-complete (the curious reader can check this by means of our
classification in Theorem 91).

Consider now the example where Ψ consists of the formula

(E(x, y) ∧ ¬E(y, z) ∧ ¬E(x, z))

∨ (¬E(x, y) ∧ E(y, z) ∧ ¬E(x, z))(2)

∨ (¬E(x, y) ∧ ¬E(y, z) ∧ E(x, z))

∨ (E(x, y) ∧ E(y, z) ∧ E(x, z)) .
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In this example, Graph-SAT(Ψ) is the problem of deciding whether there exists a graph
such that certain prescribed subsets of its vertex set of cardinality at most three induce either
a subgraph with exactly one edge, or a complete triangle. This problem turns out to be
tractable.

The class of Graph-SAT problems generalizes the class of problems studied by Schaefer,
since to every set Ψ of Boolean formulas we can associate a set Ψ′ of graph formulas such that
Graph-SAT(Ψ′) and Boolean-SAT(Ψ) are essentially the same problem. For every variable
x of Ψ there are two variables x1, x2 in Ψ′. Then Ψ′ contains for every ψ ∈ Ψ the graph
formula obtained from ψ by replacing positive literals x by E(x1, x2), and negative literals
¬x by N(x1, x2). An instance Φ of Boolean-SAT(Ψ) translates into an instance Φ′ of Graph-
SAT(Ψ′) by modifying Φ in the same way; then Φ is satisfiable if and only if Φ′ is satisfiable.

It is obvious that the problem Graph-SAT(Ψ) is for all Ψ contained in NP. The goal of this
paper is to prove the following dichotomy result.

Theorem 1. For all Ψ, the problem Graph-SAT(Ψ) is either NP-complete or in P. More-
over, the problem of deciding for given Ψ whether Graph-SAT(Ψ) is NP-complete or in P is
decidable.

One of the main contributions of this paper is a novel general method combining concepts
from universal algebra and model theory with powerful tools of Ramsey theory.

2. Discussion of our strategy

We establish our result by translating Graph-SAT problems into constraint satisfaction
problems (CSPs) over infinite domains. More specifically, for every set of formulas Ψ we
present an infinite relational structure ΓΨ such that Graph-SAT(Ψ) is equivalent to CSP(ΓΨ);
in a certain sense, Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem. The relational
structure ΓΨ has a first-order definition in the random graph G, i.e., the (up to isomorphism)
unique countably infinite universal homogeneous graph. This perspective allows us to use
the so-called universal-algebraic approach, and in particular polymorphisms to classify the
computational complexity of Graph-SAT problems. In contrast to the universal-algebraic
approach for finite domain constraint satisfaction, our proof relies crucially on strong results
from structural Ramsey theory; we use such results to find regular patterns in the behavior
of polymorphisms of structures with a first-order definition in G, which in turn allows us to
find analogies with polymorphisms of structures on a Boolean domain.

We call structures with a first-order definition in G reducts of G. While the classical
definition of a reduct of a relational structure ∆ is a structure on the same domain obtained
by forgetting some relations of ∆, a reduct of ∆ in our sense (following [28]) is really a reduct
of the expansion of ∆ by all first-order definable relations. It turns out that there is one class
of reducts Γ of G for which CSP(Γ) is in P for trivial reasons; further, there are 16 classes of
reducts Γ for which CSP(Γ) (and the corresponding Graph-SAT problems) can be solved by
non-trivial algorithms in polynomial time.

The presented algorithms are novel combinations of infinite domain constraint satisfaction
techniques (such as used in [17, 8, 3]) and reductions to the tractable cases of Schaefer’s
theorem. Reductions of infinite domain CSPs in artificial intelligence (e.g., in temporal and
spatial reasoning [18]) to finite domain CSPs (where typically the domain consists of the
elements of a so-called ‘relation algebra’) have been considered in the more applied artificial
intelligence literature [30]. Our results shed some light on the question as to when such
techniques can even lead to polynomial-time algorithms for CSPs.



4 MANUEL BODIRSKY AND MICHAEL PINSKER

The global classification strategy of the present paper is similar in spirit to the strategy
presented in [7] for CSPs of reducts of (Q;<). But while in [7] the proof might still have
appeared to be very specific to constraint satisfaction over linear orders, with the present paper
we demonstrate that in principle such a strategy can be used for any class C of computational
problems that satisfies the following:

• All problems in C can be formulated as a CSP of a structure which is first-order
definable in a single structure ∆;
• ∆ is homogeneous in a finite language and the class of finite substructures of ∆ has

the Ramsey property (as in [24]).

The subsequent survey article [10] is devoted to the application of the method of this paper
in this more general setting, providing further examples. We remark that in our case, the
structure ∆ above is the ordered random graph (roughly the random graph equipped with the
order of the rationals in a random way – confer Section 7) rather than the random graph G
itself.

While in [7], the classical theorem of Ramsey and its product version were sufficient, the
Ramsey theorems used in the present paper are deeper and considerably more difficult to
prove [25, 1].

3. Tools from universal algebra and model theory

We now develop in detail the tools from universal algebra and model theory needed for our
approach. We start by translating the problem Graph-SAT(Ψ) into a constraint satisfaction
problem for a reduct of the random graph G.

We write G = (V ;E) for the random graph. The graph G is determined up to isomorphism
by the two properties of being homogeneous (i.e., any isomorphism between two finite induced
subgraphs of G can be extended to an automorphism of G), and universal (i.e., G contains all
countable graphs as induced subgraphs). The random graph G has the property of quantifier
elimination, that is, every first-order formula is over G equivalent to a quantifier-free first-
order formula. Moreover, G has the extension property, which often is useful in combinatorial
arguments: for all disjoint finite U,U ′ ⊆ V there exists v ∈ V such that v is adjacent in G to all
members of U and to none in U ′. Up to isomorphism, there exists only one unique countably
infinite graph which has this extension property, and hence the property can be used as an
alternative definition of G. The name of the random graph is due to the fact that if for a
countably infinite vertex set, one chooses independently and with probability 1

2 for each pair of
vertices whether to connect the two vertices by an edge, then with probability 1 the resulting
graph is isomorphic to the random graph. For the many other remarkable properties of G and
its automorphism group Aut(G), and various connections to many branches of mathematics,
see e.g. [14, 15].

Let Γ be a structure with a finite relational signature τ . A first-order τ -formula is called
primitive positive if it is of the form

∃x1, . . . , xn. ψ1 ∧ · · · ∧ ψm,

where the ψi are atomic, i.e., of the form y1 = y2 or R(y1, . . . , yk) for a k-ary relation symbol
R ∈ τ and not necessarily distinct variables yi. A τ -formula is called a sentence if it contains
no free variables.
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Definition 2. The constraint satisfaction problem for Γ, denoted by CSP(Γ), is the compu-
tational problem of deciding for a given primitive positive τ -sentence Φ whether Φ is true in
Γ.

Let Ψ = {ψ1, . . . , ψn} be a set of graph formulas. Then we define ΓΨ to be the structure with
the same domain V as the random graph G which has for each ψi a relation Ri consisting of
those tuples in G that satisfy ψi (where the arity of Ri is given by the number of variables that
occur in ψi). Thus by definition, ΓΨ is a reduct of G. Now given any instance Φ = φ1∧· · ·∧φl
with variable set W of Graph-SAT(Ψ), we construct a primitive positive sentence Φ′ in the
language of ΓΨ as follows: In Φ, we replace every φi, which by definition is of the form
ψj(y1, . . . , ym) for some 1 ≤ j ≤ n and variables yk from W , by Rj(y1, . . . , ym); after that,
we existentially quantify all variables that occur in Φ′. It then follows immediately from the
universality of G that the problem Graph-SAT(Ψ) has a positive answer for Φ if and only
if the sentence Φ′ holds in ΓΨ. Hence, every problem Graph-SAT(Ψ) is in fact of the form
CSP(Γ), for a reduct Γ of G in a finite signature. We will thus henceforth focus on such
constraint satisfaction problems in order to prove our dichotomy.

The following lemma has been first stated in [23] for finite domain structures Γ only, but
the proof there also works for arbitrary infinite structures. It shows us how we can slightly
enrich structures without changing the computational complexity of the constraint satisfaction
problem they define too much.

Lemma 3. Let Γ = (D;R1, . . . , Rl) be a relational structure, and let R be a relation that has
a primitive positive definition in Γ. Then CSP(Γ) and CSP(D;R,R1, . . . , Rl) are polynomial-
time equivalent.

The preceding lemma enables the so-called universal-algebraic approach to constraint sat-
isfaction, as exposed in the following. We say that a k-ary function (also called operation)
f : Dk → D preserves an m-ary relation R ⊆ Dm if for all t1, . . . , tk ∈ R the tuple f(t1, . . . , tk)
(calculated componentwise) is also contained in R. If an operation f does not preserve a re-
lation R, we say that f violates R. If f preserves all relations of a structure Γ, we say that f
is a polymorphism of Γ (it is also common to say that Γ is closed under f , or that f preserves
Γ). A unary polymorphism of Γ is also called an endomorphism of Γ.

Conversely, for a set F of operations of finite arity defined on a set D and a finitary relation
R on D, we say that R is invariant under F if R is preserved by all f ∈ F , and we write
Inv(F ) for the set of all finitary relations on D that are invariant under F .

The set of all polymorphisms Pol(Γ) of a relational structure Γ forms an algebraic object
called a clone (see [27], [21]), which is a set of operations defined on a set D that is closed under
composition and that contains all projections. Moreover, Pol(Γ) is closed under interpolation
(see Proposition 1.6 in [27]): we say that a k-ary operation f on D is interpolated by a set of
operations F on D if for every finite subset A of Dk there is some k-ary operation g ∈ F such
that g agrees with f on A. We say that F locally generates an operation g if g is contained in
the smallest clone that is closed under interpolation and contains all operations in F . Clones
with the property that they contain all functions locally generated by their members are
called locally closed, local or just closed.

We can thus assign to every structure Γ the closed clone Pol(Γ) of its polymorphisms.
For certain Γ, this clone captures the computational complexity of CSP(Γ): a countable
structure Γ is called ω-categorical if every countable model of the first-order theory of Γ is
isomorphic to Γ. It is well-known that the random graph G is ω-categorical, and that reducts
of ω-categorical structures are ω-categorical as well (see for example [22]).
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Theorem 4 (from [9]). Let Γ be an ω-categorical structure. Then the relations preserved
by the polymorphisms of Γ, i.e., the relations in Inv(Pol(Γ)), are precisely those having a
primitive positive definition in Γ.

Clearly, this theorem together with Lemma 3 imply that if two ω-categorical structures
with finite relational signatures have the same clone of polymorphisms, then their CSPs
are polynomial-time equivalent. Recall that we have only defined CSP(Γ) for structures Γ
with a finite relational signature. But we now see that it makes sense (and here we follow
conventions from finite domain constraint satisfaction, see e.g. [13]) to say for arbitrary ω-
categorical structures Γ that CSP(Γ) is (polynomial-time) tractable if the CSP for every finite
signature structure ∆ with the same polymorphism clone as Γ is in P, and to say that CSP(Γ)
is NP-hard if there is a finite signature structure ∆ with the same polymorphism clone as Γ
whose CSP is NP-hard.

Note that the automorphisms of a structure ∆ are just the bijective unary polymorphisms
of ∆ which preserve all relations and their complements; the set of all automorphisms of ∆
is denoted by Aut(∆). It follows from the theorem of Ryll-Nardzewski (cf. [22]) that for ω-
categorical structures ∆, the closed clones containing Aut(∆) are precisely the polymorphism
clones of reducts Γ of ∆. Therefore, in order to determine the computational complexity of the
CSP of all reducts Γ of G, it suffices to determine for every closed clone C containing Aut(G)
the complexity of CSP(Γ) for some reduct Γ of G with Pol(Γ) = C; then the complexity for
all reducts with the same polymorphism clone is polynomial-time equivalent to CSP(Γ).

The following proposition is the analog to Theorem 4 on the “operational side”, and char-
acterizes the local generating process of functions on a domain D by the operators Inv and
Pol.

Proposition 5 (Corollary 1.9 in [27]). Let F be a set of functions on a domain D, and let
g be a function on D. Then F locally generates g if and only if g preserves all relations that
are preserved by all operations in F , i.e., if and only if g ∈ Pol(Inv(F )).

For some reducts, we will find that their CSP is equivalent to a CSP of a structure that
has already been studied, by means of the following basic observation.

Proposition 6. Let Γ,∆ be homomorphically equivalent, i.e., they have the same signature
and there exist homomorphisms f : Γ→ ∆ and g : ∆→ Γ. Then CSP(Γ) = CSP(∆).

We finish this section with a technical general lemma that we will refer to on numerous
occasions; it allows to restrict the arity of functions violating a relation. For a structure Γ
with domain D and a tuple t ∈ Dk, the orbit of t in Γ is the set {α(t) | α ∈ Aut(Γ)}.

Lemma 7 (from [7]). Let Γ be a relational structure with domain D, and suppose that R ⊆ Dk

intersects not more than m orbits of k-tuples in Γ. Suppose that an operation f on D violates
R. Then {f} ∪Aut(Γ) locally generates an at most m-ary operation that violates R.

4. Overview of the proof

The general method behind proving Theorem 1 can be described as follows; for concrete-
ness, we explain it for our particular situation of the random graph.

The first step is providing hardness proofs for certain relations with a first-order definition
over G. More precisely, we define four relations H1, H ′1, H2, and H ′2 which have first order-
definitions in G, and show hardness for the CSP defined by each of these relations by reduction
of known NP-hard problems. We then know from Lemma 3 that if the CSP for a reduct Γ is
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not NP-hard, then there is no primitive positive definition of any of these relations in Γ. This
implies that there are polymorphisms of Γ which violate the NP-hard relations, by Theorem 4.

We then analyze the polymorphisms of Γ which violate H1, H ′1, H2, and H ′2. The first,
rather basic tool here is Lemma 7, which we use in order to get bounds on the arity of such
polymorphisms. The deeper part of our analysis is the simplification of the polymorphisms
by means of Ramsey theory. It turns out that the polymorphisms can be assumed to behave
regularly in a certain sense with respect to the base structure G (the technical term for
functions showing such regular behavior will be canonical), making them accessible to case-
by-case analysis. In order to be able to use results from Ramsey theory, we have to expand
the structure G generically by a linear order ≺ on V which is isomorphic to the order of the
rational numbers.

Finally, the presence of canonical polymorphisms is used in two ways: in the case of canon-
ical unary polymorphisms, the image under such a polymorphism sometimes is a structure
∆ for which the CSP has already been classified, and then one can refer to Proposition 6 to
argue that the CSP(Γ) is polynomial-time equivalent to the CSP of this structure ∆. The
second, and in our case considerably more important way of employing canonical polymor-
phisms, is to prove tractability of CSP(Γ) by using the polymorphisms to design algorithms.
Here, we adapt known algorithms showing that certain polymorphisms on a Boolean domain
imply tractability of Boolean CSPs in order to prove that the same holds for their canonical
counterparts on the random graph.

For reasons of efficiency, we present our proof in a slightly different fashion, albeit the
above strategy describes our intuition behind it. We first cite known results on automorphism
groups and endomorphism monoids of reducts of G, in particular from [29] and [11]. These
older results have been obtained using Ramsey theory, and thus by building on them we
outsource the Ramsey-theoretic analysis of unary polymorphisms of reducts. Putting them
together, we obtain a statement saying that for any reduct Γ of G, either Γ has a constant
endomorphism, and its CSP is tractable, or Γ is homomorphically equivalent to a structure
with a first-order definition in (V ; =), in which case the complexity of its CSP is known, or its
endomorphisms are locally generated by Aut(Γ) (Section 6). The latter case splits into four
subcases, corresponding to the precisely four proper subgroups of the full symmetric group
on V which are automorphism groups of reducts of G.

In Section 7, we consider each of those four possibilities for Aut(Γ), and analyze the higher
arity polymorphisms of Γ to a level of detail not present in the literature (although we do
also draw on earlier results on such higher arity polymorphisms from [11]). It is here where
we apply Ramsey theory directly in our paper. We show that in all four cases, either one of
the hard relations H1, H ′1, H2, or H ′2 has a primitive positive definition in Γ, or Γ has binary
or ternary canonical polymorphisms with particular properties. We remark that each of the
four hard relations corresponds to one of the possible cases for Aut(Γ).

Finally, Section 8 presents polynomial-time algorithms for reducts having these particular
canonical polymorphisms.

The proof of the dichotomy claimed in Theorem 1 is followed by Section 9 in which the
classification is stated in more detail and the decidability part of the theorem is derived.
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5. Additional conventions

When working with relational structures Γ, we often use the same symbol for a relation
of Γ and its relation symbol. In particular, we use the symbol E to denote both the edge
relation of G and the corresponding symbol in graph formulas.

Since all our polymorphism clones contain the automorphism group Aut(G) of the random
graph, we will abuse the notion of generates from Section 3, and use it as follows: for a set of
functions F and a function g on the domain V , we say that F generates g when F ∪Aut(G)
locally generates g; also, we say that a function f generates g if {f} generates g. That is,
in this paper we consider the automorphisms of G be present in all sets of functions when
speaking about the local generating process.

The binary relation N(x, y) on V is defined by the formula ¬E(x, y) ∧ x 6= y. We use 6=
both in logical formulas to denote the negation of equality, and to denote the corresponding
binary relation on V .

When t is an n-tuple, we refer to its entries by t1, . . . , tn. When f : A → B is a function
and C ⊆ A, we write f [C] for {f(a) | a ∈ C}.

6. Endomorphisms

The goal of this section is the proof of Proposition 8, which will in particular allow us to
reduce the classification task to the classification of those structures whose automorphism
generate its endomorphisms. To state the proposition, we first define the following unary
functions on V that will play an important role throughout the paper.

If we flip edges and non-edges of G, then the resulting graph is isomorphic to G: it is
straightforward to verify the extension property. Let − be such an isomorphism.

For any finite subset S of V , if we flip edges and non-edges between S and V \S in G, then
the resulting graph is isomorphic to G; again, this follows by verifying the extension property.
Let swS be such an isomorphism for each non-empty finite S. Any two such functions generate
one another [28]. We also write sw for sw{0}, where 0 ∈ V is any fixed element of V .

There are automorphisms α, β of G such that the mappings x 7→ −(α(−(x))) and x 7→
sw(β(sw(x))) are the identity functions on V ; the existence of such automorphisms can be
shown with a standard back-and-forth argument, see e.g. [22]. Hence, if − or sw preserve a
relation R with a first-order definition in G, they automatically preserve also the complement
of R, and thus are automorphisms of the structure (V ;R).

The graph G contains all countable graphs as induced subgraphs. In particular, it contains
an infinite complete subgraph. The homogeneity of G implies that any two injective unary
operations on V whose images induce complete subgraphs in G generate one another (see,
e.g., [11]); let eE be one such operation. Similarly, G contains an infinite independent set.
Let eN be an injective unary operation on V whose image induces an infinite independent set
in G.

Proposition 8. Let Γ be a reduct of G. Then at least one of the following holds.

(a) Γ has a constant endomorphism, and CSP(Γ) is in P.
(b) Γ has eE or eN among its endomorphisms, and Γ is homomorphically equivalent to

a countably infinite structure that is preserved by all permutations of its domain. In
this case the complexity of CSP(Γ) has been classified in [6], and is either in P or
NP-complete.

(c) The endomorphisms of Γ are precisely the functions generated by {−}.
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(d) The endomorphisms of Γ are precisely the functions generated by {sw}.
(e) The endomorphisms of Γ are precisely the functions generated by {−, sw}.
(f) The endomorphisms of Γ are precisely the functions generated by Aut(G), i.e., all

endomorphisms of Γ preserve E and N .

Proposition 8 follows from two results about unary functions on G. The first result is
from [29]; its reformulation from [11] reads as follows.

Theorem 9. Let Γ be a reduct of G. Then one of the following cases applies.

(1) Γ has a constant endomorphism.
(2) Γ has the endomorphism eE.
(3) Γ has the endomorphism eN .
(4) The endomorphisms of Γ are generated by Aut(Γ).

The second result we use, from [28], states that there exist precisely five permutation
groups on V that contain Aut(G) and which are closed in the sense that they contain all
permutations which they interpolate. By the theorem of Ryll-Nardzewski (confer also the
discussion in Section 3), these groups correspond precisely to the automorphism groups of
reducts of G. Thus, the last case of Theorem 9 splits into five subcases, one for each group
of the form Aut(Γ). We will next cite the theorem that lists them.

Definition 10. For k ≥ 1, let R(k) be the k-ary relation that contains a tuple (x1, . . . , xk) ∈
V k if x1, . . . , xk are pairwise distinct, and the number of edges between these k vertices is
odd.

Definition 11. We say that two structures Γ,∆ on the same domain are first-order interde-
finable if all relations of Γ have a first-order definition in ∆ and vice-versa.

Theorem 12 (from [28]). Let Γ be a reduct of G. Then exactly one of the following is true.

(1) Γ is first-order interdefinable with (V ;E);
equivalently, Aut(Γ) = Aut(G).

(2) Γ is first-order interdefinable with (V ;R(4));
equivalently, Aut(Γ) contains {−}, but not {sw}.

(3) Γ is first-order interdefinable with (V ;R(3));
equivalently, Aut(Γ) contains {sw}, but not {−}.

(4) Γ is first-order interdefinable with (V ;R(5));
equivalently, Aut(Γ) contains {−, sw}, but not all permutations of V .

(5) Γ is first-order interdefinable with (V ; =);
equivalently, Aut(Γ) contains all permutations of V .

of Proposition 8. If Γ has a constant endomorphism, then CSP(Γ) is trivial, and in P. Oth-
erwise, by Theorem 9, Γ is preserved by eN , eE , or the endomorphisms of Γ are generated by
Aut(Γ).

We claim that if Γ has the endomorphisms eE or eN , then Γ is homomorphically equivalent
to an infinite structure that is preserved by all permutations of its domain. But this is clear
since eE [V ] and eN [V ] induce structures in G which are invariant under all permutations of
their domain.

If the endomorphisms of Γ are generated by Aut(Γ), then the statement follows from
Theorem 12: this is clear for the first four cases of the theorem; in the last case, Γ has all
unary injections among its endomorphisms, and in particular the functions eE and eN . �
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7. Higher arity polymorphisms

In the following we will be concerned with reducts Γ of G where the endomorphisms of Γ
are either the endomorphisms of (V ;E,N), or precisely the functions generated by {−}, by
{sw}, or by {−, sw}, since for all other reducts Γ of G the complexity of CSP(Γ) has already
been determined in Proposition 8. We first introduce the general concepts which allow us to
analyze polymorphisms of reducts of G using Ramsey theory (Section 7.1). These concepts
will be crucial in all four cases which we shall then approach in Sections 7.2 to 7.5.

7.1. Canonical Behavior. It will turn out that the relevant polymorphisms have, in a
certain sense, regular behavior with respect to the structure of G; combinatorially, this is
due to the fact that the set of finite ordered graphs is a Ramsey class, and that one can find
regular patterns in any arbitrary function on the random graph. We make this idea more
precise.

Definition 13. Let ∆ be a structure. The type tp(a) of an n-tuple a of elements in ∆ is the
set of first-order formulas with free variables x1, . . . , xn that hold for a in ∆. For structures
∆1, . . . ,∆k and tuples a1, . . . , an ∈ ∆1 × · · · ×∆k, the type of (a1, . . . , an) in ∆1 × · · · ×∆k,
denoted by tp(a1, . . . , an), is the k-tuple containing the types of (a1

i , . . . , a
n
i ) in ∆i for each

1 ≤ i ≤ k.

We bring to the reader’s attention the well-known fact that in homogeneous structures in
a finite language, in particular in the random graph, two n-tuples have the same type if and
only if their orbits coincide.

Definition 14. Let k ≥ 1 and let ∆1, . . . ,∆k,Λ be structures. A type condition between
∆1× · · · ×∆k and Λ is a pair (t, s), where t is a type of an n-tuple in ∆1× · · · ×∆k, and s is
a type of an n-tuple in Λ, for some n ≥ 1. A function f : ∆1 × · · · ×∆k → Λ satisfies a type
condition (t, s) between ∆1 × · · · ×∆k and Λ if for all tuples a1, . . . , an ∈ ∆1 × · · · ×∆k with
tp(a1, . . . , an) = t the n-tuple (f(a1

1, . . . , a
1
k), . . . , f(an1 , . . . , a

n
k)) has type s in Λ. A behavior

is a set of type conditions between a product of structures ∆1 × · · · ×∆k and a structure Λ.
A function from ∆1× · · · ×∆k to Λ has behavior B if it satisfies all the type conditions of B.

Definition 15. Let ∆1, . . . ,∆k,Λ be structures. An operation f : ∆1 × · · · × ∆k → Λ is
canonical if for all types t of n-tuples in ∆1 × · · · × ∆k there exists a type s of an n-tuple
in Λ such that f satisfies the type condition (t, s). In other words, n-tuples of equal type in
∆1 × · · · ×∆k are sent to n-tuples of equal type in Λ under f .

We remark that since G is homogeneous and has only binary relations, the type of an
n-tuple a in G is determined by its binary subtypes, i.e., the types of the pairs (ai, aj), where
1 ≤ i, j ≤ n. In other words, the type of a is determined by which of its components are equal,
and between which of its components there is an edge. Therefore, a function f : Gk → G is
canonical iff it satisfies the condition of the definition for types of 2-tuples.

The polymorphisms proving tractability of reducts of G will be canonical. We now define
different behaviors that some of these canonical functions will have. For m-ary relations
R1, . . . , Rk over V , we will in the following write R1 · · ·Rk for the m-ary relation on V k that
holds between k-tuples x1, . . . , xm ∈ V k iff Ri(x

1
i , . . . , x

m
i ) holds for all 1 ≤ i ≤ k. We start

with behaviors of binary functions.

Definition 16. We say that a binary injective operation f : V 2 → V is
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• balanced in the first argument if for all u, v ∈ V 2 we have that E=(u, v) implies
E(f(u), f(v)) and N=(u, v) implies N(f(u), f(v)). Note that these are precisely those
functions that satisfy a certain behavior with two type conditions. To see this, let t
be the type of any u, v ∈ V 2 with E=(u, v), and let s be the type of any x, y ∈ V with
E(x, y). Then the first type condition is (t, s). For the second type condition, let t′

be the type of any u, v ∈ V 2 with N=(u, v), and let s′ be the type of any x, y ∈ V
with N(x, y). The second type condition is (t′, s′).
• balanced if f is balanced in both arguments, and unbalanced otherwise;
• E-dominated (N -dominated) in the first argument if for all u, v ∈ V 2 with 6==(u, v)

we have that E(f(u), f(v)) (N(f(u), f(v)));
• E-dominated (N -dominated) in the second argument if (x, y) 7→ f(y, x) is E-dominated

(N -dominated) in the first argument;
• E-dominated (N -dominated) if it is E-dominated (N -dominated) in both arguments;
• of type min if for all u, v ∈ V 2 with 6=6=(u, v) we have E(f(u), f(v)) if and only if

EE(u, v);
• of type max if for all u, v ∈ V 2 with 6=6=(u, v) we have N(f(u), f(v)) if and only if

NN(u, v);
• of type p1 if for all u, v ∈ V 2 with 6=6=(u, v) we have E(f(u), f(v)) if and only if
E(u1, v1);
• of type p2 if (x, y) 7→ f(y, x) is of type p1;
• of type projection if it is of type p1 or p2.

It is easy to see that, as explained above for the first item, each of those properties describes
the set of all functions of a certain behavior.

Note that a binary injection of type max is reminiscent of the Boolean maximum function
on {0, 1}, where E takes the role of 1 and N the role of 0: for u, v ∈ V 2 with 6=6=(u, v), we have
E(f(u), f(v)) if u, v are connected by an edge in at least one coordinate, and N(f(u), f(v))
otherwise. The names “min” and “projection” can be explained similarly.

Also note that, for example, being of type max is a behavior of binary functions that does
not force a function to be canonical, since the condition only talks about certain types of pairs
in G2, but not all such types: for example, it does not tell us whether or not E(f(u), f(v)) for
u, v ∈ V 2 with u1 = v1. However, being both of type max (or of type min) and balanced does
mean that a function is canonical. The next definition contains some important behaviors of
ternary functions.

Definition 17. An injective ternary function f : V 3 → V is of type

• majority if for all u, v ∈ V 3 with 6=6=6=(u, v) we have that E(f(u), f(v)) if and only if
EEE(u, v), EEN(u, v), ENE(u, v), or NEE(u, v);
• minority if for all u, v ∈ V 3 with 6=6=6=(u, v) we have E(f(u), f(v)) if and only if

EEE(u, v), NNE(u, v), NEN(u, v), or ENN(u, v).

7.2. When the endomorphisms of a reduct are generated by Aut(G). We investigate
Case (f) of Proposition 8. In this situation, the following lemma states that we may assume
that the reduct contains the relations E and N .

Lemma 18. Let Γ be a reduct of G. Then the endomorphisms of Γ are generated by Aut(G)
if and only if the relations E and N are primitive positive definable in Γ.

Proof. If these relations are primitive positive definable in Γ, then they are preserved by all
endomorphisms of Γ by Theorem 4. Hence, the restriction of any endomorphism to a finite
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set is a partial isomorphism of G, and thus extends to an automorphism of G by homogeneity.
It follows that any endomorphism can be interpolated by an element of Aut(G) on any finite
set, and hence it is generated by Aut(G).

If the endomorphisms of Γ are generated by Aut(G), then E and N are primitive positive
definable in Γ by Theorem 4 and Lemma 7. �

The following relation characterizes the NP-complete cases in the situation of this section.

Definition 19. We define a 6-ary relation H1(x1, y1, x2, y2, x3, y3) on V by∧
i,j∈{1,2,3},i 6=j,u∈{xi,yi},v∈{xj ,yj}

N(u, v)

∧
(
(E(x1, y1) ∧N(x2, y2) ∧N(x3, y3))

∨ (N(x1, y1) ∧ E(x2, y2) ∧N(x3, y3))

∨ (N(x1, y1) ∧N(x2, y2) ∧ E(x3, y3))
)
.

Our goal for this section is to prove the following proposition, which states that if Γ =
(V ;E,N, . . . ) is a reduct of G, then either H1 has a primitive positive definition in Γ, and
CSP(Γ) is NP-complete, or Γ has a canonical polymorphism with a certain behavior. Each
of the listed canonical polymorphisms implies tractability for CSP(Γ), and we will present
algorithms proving this in Section 8.

Theorem 20. Let Γ be a reduct of G whose endomorphisms are generated by Aut(G). Then
at least one of the following holds:

(a) There is a primitive positive definition of H1 in Γ.
(b) Pol(Γ) contains a canonical ternary injection of type minority, as well as a canonical

binary injection which is of type p1 and either E-dominated or N -dominated in the
second argument.

(c) Pol(Γ) contains a canonical ternary injection of type majority, as well as a canonical
binary injection which is of type p1 and either E-dominated or N -dominated in the
second argument.

(d) Pol(Γ) contains a canonical ternary injection of type minority, as well as a canonical
binary injection which is balanced and of type projection.

(e) Pol(Γ) contains a canonical ternary injection of type majority, as well as a canonical
binary injection which is balanced and of type projection.

(f) Pol(Γ) contains a canonical binary injection of type max or min.

The remainder of this section contains the proof of Theorem 20, and is organized as follows:
we first show that the relation H1 is hard. We then prove that if H1 does not have a primitive
positive definition in a reduct Γ as in Theorem 20, then Γ has the polymorphisms of one of
the Cases (b) to (f) of the theorem.

7.2.1. Hardness of H1. We present the hardness proof of the relation in Case (a) of Theo-
rem 20.

Proposition 21. CSP(V ;H1) is NP-hard.

Proof. The proof is a reduction from positive 1-in-3-3SAT (one of the hard problems in
Schaefer’s classification; also see [20]). Let Φ be an instance of positive 1-in-3-3SAT, that
is, a set of clauses, each having three positive literals. We create from Φ an instance Ψ of
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CSP(V ;H1) as follows. For each variable x in Φ we have a pair ux, vx of variables in Ψ. When
{x, y, z} is a clause in Φ, then we add the conjunct H(ux, vx, uy, vy, uz, vz) to Ψ. Finally, we
existentially quantify all variables of the conjunction in order to obtain a sentence. Clearly,
Ψ can be computed from Φ in linear time.

Suppose now that Φ is satisfiable, i.e., there exists a mapping s from the variables of Φ to
{0, 1} such that in each clause exactly one of the literals is set to 1; we claim that (V ;H1)
satisfies Ψ. To show this, let F be the graph whose vertices are the variables of Ψ, and that
has an edge between ux and vx if x is set to 1 under the mapping s, and that has no other
edges. By universality of G we may assume that F is a subgraph of G. It is then enough to
show that F satisfies the conjunction of Ψ in order to show that (V ;H1) satisfies Ψ. Indeed,
let H(ux, vx, uy, vy, uz, vz) be a clause from Ψ. By definition of F , the conjunction in the first
line of the definition of H1 is clearly satisfied; moreover, from the disjunction in the remaining
lines of the definition of H1 exactly one disjunct will be true, since in the corresponding clause
{x, y, z} of Φ exactly one of the values s(x), s(y), s(z) equals 1. This argument can easily be
inverted to see that every solution to Ψ can be used to define a solution to Φ (in which for
a variable x of Φ one sets s(x) to 1 iff in the solution to Ψ there is an edge between ux and
vx). �

7.2.2. Producing canonical functions. We now show that if Γ = (V ;E,N, . . .) is a reduct of
G such that there is no primitive positive definition of H1 in Γ, then one of the other cases
of Theorem 20 applies. By Theorem 4, Γ has a polymorphism that violates H1.

Definition 22. A function f : V n → V is called essentially unary if it depends on only one
of its variables; otherwise, it is called essential.

Note that any essentially unary function preserving both E and N preserves all relations
with a first-order definition in G, and in particular H1; this is a straightforward consequence of
Lemma 18 and the fact that the automorphisms of G have this property (cf. [22]). Therefore
we have that if a polymorphism f of Γ violates H1, then it must be essential. Thus the
following theorem from [11] applies. Before stating it, it is convenient to define the dual of
an operation f on G, which can be imagined as the function obtained from f by exchanging
the roles of E and N .

Definition 23. The dual of a function f(x1, . . . , xn) on G is the function −f(−x1, . . . ,−xn).

Theorem 24 (from [11]). Let f be an essential operation on G preserving E and N . Then
it generates one of the following binary functions.

• a canonical injection of type p1 which is balanced;
• a canonical injection of type max which is balanced;
• a canonical injection of type p1 which is E-dominated;
• a canonical injection of type max which is E-dominated;
• a canonical injection of type p1 which is balanced in the first and E-dominated in the

second argument;

or one of the duals of the last four operations (the first operation is self-dual).

It follows from Theorem 24 that indeed, if H1 does not have a primitive positive definition in
a reduct Γ = (V ;E,N, . . .), then Γ has one of the binary canonical polymorphisms mentioned
in Theorem 20. In order to complete the proof of Theorem 20, we have to additionally show
that when f does not generate a binary injection of type min or max, it generates ternary
canonical injection of type minority or majority. That is, we have to prove the following.
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Proposition 25. Suppose that f is an operation on G that preserves the relations E and N
and violates the relation H1. Then f generates a binary canonical injection of type min or
max, or a ternary canonical injection of type minority or majority.

The remainder of this section will be devoted to the proof of this proposition. This will be
achieved by refining the Ramsey-theoretic methods developed in [11] which are suitable for
investigating functions on G in several variables.

In our proof of Proposition 25, we really would like to take one of the “nice” functions
g which we know is generated by f of Theorem 24, and then show that g generates one of
the functions of Proposition 25. However, the problem with this are the canonical binary
injections of type p1, since functions of type p1 do not violate H1 anymore. Hence, when
simply passing to a function of the theorem, we lose the information that our f violates H1,
which we must use at some point, since H1 is a hard relation. We are thus obliged to improve
Theorem 24 for functions violating H1. Before that, let us observe that Theorem 24 implies
that we can restrict our attention to binary and ternary injections.

Lemma 26. Let f be an operation on G which preserves E and N and violates H1. Then f
generates a ternary injection which shares the same properties.

Proof. Since the relation H1 consists of three orbits of 6-tuples with respect to G, Lemma 7
implies that f generates an at most ternary function that violates H1, and hence we can
assume that f itself is at most ternary; by adding a dummy variable if necessary, we may
assume that f is actually ternary. Moreover, f must certainly be essential, since essentially
unary operations that preserve E and N also preserve H1. Applying Theorem 24, we get that
f generates a binary canonical injection g of type min, max, or p1. In the first two cases we
are done, since binary injections of type min and max violate H1; so consider the last case
where g is of type p1. Now consider

h(x, y, z) := g(g(g(f(x, y, z), x), y), z) .

Then h is clearly injective, and still violates H1 – the latter can easily be verified combining
the facts that f violates H1, g is of type p1, and all tuples in H1 have pairwise distinct
entries. �

It will turn out that just as in the proof of Lemma 26, there are two cases for f in the
proof of Proposition 25: Either all binary canonical injections generated by f are of type
projection, and f generates a ternary canonical injection of type majority or minority, or f
generates a binary canonical injection of type min or max. We start by considering the first
case, which is combinatorially less involved.

7.2.3. Producing majorities and minorities. A copy of a structure F in a structure ∆ is an
induced substructure of ∆ that is isomorphic to F .

Definition 27. Let ∆1, . . . ,∆k and Λ be structures, f : ∆1 × · · · × ∆k → Λ be a function,
and let (t, s) be a type condition for such functions. If S is a subset of ∆1 × · · · ×∆k, then
we say that f satisfies the type condition (t, s) on S if for all tuples a1, . . . , an ∈ S with
tp(a1, . . . , an) = t in ∆1 × · · · ×∆k the n-tuple (f(a1

1, . . . , a
1
k), . . . , f(an1 , . . . , a

n
k)) has type s

in Λ. We say that f satisfies a behavior B on S if it satisfies all type conditions of B on S.
Finally, we say that f satisfies B on arbitrarily large (finite) substructures of ∆1×· · ·×∆k

if for all finite substructures Fi of ∆i, where 1 ≤ i ≤ k, there exist copies F ′i in ∆i such that
f satisfies B on the product F ′1 × · · · × F ′k of these copies.
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In the following general proposition we exceptionally use the notion “locally generates”
in its original sense (see Section 3). The proof is a standard compactness argument, which
we include nonetheless for the convenience of the reader. Similar proofs can be found, for
example, in [12] for arbitrary homogeneous structures in a finite language, or for the random
graph in [11].

Proposition 28. Let ∆1, . . . ,∆k and Λ be homogeneous structures on the same countably
infinite domain D, and assume that Λ has a finite language. Let moreover B be a behavior
for functions from ∆1× · · · ×∆k to Λ, and let f : Dk → D be a function which satisfies B on
arbitrarily large substructures of ∆1×· · ·×∆k. Then {f}∪Aut(Λ)∪Aut(∆1)∪· · ·∪Aut(∆k)
locally generates a function from Dk to D which satisfies B everywhere.

Proof. Write D = {d0, d1, . . .}. We construct a sequence (gi)i∈ω such that for all i ∈ ω
(i) gi is a function from Dk to D locally generated by {f} ∪ Aut(Λ) ∪ Aut(∆1) ∪ · · · ∪

Aut(∆k);
(ii) gi behaves like B on {d0, . . . , di}k;

(iii) gi+1 agrees with gi on {d0, . . . , di}k.
The sequence then defines a function g : Dk → D by setting g(di1 , . . . , dik) := gm(di1 , . . . , dik),

for any m ≥ i1, . . . , ik. This function g is clearly locally generated by {gi : i ∈ ω} by local
closure, and behaves like B everywhere.

To construct the sequence, we first construct a sequence (hi)i∈ω which only satisfies (i)
and (ii) of the requirements for the sequence (gi)i∈ω. Let i ∈ ω be given. There exist subsets
F1, . . . , Fk of D such that Fj is isomorphic with {d0, . . . , di} as substructures of ∆j for all
1 ≤ j ≤ k and such that f behaves like B on F1×· · ·×Fk. Let αj be an automorphism of ∆j

sending {d0, . . . , di} onto Fj , for all 1 ≤ j ≤ k; these automorphisms exist by the homogeneity
of the ∆j . Then we can set hi(x1, . . . , xk) := f(α1(x1), . . . , αk(xk)).

Now to obtain the sequence (gi)i∈ω from the sequence (hi)i∈ω, let a = (a0, a1, . . .) be
an enumeration of Dk such that the elements of {d0, . . . , di}k are an initial segment of this
enumeration for each i ∈ ω (that is, they constitute the first (i+ 1)k entries). Denote for all
i, j ∈ ω by bi,j the (i+ 1)k-tuple which is obtained by applying hj to each of the first (i+ 1)k

entries of the enumeration a. Set ti,j to be the type of bi,j in Λ. For i, j, r, s ∈ ω set ti,j ≤ tr,s
if i ≤ r and ti,j , tr,s agree on the variables they have in common, i.e., the restriction of br,s to
its initial segment of length (i + 1)k has the same type as bi,j in Λ. This relation defines a
tree on the types ti,j . Since Λ is homogeneous in a finite language, for every i ∈ ω there are
only finitely many different types of (i + 1)k-tuples in Λ. Hence, for every i ∈ ω, there are
only finitely many distinct types ti,j , and so this tree is finitely branching. Moreover, there
exists a q ∈ ω such that ti,s = ti,q for infinitely many s ∈ ω. Deleting all elements of the
tree which do not enjoy this latter property, we are thus still left with an infinite tree. Hence
by Kőnig’s lemma it has an infinite branch (t0,j0 , t1,j1 , . . .). Since we have reduced the tree
to its “infinite” nodes, we may assume that the ji are strictly increasing, and in particular
that ji ≥ i for all i ∈ ω. Since Λ is homogeneous and by definition of the tree, we can pick
for all i ∈ ω an automorphism αi of Λ which sends the initial segment of length (i + 1)k

of bi+1,ji+1 to bi,ji . Then setting gi := hji ◦ αi−1 ◦ · · · ◦ α0 for all i ∈ ω yields the desired
sequence: (i) is obvious. (ii) holds since hi satisfies (ii), hji still satisfies (ii) since ji ≥ i, and
gi satisfies (ii) since the property is preserved under applications of automorphisms of Λ. (iii)
is by construction. �
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Proposition 29. Let f be an operation on G that preserves E and N and violates H1.
Suppose moreover that all binary injections generated by f are of type projection. Then f
generates a ternary canonical injection of type majority or minority.

Proof. By Lemma 26, we can assume that f is a ternary injection. Because f violatesH1, there
are x1, x2, x3 ∈ H such that f(x1, x2, x3) /∈ H. In the following, we will write xi := (x1

i , x
2
i , x

3
i )

for 1 ≤ i ≤ 6. So (f(x1), . . . , f(x6)) /∈ H.
If there were an automorphism α of G such that α(xi) = xj for 1 ≤ i 6= j ≤ 3, then f

would generate a binary injection that still violates H2, which contradicts the assumption
that all binary injections generated by f are of type projection. By permuting arguments of
f if necessary, we can therefore assume without loss of generality that

ENN(x1, x2), NEN(x3, x4), and NNE(x5, x6).

We set

S := {y ∈ V 3 | NNN(xi, y) for all 1 ≤ i ≤ 6} .
Consider the binary relations Q1Q2Q3 on V 3, where Qi ∈ {E,N} for 1 ≤ i ≤ 3. We
claim that for each such relation Q1Q2Q3, whether E(f(u), f(v)) or N(f(u), f(v)) holds for
u, v ∈ S with Q1Q2Q3(u, v) does not depend on u, v; that is, whenever u, v, u′, v′ ∈ S satisfy
Q1Q2Q3(u, v) and Q1Q2Q3(u′, v′), then E(f(u), f(v)) if and only if E(f(u′), f(v′)). We go
through all possibilities of Q1Q2Q3.

(1) Q1Q2Q3 = ENN. Let α ∈ Aut(G) be such that (x2
1, x

2
2, u2, v2) is mapped to (x3

1, x
3
2, u3, v3);

such an automorphism exists since NNN(x1, u),NNN(x1, v),NNN(x2, u),NNN(x2, v),
and since (x2

1, x
2
2) has the same type as (x3

1, x
3
2), and (u2, v2) has the same type as

(u3, v3). By assumption, the operation g defined by g(x, y) := f(x, y, α(y)) must be of
type projection. Hence, E(g(u1, u2), g(v1, v2)) iff E(g(x1

1, x
2
1), g(x1

2, x
2
2)). Combining

this with the equations (f(u), f(v)) = (g(u1, u2), g(v1, v2)) and (g(x1
1, x

2
1), g(x1

2, x
2
2)) =

(f(x1), f(x2)), we get that E(f(u), f(v)) iff E(f(x1), f(x2)), and so we are done.
(2) Q1Q2Q3 = NEN or Q1Q2Q3 = NNE. These cases are analogous to the previous case.
(3) Q1Q2Q3 = NEE. Let α be defined as in the first case. By assumption, the operation

defined by f(x, y, α(y)) must be of type projection. Reasoning as above, one gets that
E(f(u), f(v)) iff N(f(x1), f(x2)).

(4) Q1Q2Q3 = ENE or Q1Q2Q3 = EEN. These cases are analogous to the previous case.
(5) Q1Q2Q3 = EEE or Q1Q2Q3 = NNN. These cases are trivial since f preserves E and

N .

To show that f generates an operation of type majority or minority, by Proposition 28
it suffices to prove that f generates a function of type majority or minority on S, since S
contains copies of products of arbitrary finite substructures of G. We show this by another
case distinction, based on the fact that (f(x1), . . . , f(x6)) /∈ H.

(1) Suppose that E(f(x1), f(x2)), E(f(x3), f(x4)), E(f(x5), f(x6)). Then by the above,
f itself is of type minority on S.

(2) Suppose that N(f(x1), f(x2)), N(f(x3), f(x4)), N(f(x5), f(x6)). Then f behaves like
a majority on S.

(3) Suppose that E(f(x1), f(x2)), E(f(x3), f(x4)), N(f(x5), f(x6)). Let e be a self-embedding

of G such that for all w ∈ V , all 1 ≤ j ≤ 3, and all 1 ≤ i ≤ 6 we have that N(xji , e(w)).
Then (u1, u2, e(f(u1, u2, u3))) ∈ S for all (u1, u2, u3) ∈ S. Hence, by the above, the
ternary operation defined by f(x, y, e(f(x, y, z))) is of type majority on S.
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(4) Suppose that E(f(x1), f(x2)), N(f(x3), f(x4)), E(f(x5), f(x6)), or N(f(x1), f(x2)),
E(f(x3), f(x4)), E(f(x5), f(x6)). These cases are analogous to the previous case.

Let h(x, y, z) be a ternary injection of type majority or minority generated by f ; it remains
to make h canonical. By Theorem 24, f generates a binary canonical injection g(x, y), which
is of type projection by our assumption on f . Set t(x, y, z) := g(x, g(y, z)). Then the function
h(t(x, y, z), t(y, z, x), t(z, x, y)) is still of type majority or minority and canonical; we leave
the straightforward verification to the reader. �

7.2.4. Producing max and min. Having proven Proposition 29, it is enough to show the fol-
lowing proposition in order to obtain a full proof of Proposition 25.

Proposition 30. Let f : V 2 → V be a binary injection preserving E and N that is not of
type projection. Then f generates a binary canonical injection of type min or of type max.

In the remainder of this section we will prove this proposition by Ramsey theoretic analysis
of f , which requires the following definitions and facts from [11].

Equip V with a total order ≺ in such a way that (V ;E,≺) is the random ordered graph, i.e.,
the unique countably infinite homogeneous totally ordered graph containing all finite totally
ordered graphs (for existence and uniqueness of this structure, see e.g. [22]). The order
(V ;≺) is then isomorphic to the order (Q;<) of the rationals. The ordered random graph has
the advantage of being a so-called Ramsey structure, i.e., it enjoys a certain combinatorial
property (which the random graph without the order does not) – see for example [10]. Using
this Ramsey property, starting from a function on (V ;E,≺) one can generate a canonical
function whilst keeping such information as violation of a relation. Our combinatorial tool
will be the following proposition, which has first been used in [11] in a slightly simpler form,
and which has been stated in full generality for ordered homogeneous Ramsey structures
in [12].

Proposition 31. Let f : V k → V be a function, and let c1, . . . , cm ∈ V k. Then f generates a
function which is canonical as a function from (V ;E,≺, c1

1, . . . , c
m
1 )×· · ·×(V ;E,≺, c1

k, . . . , c
m
k )

to (V ;E,≺), and which is identical to f on {c1
1, . . . , c

m
1 } × · · · × {c1

k, . . . , c
m
k }. Moreover, if f

is injective, then the generated canonical function can be chosen to be injective as well.

The global strategy behind what follows now is to take a binary injection f and fix a finite
number of constants ci ∈ V 2 which witness that f is not of type projection. Then, using
Proposition 31, we generate a binary canonical function which is identical to f on all ci; this
canonical function then still is not of type projection, and can be handled more easily as it is
canonical. However, we do not present the proof like that for the reason that there would be
too many possibilities of canonical functions for primitive case-by-case analysis. What we do
instead is rule out behaviors of canonical functions more systematically, for example before
even adding constants to the language. As in [11], let us define the following behaviors for
functions from (V ;E,≺)2 to (V ;E). We write � for the relation {(a, b) | b ≺ a}.

Definition 32. Let f : V 2 → V be injective. If for all u, v ∈ V 2 with u1 ≺ v1 and u2 ≺ v2

we have

• E(f(u), f(v)) if and only if EE(u, v), then we say that f behaves like min on input
(≺,≺).
• N(f(u), f(v)) if and only if NN(u, v), then we say that f behaves like max on input

(≺,≺).
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• E(f(u), f(v)) if and only if E(u1, v1), then we say that f behaves like p1 on input
(≺,≺).
• E(f(u), f(v)) if and only if E(u2, v2), then we say that f behaves like p2 on input

(≺,≺).

Analogously, we define behavior on input (≺,�) using pairs u, v ∈ V 2 with u1 ≺ v1 and
u2 � v2.

Of course, we could also have defined “behavior on input (�,�)” and “behavior on input
(�,≺)”; however, behavior on input (�,�) equals behavior on input (≺,≺), and behavior
on input (�,≺) equals behavior on input (≺,�) since graphs are symmetric. Thus, there
are only two kinds of inputs to be considered, namely the “straight input” (≺,≺) and the
“twisted input” (≺,�).

Proposition 33. Let f : V 2 → V be injective and canonical as a function from (V ;E,≺)2

to (V ;E,≺), and suppose it preserves E and N . Then it behaves like min, max, p1 or p2 on
input (≺,≺) (and similarly on input (≺,�)).

Proof. By definition of the term canonical; one only needs to enumerate all possible types of
pairs (u, v), where u, v ∈ V 2. �

Definition 34. If an injection f : V 2 → V behaves like X on input (≺,≺) and like Y on
input (≺,�), where X,Y ∈ {max,min, p1, p2}, then we say that f is of type X/Y .

We would like to emphasize that the term “canonical” depends on the structures under
consideration; that is, a function f : V 2 → V might be canonical as a function from (V ;E,≺)2

to (V ;E,≺), but not as a function from (V ;E)2 to (V ;E), and vice-versa. In the following,
we will for this reason carefully specify the structures we have in mind when using this term.

Observe that canonical functions from (V ;E,≺)2 to (V ;E,≺) also behave regularly with
respect to the order ≺: this implies, for example, that f is either strictly increasing or
decreasing with respect to the pointwise order.

The structures (V ;E,≺) and (V ;E,�) are isomorphic by the theory of homogeneous struc-
tures (see, e.g., [22]), since they are both homogeneous and embed the same finite structures.
Fix an isomorphism α. Then α is an automorphism of G which reverses the order ≺. By
applying α to a canonical function if necessary, we may (in the presence of Aut(G)) always
assume that all canonical functions f we use are strictly increasing. Having that, one easily
checks that one of the implications

u1 ≺ v1 ∧ u2 6= v2 → f(u) ≺ f(v)

and
u1 6= v1 ∧ u2 ≺ v2 → f(u) ≺ f(v).

hold. In the first case, we say that f obeys p1 for the order, in the second case f obeys p2

for the order. By switching the variables of f , we can always achieve that f obeys p1 for the
order.

7.2.5. Eliminating mixed behavior. In the following lemmas, we show that when we have an
injective canonical binary function which behaves differently on input (≺,≺) and on input
(≺,�), then it generates a function which behaves the same on both inputs.

Lemma 35. Suppose that f : V 2 → V is injective and canonical as a function from (V ;E,≺)2

to (V ;E,≺), and suppose that it is of type max /pi or of type pi/max, where i ∈ {1, 2}. Then
f generates a binary injection of type max.
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Proof. Assume without loss of generality that f is of type max /pi, and note that we may
assume that f obeys p1 for the order. Set h(x, y) := f(x, α(y)). Then h behaves like pi on
input (≺,≺) and like max on input (≺,�); moreover, h(u) ≺ h(v) iff f(u) ≺ f(v), for all
u, v ∈ V 2 with u1 6= v1 and u2 6= v2. We then have that g(x, y) := f(f(x, y), h(x, y)) is of
type max /max, which means that it is of type max when viewed as a function from G2 to
G. �

Lemma 36. Suppose that f : V 2 → V is injective and canonical as a function from (V ;E,≺)2

to (V ;E,≺), and suppose that it is of type min /pi or of type pi/min, where i ∈ {1, 2}. Then
f generates a binary injection of type min.

Proof. The dual proof works. �

Lemma 37. Suppose that f : V 2 → V is injective and canonical as a function from (V ;E,≺)2

to (V ;E,≺), and suppose that it is of type max /min or of type min /max. Then f generates
a binary injection of type max (and by duality, a binary injection of type min).

Proof. Assume without loss of generality that f is of type max /min, and remember that we
may assume that f obeys p1 for the order. Then g(x, y) := f(x, f(x, y)) is of type max /p1

and generates a binary injection of type max by Lemma 35. �

We next deal with the last remaining mixed behavior, p1/p2, by combining operational
with relational arguments.

Lemma 38. Let Γ = (V ;E,N, . . .) be a reduct of G which is preserved by a binary injection
of type p1. Then the following are equivalent.

(1) Γ has a binary injective polymorphism of behavior min.
(2) For every primitive positive formula φ over Γ, if φ∧N(x1, x2)∧

∧
1≤i<j≤4 xi 6= xj and

φ∧N(x3, x4)∧
∧

1≤i<j≤4 xi 6= xj are satisfiable over Γ, then φ∧N(x1, x2)∧N(x3, x4)
is satisfiable over Γ as well.

(3) For every finite F ⊆ V 2 there exists a binary injective polymorphism of Γ which
behaves like min on F .

Proof. The implication from (1) to (2) follows directly by applying a binary injective poly-
morphism of behavior min to tuples r, s satisfying φ ∧ N(x1, x2) ∧

∧
1≤i<j≤4 xi 6= xj and

φ ∧N(x3, x4) ∧
∧

1≤i<j≤4 xi 6= xj respectively.

To prove that (2) implies (3), assume (2) and let F ⊆ V 2 be finite. Without loss of gen-
erality we can assume that F is of the form {e1, . . . , en}2, for sufficiently large n. Let ∆ be
the structure induced by F in Γ2. We construct an injective homomorphism h from ∆ to Γ
with the property that for all u, v ∈ F with EN(u, v) or NE(u, v) we have N(h(u), h(v)). Any
homomorphism from ∆ to Γ, in particular h, can clearly be extended to a binary polymor-
phism of Γ, for example inductively by using the universality of G. Such an extension of h
then behaves like min on F .

To construct h, consider the formula φ0 with variables xi,j for 1 ≤ i, j ≤ n which is the con-
junction over all literals R(xi1,j1 , . . . , xik,jk) such that R is a relation in Γ and R(ei1 , . . . , eik)
and R(ej1 , . . . , ejk) hold in Γ. So φ0 states precisely which relations hold in Γ2 on el-
ements from F . Since Γ is preserved by a binary injection, we have that φ1 := φ0 ∧∧

1≤i,j,k,l≤n,(i,j)6=(k,l) xi,j 6= xk,l is satisfiable in Γ.

Let P be the set of pairs of the form ((i1, i2), (j1, j2)) with i1, i2, j1, j2 ∈ {1, . . . , n}, i1 6= j1,
i2 6= j2, and where N(ei1 , ej1) or N(ei2 , ej2). We show by induction on the size of I ⊆ P that
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the formula φ1∧
∧

((i1,i2),(j1,j2))∈I N(xi1,i2 , xj1,j2) is satisfiable over Γ. Note that this statement

applied to the set I = P gives us the a homomorphism h from ∆ to Γ such that for all a, b ∈ F
we have N(h(a), h(b)) whenever EN(a, b) or NE(a, b) by setting h(ei, ej) := s(xi,j), where s
is the satisfying assignment for φ1 ∧

∧
((i1,i2),(j1,j2))∈P N(xi1,i2 , xj1,j2).

For the induction beginning, let p = ((i1, i2), (j1, j2)) be any element of P . Let r, s be the
n2-tuples defined as follows.

r := (e1, . . . , e1, e2, . . . , e2, . . . , en, . . . , en)

s := (e1, e2, . . . , en, e1, e2, . . . , en, . . . , e1, e2, . . . , en)

In the following we use double indices for the entries of n2-tuples; for example, r = (r1,1, . . . , r1,n, r2,1, . . . , rn,n).
The two tuples r and s satisfy φ0. To see this observe that by definition of φ0 the tuple

((e1, e1), (e1, e2), . . . , (e1, en), (e2, e1), . . . , (en, en))

satisfies φ0 in Γ2; since r and s are obtained by applying projections to that tuple onto
the first and second coordinate, respectively, and projections are homomorphisms, r and s
satisfy φ0 as well. Let g be a binary injective polymorphism of Γ which is of type p1, and
set r′ := g(r, s) and s′ := g(s, r). Then r′ and s′ satisfy φ1 since g is injective. Since p ∈ P ,
we have that N(ei1 , ej1) or N(ei2 , ej2). Assume that N(ei1 , ej1); the other case is analogous.
Since ri1,i2 = ei1 , rj1,j2 = ej1 , r′ := g(r, s), and g is of type p1, we have that N(r′i1,i2 , r

′
j1,j2

),

proving that φ1 ∧N(xi1,i2 , xj1,j2) is satisfiable in Γ.
In the induction step, let I ⊆ P be a set of cardinality n ≥ 2, and assume that the statement

has been shown for subsets of P of cardinality n− 1. Pick any distinct q1, q2 ∈ I. Set

ψ := φ1 ∧
∧

((i1,i2),(j1,j2))∈I\{q1,q2}

N(xi1,i2 , xj1,j2)

and observe that ψ is a primitive positive formula over Γ since Γ contains E and N and
since the binary relation x 6= y can be defined in Γ by the primitive positive formula
∃z. (E(x, z) ∧ N(y, z)). Write q1 = ((u1, u2), (v1, v2)) and q2 = ((u′1, u

′
2), (v′1, v

′
2)). Then

the inductive assumption shows that each of ψ ∧ N(xu1,u2 , xv1,v2) and ψ ∧ N(xu′1,u′2 , xv′1,v′2)
is satisfiable in Γ. Note that ψ contains in particular conjuncts that state that the four
variables xu1,u2 , xv1,v2 , xu′1,u′2 , xv′1,v′2 denote distinct elements. Hence, by (2), the formula

ψ ∧ N(xu1,u2 , xv1,v2) ∧ N(xu′1,u′2 , xv′1,v′2) is satisfiable over Γ as well, which is what we had
to show.

The implication from (3) to (1) follows from Proposition 28. �

Lemma 39. Let f : V 2 → V be a binary injection of behavior p1/p2 which preserves E and
N . Then f generates a binary injection of type min and a binary injection of type max.

Proof. By Theorem 24, f generates a binary injection of type max, min, or p1.
Suppose first that it does not generate a binary injection of type max or min; we will lead

this to a contradiction. Let Γ be the reduct of G which has all relations that are first-order
definable in G and preserved by f . Since f generates a binary injection of type p1, we may
apply implication (2) → (1) from Lemma 38. Let φ be a primitive positive formula with
variable set S, {x1, . . . , x4} ⊆ S, such that the formulas φ∧N(x1, x2)∧

∧
1≤i<j≤4 xi 6= xj and

φ ∧N(x3, x4) ∧
∧

1≤i<j≤4 xi 6= xj have in Γ the satisfying assignments r and s from S → V ,
respectively.

We can assume without loss of generality that r(x1) ≺ r(x2) and r(x3) ≺ r(x4); otherwise,
since r(x1), . . . , r(x4) must be pairwise distinct, we can apply an automorphism of G to r such
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that the resulting map has the required property. Similarly, by applying an automorphism of
G to s, we can assume without loss of generality that s(x1) ≺ s(x2) and s(x3) � s(x4). Then
the mapping t : S → V defined by t(x) = f(r(x), s(x)) shows that φ ∧N(x1, x2) ∧N(x3, x4)
is satisfiable in Γ:

• The assignment t satisfies φ since f is a polymorphism of Γ.
• We have that N(t(x1), t(x2)) since r(x1) ≺ r(x2), s(x1) ≺ s(x2), f is of type p1 on

input (≺,≺), and N(r(x1), r(x2)).
• We have that N(t(x3), t(x4)) since r(x3) ≺ r(x4), s(x3) � s(x4), f is of type p2 on

input (≺,�), and N(s(x3), s(x4)).

By Lemma 38, we conclude that Γ is preserved by a binary injection of type min, and conse-
quently f generates a binary injection of type min – a contradiction.

Therefore, f generates a binary injection of type max or min. Since the assumptions of
the lemma are symmetric in E and N , we infer a posteriori that f generates both a binary
injection of type max and a binary injection of type min. �

7.2.6. Behaviors relative to vertices. Having ruled out some behaviors without constants, we
now examine behaviors when we add constants to the language. In the sequel, we will also
say that a function f : V 2 → V has behavior B between two points u, v ∈ V 2 if it has behavior
B on the structure {u, v}.

Lemma 40. Let u ∈ V 2, and set U := (V \ {u1})× (V \ {u2}). Let f : V 2 → V be a binary
injection which preserves E and N , behaves like p1 on U , and which behaves like p2 between
u and all points in U . Then f generates a binary injection of type min as well as a binary
injection of type max.

Proof. Let Γ be the reduct of G having all relations that are first-order definable in G and
preserved by f . Since U contains copies of products of arbitrary finite graphs, f behaves like
p1 on arbitrarily large finite substructures of G2, and hence generates a binary injection of
type p1 by Proposition 28. Hence Γ is also preserved by such a function, and we may apply
the implication from (2) to (1) in Lemma 38 to Γ.

Let φ be a primitive positive formula with variable set S, {x1, . . . , x4} ⊆ S, such that
φ∧N(x1, x2)∧

∧
1≤i<j≤4 xi 6= xj and φ∧N(x3, x4)∧

∧
1≤i<j≤4 xi 6= xj are satisfiable over Γ,

witnessed by satisfying assignments r, s : S → V , respectively.
Let α be an automorphism of G that maps r(x3) to u1, and let β be an automorphism of

G that maps s(x3) to u2. Then (α(r(x3)), β(s(x3))) = u, and v := (α(r(x4)), β(s(x4))) ∈ U
since α(r(x4)) 6= α(r(x3)) = u1 and β(s(x4)) 6= β(s(x3)) = u2. Thus, f behaves like p2

between u and v, and since s satisfies N(x3, x4), we have that t : S → V defined by

t(x) = f(α(x), β(x))

satisfies N(x3, x4), too. Since α, β, f are polymorphisms of Γ, the assignment t also satisfies
φ. To see that t also satisfies N(x1, x2), observe that α(r(x1)) 6= α(r(x3)) and β(s(x1)) 6=
β(s(x3)), and hence p := (α(r(x1)), β(s(x1))) /∈ U . Similarly, q := (α(r(x2)), β(s(x2))) /∈ U .
Hence, f behaves as p1 between p and q, and since N(r(x1), r(x2)), so does t.

By Lemma 38 we conclude that Γ is preserved by a binary injection of type min, and
consequently f generates a binary injection of type min.

Since our assumptions on f were symmetric in E and N , it follows that f also generates a
binary injection of type max. �
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Lemma 41. Let u ∈ V 2, and set U := (V \ {u1})× (V \ {u2}). Let f : V 2 → V be a binary
injection which preserves E and N , behaves like p1 on U , and which behaves like min between
u and all points in U . Then f generates a binary injection of type min.

Proof. The proof is identical with the proof in the preceding lemma; note that our assumptions
on f here imply more deletions of edges than the assumptions in that lemma, so it can only
be easier to generate a binary injection of type min. �

Lemma 42. Let u, v ∈ V 2 such that 6=6=(u, v) and set W := (V \ {u1, v1})× (V \ {u2, v2}).
Let f : V 2 → V be a binary injection that

• behaves like p1 on W
• behaves like p1 between any point in {u, v} and any point in W
• does not behave like p1 between u and v.

Then f generates eE, eN , or a binary injection of type min as well as binary injection of type
max.

Proof. Consider first the case where EE(u, v) and N(f(u), f(v)). Let α ∈ Aut(G) send u1

to u2 and v1 to v2, and consider the function h(x) := f(x, α(x)). Then N(h(u1), h(v1)), and
h preserves E and N between any point in {u1, v1} and all points in V \ {u1, v1}, and so it
generates eN by a standard iterative argument. Similarly, if NN(u, v) and E(f(u), f(v)) then
f generates eE .

It remains to consider the case where EN(u, v) and N(f(u), f(v)), and the case where
NE(u, v) and E(f(u), f(v)). In the first case we prove that f generates a binary injection of
type min; it then follows by duality that in the second case, f generates a binary injection of
type max.

As in Lemma 40, we apply the implication (2) → (1) from Lemma 38. Let Γ, φ, S,
x1, . . . , x4, r, and s be as in the proof of Lemma 40; by the same argument as before, Γ is
preserved by a binary injection of type p1.

If N(r(x3), r(x4)), then the assignment r shows that φ∧N(x1, x2)∧N(x3, x4) is satisfiable
and we are done. Otherwise, since r(x3) 6= r(x4), we have E(r(x3), r(x4)). Therefore, there is
an α ∈ Aut(G) such that (α(r(x3)), α(r(x4))) = (u1, v1). Similarly, since N(s(x3), s(x4)) and
N(u2, v2), there is a β ∈ Aut(G) such that (β(s(x3)), β(s(x4))) = (u2, v2). We claim that the
map t : S → V defined by

t(x) = f(α(x), β(x))

is a satisfying assignment for φ∧N(x1, x2)∧N(x3, x4). The assignment t satisfies φ since α, β
and f are polymorphisms of Γ. Then N(t(x3), t(x4)) holds because (α(r(x3)), β(s(x3))) = u
and (α(r(x4)), β(s(x4))) = v, and N(f(u), f(v)). To prove that N(t(x1), t(x2)) holds, observe
that r(x1) 6= r(x3) and r(x1) 6= r(x4), and hence α(r(x1)) /∈ {α(r(x3)), α(r(x4))} = {u1, v1}.
Similarly, β(s(x1)) /∈ {β(s(x3)), β(s(x4))} = {u2, v2}. Hence, (α(r(x1)), β(s(x1)) ∈ W . A
similar argument for x2 in place of x1 shows that (α(r(x2)), β(s(x2)) ∈ W . Since f behaves
like p1 on W , and since r satisfies N(x1, x2), we have proved the claim. This shows that Γ is
preserved by a binary injection of type min, and hence f generates such a function.

By symmetry of our assumptions on f in E and N , it follows that f generates a binary
injection of type min if and only if it generates a binary injection of type max. �

We are now set up to prove Proposition 30. This completes the proof of Proposition 25,
and in turn the proof of Theorem 20.
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Proof of Proposition 30. Let f be given. By Theorem 24, f generates a binary canonical
injection g of type projection, min, or max. In the last two cases we are done, so consider
the first case. We claim that f also generates a (not necessarily canonical) binary injection
h of type min or max. Then h(g(x, y), g(y, x)) is still of type min or max and in addition
canonical, and the proposition follows.

To prove our claim, fix a finite set C := {c1, . . . , cm} ⊆ V such that the fact that f does
not behave like a projection is witnessed on C. Invoking Proposition 31, we may henceforth
assume that f is canonical as a function from (V ;E,≺, c1, . . . , cm)2 to (V ;E,≺) (and hence
also to (V ;E) since tuples of equal type in (V ;E,≺) have equal type in (V ;E)). It is clear
that this new f must be injective.

In the following we will consider orbits of elements in the structure (V ;E,≺, c1, . . . , cm).
The infinite orbits are precisely the sets of the form

{v ∈ V | Qi(v, ci) and Ri(v, ci) for all 1 ≤ i ≤ m},

for Q1, . . . , Qm ∈ {E,N}, and R1, . . . , Rm ∈ {≺,�}. The finite orbits are of the form {ci}
for some 1 ≤ i ≤ m. It is well-known that each infinite orbit of (V ;E,≺, c1, . . . , cm) contains
copies of arbitrary linearly ordered finite graphs, and in particular, forgetting about the
order, of all finite graphs. Therefore, if f behaves like min or max on an infinite orbit of
(V ;E,≺, c1, . . . , cm), then by Proposition 28 it generates a function which behaves like min
or max everywhere, and we are done.

Moreover, if f is of mixed type on an infinite orbit, then, by Proposition 28, f generates a
canonical function which has the same mixed behavior everywhere. But then we are done by
Lemmas 35, 36, 37, and 39. Hence, we may assume that f behaves like a projection on every
infinite orbit. Fix in the following an infinite orbit O and assume without loss of generality
that f behaves like p1 on O.

Let W be any infinite orbit. Then since f is canonical, it behaves like p1, p2, min, or max
between all u, v with u ∈ O2, v ∈ W 2 and u1 ≺ v1 and u2 ≺ v2. Consider the case where
there exists an infinite orbit W such that f behaves like p2 between all points u ∈ O2 and
v ∈W 2 for which u1 ≺ v1 and u2 ≺ v2. Then fix any v ∈W 2, and set O1 := {o ∈ O | o ≺ v1}
and O2 := {o ∈ O | o ≺ v2}. Set O′1 := O1 ∪ {v1} and O′2 := O2 ∪ {v2}. We then have
that f behaves like p2 between v and any point u of (O′1 \ {v1}) × (O′2 \ {v2}), and like p1

between any two points of (O′1 \ {v1}) × (O′2 \ {v2}). Since (O′i;E, vi) contains copies of all
finite substructures of (V ;E, vi), for i ∈ {1, 2}, by Proposition 28 we get that f generates a
function which behaves like p2 between v and any point u of (V \ {v1}) × (V \ {v2}), and
which behaves like p1 between any two points of (V \ {v1}) × (V \ {v2}). Then Lemma 40
implies that f generates a binary injection of type min and we are done.

This argument is easily adapted to any situation where there exists an infinite orbit W such
that f behaves like p2 between all points u ∈ O2 and v ∈W 2 with R1(u1, v1) and R2(u2, v2),
for R1, R2 ∈ {≺,�}.

When there exists an infinite orbit W such that f behaves like min between all points
u ∈ O2 and v ∈ W 2 with R1(u1, v1) and R2(u2, v2), then we can argue similarly, invoking
Lemma 41 at the end. Replacing min by max we can use the dual argument, with the notable
difference that f generates a binary injection of type max rather than min.

Since f is canonical, one of the situations described so far must occur. Putting this together,
we conclude that for every infinite orbit W and all points u ∈ O2 and v ∈ W 2, f behaves
like p1 between u and v. Having that, suppose that for an infinite orbit W , f behaves like
p2 on W . Then exchanging the roles of O and W and of p1 and p2 above, we can again



24 MANUEL BODIRSKY AND MICHAEL PINSKER

conclude that f generates a binary injection of type min. We may thus henceforth assume
that f behaves like p1 on (V \ C)2.

Pick any u ∈ C2. Suppose that there exists v ∈ (V \ C)2 such that f does not behave
like p1 between u and v; say without loss of generality that EN(u, v) and N(f(u), f(v)). Let
Oi be the (infinite) orbit of vi, for i ∈ {1, 2}. Then for all v ∈ O1 × O2 we have EN(u, v)
and N(f(u), f(v)) since f is canonical. Now let w ∈ O2 × O1. We distinguish the two cases
E(f(u), f(w)) and N(f(u), f(w)). In the first case, f behaves like p2 between u and all
v ∈ (O1 ∪O2)2. We can then argue as above and are done. In the second case, f behaves like
min between u and all v ∈ (O1 ∪O2)2, and we are again done by the corresponding argument
above. We conclude that we may assume that for all u ∈ C2 and all v ∈ (V \C)2, f behaves
like p1 between u and v as well.

Now pick u, v ∈ C2 such that f does not behave like p1 between u and v, say without loss
of generality EN(u, v) and N(f(u), f(v)); this is possible since the fact that f does not behave
like p1 everywhere is witnessed on C. Set Wi := (V \C)∪{ui, vi} for i = {1, 2}. Since W1 and
W2 induce a structure isomorphic to the random graph in G, and f behaves like p2 between u
and v, and like p1 between all points in {u, v} and all points (W1 \ {u1, v1})× (W2 \ {u2, v2}),
we are done by Lemma 42. �

7.3. When the endomorphisms of a reduct are generated by {−}. We next consider
Case (c) of Proposition 8. That is, we will assume that the endomorphisms of Γ are exactly
the functions generated by {−}. In particular, Aut(Γ) contains − but not sw, and the
automorphisms of Γ generate its endomorphisms.

Definition 43. Let H ′1 be the smallest 6-ary relation that is preserved by {−} and contains
H1.

The following is an analog of Theorem 20 for the situation of this section.

Theorem 44. Let Γ be a reduct of G whose endomorphisms are precisely the unary functions
generated by {−}. Then either H ′1 is primitive positive definable in Γ, or one of the cases
(b)-(e) of Theorem 20 applies.

Proof. Note that H ′1 consists of three orbits of 6-tuples in Aut(Γ), and hence, if H ′1 is not
primitive positive definable in Γ, then there exists by Theorem 4 and Lemma 7 a ternary
polymorphism f of Γ that violates H ′1. That is, there are t1, t2, t3 ∈ H ′1 such that f(t1, t2, t3) /∈
H ′1. Note that for each tj , either tj or −tj ∈ H1. In the first case we set gj to be the identity
function on V , in the second case we let gj be the operation −. Now consider the function

f ′ defined by f ′(x1, x2, x3) := f(g1(x1), g2(x2), g3(x3)). We have that sj := g−1
j (tj) ∈ H1, but

f ′(s1, s2, s3) = f(t1, t2, t3) is not in H ′1. Consider the function h(x) := f ′(x, x, x); since the
endomorphisms of Γ are generated by {−}, h either preserves E and N , or it flips them. By
replacing f ′ by −(f ′) in the latter case we may assume that h preserves E and N . Note that
we still have that f ′(s1, s2, s3) is not in H ′1, and therefore not in H1 either. Hence, f ′ violates
H1.

Now suppose that f ′ violates E or N ; we will derive a contradiction. Say without loss of
generality that there are u, v ∈ V 3 with EEE(u, v) such that E(f ′(u), f ′(v)) does not hold.
Pick distinct a, b, c, d ∈ V such that {a, b, c, d} induces a clique in G, and such that each
element is connected to all entries on u, v by an edge. Pick then α1, α2, α3 ∈ Aut(G) such
that αi(a) = ui and αi(b) = vi for all i ∈ {1, 2, 3}, and such that α1(c) = α2(c) = α3(c) = c
and α1(d) = α2(d) = α3(d) = d. We then have that the function x 7→ f ′(α1(x), α2(x), α3(x))
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maps (c, d) to an edge since h(x) preserves E, but it does not map (a, b) to an edge, by our
assumption on u and v. This is, however, impossible, since the function must be generated
by {−}.

Therefore, f ′ preserves E and N . Then Theorem 20 implies that f ′ generates func-
tions with the desired properties, or a binary function of type max or min. A function
of type max together with {−} generates a function of type min, and vice versa. Then
max(min(x, y),min(y, z),min(x, z)) is a ternary function of type majority with the desired
properties, and we are also done in this case. �

Proposition 45. CSP(V ;H ′1) is NP-hard.

Proof. One can show NP-hardness similarly as in the proof of Proposition 21, by reduction
from positive Not-all-three-equal-3SAT instead of positive 1-in-3-3SAT. �

7.4. When the endomorphisms of a reduct are generated by {sw}. In this section we
will prove Theorem 48 below, which treats Case (d) in Proposition 8.

Definition 46. For k ≥ 1, let S(k) be the k-ary relation that holds on x1, . . . , xk ∈ V if
x1, . . . , xk are pairwise distinct, and the number of edges between these k vertices is even.

Recall also the definition of R(k) from Section 6. The structure of this section will be similar
to the one of Section 7.2, but R(3) will take the role of E, and S(3) will take the role of N .
The relation H1 will be replaced by the following relation.

Definition 47. Let H2 be the smallest 9-ary relation that is preserved by {sw} and contains
all tuples (x1, y1, z1, x2, y2, z2, x3, y3, z3) ∈ V 9 such that∧

i,j∈{1,2,3},i 6=j,u∈{xi,yi,zi},v∈{xj ,yj ,zj}

N(u, v)

∧
(
(R(3)(x1, y1, z1) ∧ S(3)(x2, y2, z2) ∧ S(3)(x3, y3, z3))

∨ (S(3)(x1, y1, z1) ∧R(3)(x2, y2, z2) ∧ S(3)(x3, y3, z3))

∨ (S(3)(x1, y1, z1) ∧ S(3)(x2, y2, z2) ∧R(3)(x3, y3, z3))
)
.

Theorem 48. Let Γ be a reduct of G whose endomorphisms are precisely the unary functions
generated by {sw}. Then either H2 is primitive positive definable in Γ, or Γ satisfies item (b)
or (d) of Theorem 20.

Proposition 49. CSP(V ;H2) is NP-hard.

Proof. This can be shown analogously to Proposition 21 by reduction from 1-in-3-3SAT, but
this time we represent 1 by triples from R(3) instead of pairs that satisfy E, and 0 by triples
from S(3), and then use H2 analogously as we have used H1 in the proof of Proposition 21. �

7.4.1. Producing canonical functions of type projection. We use a combination of Lemma 5.3
in [5] with Lemma 42 in [11]. Those lemmas are stated below for the convenience of the
reader.

Lemma 50 (Lemma 5.3 in [5]). Let Γ be a relational structure over an infinite domain D
such that the set of primitive positive definable binary relations in Γ is exactly {D2, 6=,=, ∅}.
Suppose that Γ contains an n-ary relation Q such that there are pairwise distinct 1 ≤ i, j, k, l ≤
n for which the following conditions hold:
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(1) Q(x1, . . . , xn) ∧ xi 6= xj is satisfiable;
(2) Q(x1, . . . , xn) ∧ xk 6= xl is satisfiable;
(3) Q(x1, . . . , xn) ∧ xi 6= xj ∧ xk 6= xl is unsatisfiable.

Then the relation SD := {(x, y, z) ∈ D3 | y 6= z ∧ (x = y ∨ x = z)} has a primitive positive
definition in Γ.

Lemma 51 (Lemma 42 in [11]). Let Γ be a countable ω-categorical structure in which 6= is
primitive positive definable. Then the following are equivalent.

(1) If φ is a primitive positive formula such that both φ∧x 6= y and φ∧u 6= v are satisfiable
over Γ, then φ ∧ x 6= y ∧ u 6= v is satisfiable over Γ as well.

(2) Γ is preserved by a binary injective operation.

We use the following combination of these two lemmata.

Proposition 52. Let Γ be an ω-categorical structure with a 2-transitive automorphism group
(i.e., for which the relation 6= equals one orbit of pairs). Then one of the following applies.

(1) All polymorphisms of Γ are essentially unary.
(2) Γ has a constant endomorphism.
(3) Γ has a binary injective endomorphism.

Proof. Write D for the domain of Γ. If Γ has a non-injective endomorphism, then a straight-
forward iterative argument using the 2-transitivity of Aut(Γ) and local closure shows that Γ
also has a constant endomorphism and there is nothing to show. Otherwise, since 6= only
consists of one orbit of pairs, it is preserved by all polymorphisms and hence primitive positive
definable by Theorem 4. By the 2-transitivity of Aut(Γ) it is now clear that the set of prim-
itive positive definable binary relations in Γ is exactly {D2, 6=,=, ∅}. Hence, by Lemma 50
one of the following holds:

• the first item of Lemma 51 applies, and hence by Lemma 51 the structure Γ has a
binary injective polymorphism;
• there is a formula which is a counterexample to first item of Lemma 51. In that case,

the expansion of Γ by the relation defined by this formula satisfies the hypotheses of
Lemma 50, and hence the relation SD is primitive positive definable in Γ. It then
follows that all polymorphisms of Γ are essentially unary (this can be shown as in
Proposition 5.3.2 in [2]).

�

Proposition 53. Let Γ be a reduct of G with an essential polymorphism. Then Γ is preserved
by a constant function, eE, eN , or by a canonical binary injection of type min, max, or p1.

Proof. If there is a primitive positive definition of E and N , then the statement follows from
Theorem 24. So suppose that this is not that case; also suppose that Γ is not preserved by
eE , eN , or a constant function. Then the automorphisms of Γ generate its endomorphisms
by Theorem 9, and so they must violate E and N as otherwise these relations would have
a primitive positive definition. By Theorem 12, we then see that Aut(Γ) is 2-transitive. By
Proposition 52, Γ has a binary injective polymorphism g. By Proposition 31, g generates a
binary function h which is canonical as a function from (V ;E,≺)2 to (V ;E,≺); this function
is again injective. The function x 7→ h(x, x) either preserves E and N , or behaves like −, eE
or eN . We can assume that it does not behave like eE or eN , and if it behaves like −, we can
replace h by −h and assume that x 7→ h(x, x) preserves E and N . Now consider the function
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x 7→ h(x, α(x)), where α ∈ Aut(G) reverses ≺. Again, we may exclude the possibility that
it behaves like eE or eN . But then the function (x, y) 7→ h(h(x, y), h(y, x)) preserves E and
N and we can apply Theorem 24 to conclude that it generates a binary injection which is
canonical as a function from G2 to G and of type min, max, or p1. �

Corollary 54. Let Γ = (V ;R(3), S(3), . . .) be a reduct of G with an essential polymorphism.
Then Γ is preserved by a binary canonical injection of type p1.

Proof. Since eN and functions of type min do not preserve R(3) and eE and functions of type
max do not preserve S(3), Proposition 53 implies that Γ is preserved by a binary canonical
injection of type p1. �

7.4.2. Eliminating mixed behavior.

Lemma 55. Let f : V 2 → V be a binary injection that preserves R(3) and S(3). Then f is
not of type p1/p2.

Proof. Suppose for contradiction that f does have the behavior p1/p2. Let u1, u2, u3 ∈ V with
u1 ≺ u2 ≺ u3, E(u1, u2), N(u2, u3), and N(u1, u3). Let v1, v2, v3 ∈ V with v1 ≺ v2 ≺ v3 and
N(v1, v2), E(v2, v3), N(v1, v3). Then E(f(u1, v1), f(u2, v3)) and N(f(u1, v1), f(u3, v2)) since f
behaves like p1 on input (≺,≺). Moreover, E(f(u2, v3), f(u3, v2)) since f behaves like p2 on in-

put (≺,�). Then (u1, u2, u3) ∈ R(3) and (u1, u2, u3) ∈ R(3), but (f(u1, v2), f(u2, v3), f(u3, v2)) /∈
R(3), in contradiction to our assumptions. �

7.4.3. Behaviors relative to vertices.

Lemma 56. Let u ∈ V 2, and set U := (V \ {u1})× (V \ {u2}). Let f : V 2 → V be a binary
injection which behaves like p1 on U , and which behaves like p2 or max between u and all
points in U . Then f does not preserve R(3).

Proof. Let v, w ∈ U be such that NE(u, v), EN(v, w), and NN(u,w). Then we have E(f(u), f(v)),

E(f(v), f(w)), andN(f(u), f(w)). Hence, R(3)(ui, vi, w) for i ∈ {1, 2}, but S(3)(f(u), f(v), f(w)).
�

Definition 57. We say that a binary injective function f : V 2 → V is

• of type R(3)-pi, for i ∈ {1, 2}, iff for all u, v, w ∈ V 2 with 6=6=(u, v), 6=6=(v, w), and

6=6=(u,w) we have R(3)(f(u), f(v), f(w)) if and only if R(3)(ui, vi, wi).

• of type R(3)-projection iff it is of type R(3)-p1 or of type R(3)-p2.

Proposition 58. Let f : V 2 → V be a binary injective polymorphism of (V ;R(3), S(3)). Then

f is of type R(3)-projection.

Proof. The proof is similar to the proof of Proposition 30. Fix a finite set C := {c1, . . . , cm} ⊆
V such that the fact that f is not of type R(3)-projection is witnessed on C. Invoking
Proposition 31, we may henceforth assume that f is canonical as a function from (V ;E,≺
, c1, . . . , cm)2 to (V ;E,≺).

In the following we will consider orbits of elements in the structure (V ;E,≺, c1, . . . , cm).
The infinite orbits are precisely the sets of the form

{v ∈ V | Qi(v, ci) and Ri(v, ci) for all 1 ≤ i ≤ m},
for Q1, . . . , Qm ∈ {E,N}, and R1, . . . , Rm ∈ {≺,�}. The finite orbits are of the form {ci}
for some 1 ≤ i ≤ m. Each infinite orbit of (V ;E,≺, c1, . . . , cm) is isomorphic to (V ;E,≺).
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Therefore Proposition 28 implies that if f has a certain behavior on such an infinite orbit,
then it generates a canonical function which has the same behavior everywhere. Therefore
we have for all infinite orbits O that f

• cannot be of type min or max on O since it preserves R(3) and S(3);
• cannot have behavior max /pi or pi/max for i ∈ {1, 2} on O, by Lemma 35;
• cannot have behavior min /pi or pi/min for i ∈ {1, 2} on O, by 36;
• it cannot have behavior max /min or min /max on O, by Lemma 37;
• it cannot have behavior p1/p2 or p2/p1 on O, by Lemma 55.

Hence, we may assume that f behaves like a projection on every infinite orbit. Fix in the
following an infinite orbit O and assume without loss of generality that f behaves like p1 on
O.

Let W be any infinite orbit. Then since f is canonical, it behaves like p1, p2, min, or max
between all u, v with u ∈ O2, v ∈W 2 and u1 ≺ v1 and u2 ≺ v2. Consider the case where there
exists an infinite orbit W such that f behaves like p2 or max between all points u ∈ O2 and
v ∈W 2 for which u1 ≺ v1 and u2 ≺ v2. Then fix any v ∈W 2, and set O1 := {o ∈ O | o ≺ v1}
and O2 := {o ∈ O | o ≺ v2}. Set O′1 := O1 ∪ {v1} and O′2 := O2 ∪ {v2}. We then have
that f behaves like p2 or max between v and any point u of (O′1 \ {v1}) × (O′2 \ {v2}), and
like p1 between any two points of (O′1 \ {v1})× (O′2 \ {v2}). Since (O′i;E, vi) is isomorphic to
(V ;E, vi), for i ∈ {1, 2}, by Proposition 28 we get that f generates a function which behaves
like p2 or max between v and any point u of (V \ {v1})× (V \ {v2}), and which behaves like
p1 between any two points of (V \ {v1})× (V \ {v2}). This is impossible by Lemma 56. This
argument is easily adapted to any situation where there exists an infinite orbit W such that
f behaves like p2 between all points u ∈ O2 and v ∈ W 2 with R1(u1, v1) and R2(u2, v2), for
R1, R2 ∈ {≺,�}. When there exists an infinite orbit W such that f behaves like min between
all points u ∈ O2 and v ∈W 2 with R1(u1, v1) and R2(u2, v2), then we can argue similarly.

Since f is canonical, one of the situations described so far must occur. Putting this together,
we conclude that for every infinite orbit W and all points u ∈ O2 and v ∈ W 2, f behaves
like p1 between u and v. Having that, suppose that for an infinite orbit W , f behaves like p2

on W . Then exchanging the roles of O and W and of p1 and p2 above, we again arrive at a
contradiction. We may thus henceforth assume that f behaves like p1 on (V \ C)2.

Pick any u ∈ C2. Suppose that there exists v ∈ (V \ C)2 such that f does not behave like
p1 between u and v. Assume first that EN(u, v) and N(f(u), f(v)). Let Oi be the (infinite)
orbit of vi, for i ∈ {1, 2}. Then for all v ∈ O1 × O2 we have EN(u, v) and N(f(u), f(v))
since f is canonical. Now let w ∈ O2 × O1. We distinguish the two cases E(f(u), f(w))
and N(f(u), f(w)). In the first case, f behaves like p2 between u and all v ∈ (O1 ∪ O2)2.
We can then argue as above and are done. In the second case, f behaves like min between
u and all v ∈ (O1 ∪ O2)2, and we are again done by the corresponding argument above.
The dual argument works when NE(u, v) and E(f(u), f(v)). Now assume that EE(u, v)
and N(f(u), f(v)). We claim that EE(u, v′) implies N(f(u), f(v′)) and NN(u, v′) implies
E(f(u), f(v′)) for all v′ ∈ (V \ C)2. Suppose that v′ ∈ (V \ C)2 is a counterexample. We
can find v′′ ∈ (V \ C)2 such that v′1, v

′′
1 and v′2, v

′′
2 belong to the same orbit and such that

R(3)(ui, vi, v
′′
i ) for i ∈ {1, 2}. But then S(3)(f(u), f(v), f(v′′)), a contradiction. By applying

a version of sw which switches edges and non-edges with respect to f [C2] to f from the left,
we may assume that f behaves like p1 between all u ∈ C2 and all v ∈ (V \ C)2

Since f does not behave like R(3)-p1 on C2, in particular it does not behave like p1 on C2.
Pick u, v ∈ C2 witnessing this. Then f behaves like p1 between any point in {u, v} and any
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point in (V \ C)2. Since (V \ C) ∪ {ui, vi} induces an isomorphic copy of the random graph
for i ∈ {1, 2}, we can refer to Lemma 42 to arrive at a contradiction: f generates eE , eN , or

a binary injection of type min or max, all of which violate either R(3) or S(3). �

Definition 59. We say that a ternary injective function f : V 3 → V is

• of type R(3)-majority iff for all u, v, w ∈ V 3 with 6=6=6=(u, v), 6=6=6=(u,w), 6=6=6=(v, w)

we haveR(3)(f(u), f(v), f(w)) if and only ifR(3)R(3)R(3)(u, v, w), R(3)R(3)S(3)(u, v, w),

R(3)S(3)R(3)(u, v, w), or S(3)R(3)R(3)(u, v, w).

• of type R(3)-minority iff for all u, v, w ∈ V 3 with 6=6=6=(u, v), 6=6=6=(u,w), 6=6=6=(v, w)

we haveR(3)(f(u), f(v), f(w)) if and only ifR(3)R(3)R(3)(u, v, w), R(3)S(3)S(3)(u, v, w),

S(3)R(3)S(3)(u, v, w), or S(3)S(3)R(3)(u, v, w).

Lemma 60. A function f : V 3 → V of type R(3)-majority does not preserve R(3).

Proof. Let u1, u2, u3 ∈ V 4 be such that

• E(u1
1, u

1
2) and N(u1

i , u
1
j ) for all pairs (i, j) of distinct elements from {1, . . . , 4} that are

distinct from (1, 2).
• E(u2

2, u
2
3) and N(u1

i , u
1
j ) for all pairs (i, j) of distinct elements from {1, . . . , 4} that are

distinct from (2, 3).
• E(u3

1, u
3
3) and N(u3

i , u
3
j ) for all pairs (i, j) of distinct elements from {1, . . . , 4} that are

distinct from (1, 3).

Since f is of type R(3)-majority, we have S(3)(f(u1), f(u2), f(u4)), S(3)(f(u1), f(u3), f(u4)),

and S(3)(f(u2), f(u3), f(u4)). Since for all four-element subsets of V there must always be

an even number of three-element subsets in R(3), we then have S(3)(f(x1), f(x2), f(x3)), and

hence f does not preserve R(3). �

Lemma 61. Let f : V 3 → V be of type R(3)-minority. Then {f, sw} generates a function of
type minority.

Proof. Let g be any ternary injection of type minority, and let u, v, w ∈ V 3 with 6=6=6=(u, v), 6=6=6=(u,w), 6=6=6=(v, w)

be given. We will show that R(3)(g(u), g(v), g(w)) if and only if R(3)(f(u), f(v), f(w)).

Recall that R(3)(f(u), f(v), f(w)) if and only if R(3)S(3)S(3)(u, v, w), S(3)R(3)S(3)(u, v, w),

S(3)S(3)R(3)(u, v, w), or R(3)R(3)R(3)(u, v, w). This is in turn the case if and only if the car-
dinality of the set

E ∩
⋃

i∈{1,2,3}

{(ui, vi), (ui, wi), (vi, wi)}

is odd. This in turn is the case if and only if E ∩ {(g(u), g(v)), (g(u), g(w)), (g(v), g(w))} is

odd, which is the case if and only if R(3)(g(u), g(v), g(w)) holds.
By Corollary 54, f generates a binary canonical injection s(x, y) of type p1. Set t(x, y, z) :=

s(x, s(y, z)). As in the proof of Proposition 29 the function p(x, y, z) := f(t(x, y, z), t(y, z, x), t(z, x, y))

is still of type R(3)-minority, and the function q(x, y, z) := g(t(x, y, z), t(y, z, x), t(z, x, y)) is

still of type minority. Moreover, by the above we have R(3)(p(u), p(v), p(w)) if and only if

R(3)(q(u), q(v), q(w)) for all u, v, w ∈ V 3, since t is injective. Therefore, the homogeneity of

(V ;R(3)) implies that for all finite S ⊆ V 3 there exists a unary operation a generated by {sw}
such that the ternary function a(p(x, y, z)) agrees with q(x, y, z) on S. By local closure, q is
thus generated by {f, sw}. �
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Lemma 62. Let Γ = (V ;R(3), S(3), . . .) be a reduct of G such that H2 is not primitive positive
definable. Then Γ has a ternary injective polymorphism which violates H2.

Proof. Since the relation H2 consists of three orbits of 9-tuples in Aut(V ;R(3)), Lemma 7
implies that f generates an at most ternary function that violates H2, and hence we can
assume that f itself is at most ternary; by adding a dummy variable if necessary, we may
assume that f is actually ternary. Moreover, f must certainly be essential, since essentially
unary operations that preserve R(3) and S(3) are generated by {sw} and hence also preserve
H2. Corollary 54 implies that Γ is preserved by a binary canonical injection g of type p1.
Consider

h(x, y, z) := g(g(g(f(x, y, z), x), y), z) .

Then h is clearly injective, and still violates H2 – the latter can easily be verified combining
the facts that f violates H2, g is of type p1, and all tuples in H2 have pairwise distinct
entries. �

Proposition 63. Let f be an operation on G that preserves R(3) and S(3) and violates H2.
Then {f, sw} generates a ternary canonical injection of type minority.

Proof. The proof is similar to the proof of Proposition 29. By Lemma 62, we can assume
that f is a ternary injection. Because f violates H2, there are x1, x2, x3 ∈ H2 such that
f(x1, x2, x3) /∈ H2. In the following, we will write xi := (x1

i , x
2
i , x

3
i ) for 1 ≤ i ≤ 9. So

(f(x1), . . . , f(x9)) /∈ H2. If there were a map a generated by sw such that a(xi) = xj for 1 ≤
i 6= j ≤ 3, then {f, sw} would generate a binary injection that still violates H2. Proposition 58

asserts that all binary injections generated by {f, sw} are of type R(3)-projection, so we have

reached a contradiction since operations of type R(3)-projection preserve H2. By permuting
arguments of f if necessary, we can therefore assume without loss of generality that

R(3)S(3)S(3)(x1, x2, x3), S(3)R(3)S(3)(x4, x5, x6), and S(3)S(3)R(3)(x7, x8, x9).

We set
S := {y ∈ V 3 | NNN(xi, y) for all 1 ≤ i ≤ 9} .

Consider the ternary relations Q1Q2Q3 on V 3, where Qi ∈ {R(3), S(3)} for 1 ≤ i ≤ 3; each of

these relations defines a 3-type in (V ;R(3)). We claim that for fixed Q1Q2Q3, whether or not

R(3)(f(u), f(v), f(w)) holds for u, v, w ∈ S with Q1Q2Q3(u, v, w) does not depend on u, v, w.
We go through all possibilities of Q1Q2Q3.

(1) Q1Q2Q3 = R(3)S(3)S(3). Let α ∈ Aut(V ;R(3)) be such that (x2
1, x

2
2, x

2
3, u2, v2, w2) is

mapped to (x3
1, x

3
2, x

3
3, u3, v3, w3); such an automorphism exists since NNN(x1, u),NNN(x1, v),NNN(x1, w),NNN(x2, u),NNN(x2, v),NNN(x2, w),

and since (x2
1, x

2
2, x

2
3) has the same type as (x3

1, x
3
2, x

3
3), and (u2, v2, w2) has the same

type as (u3, v3, w3) in (V ;R(3)). By Proposition 58, the operation g defined by

g(x, y) := f(x, y, α(y)) must be of typeR(3)-projection. Hence, R(3)(g(u1, u2), g(v1, v2), g(w1, w2))

iffR(3)(g(x1
1, x

2
1), g(x1

2, x
2
2), g(x1

3, x
2
3)). Combining this with the equations (f(u), f(v), f(w)) =

(g(u1, u2), g(v1, v2), g(w1, w2)) and (g(x1
1, x

2
1), g(x1

2, x
2
2), g(x1

3, x
2
3)) = (f(x1), f(x2), f(x3)),

we get that R(3)(f(u), f(v), f(w)) iff R(3)(f(x1), f(x2), f(x3)), and so we are done.

(2) Q1Q2Q3 = S(3)R(3)S(3) or Q1Q2Q3 = S(3)S(3)R(3). These cases are analogous to the
previous case.

(3) Q1Q2Q3 = S(3)R(3)R(3). Let α be defined as in the first case. By Proposition 58, the
operation defined by f(x, y, α(y)) must be of type projection. Reasoning as above,

one gets that R(3)(f(u), f(v), f(w)) iff S(3)(f(x1), f(x2), f(x3)).
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(4) Q1Q2Q3 = R(3)S(3)R(3) or Q1Q2Q3 = R(3)R(3)S(3). These cases are analogous to the
previous case.

(5) Q1Q2Q3 = R(3)R(3)R(3) or Q1Q2Q3 = S(3)S(3)S(3). These cases are trivial since f

preserves R(3) and S(3).

To show that f generates an operation of type minority, by Proposition 28 it suffices to prove
that f generates a function of type minority on S, since S is the product of isomorphic copies
ofG. We show this by another case distinction, based on the fact that (f(x1), . . . , f(x9)) /∈ H2.

(1) Suppose thatR(3)(f(x1), f(x2), f(x3)), R(3)(f(x4), f(x5), f(x6)), andR(3)(f(x7), f(x8), f(x9)).

By the above, note thatR(3)(f(u), f(v), f(w)) for u, v, w ∈ S if and only ifR(3)S(3)S(3)(u, v, w),

S(3)R(3)S(3)(u, v, w), S(3)S(3)R(3)(u, v, w), or R(3)R(3)R(3)(u, v, w). Hence, f behaves

like an R(3)-minority on S, and we are done by Lemma 61.
(2) Suppose that S(3)(f(x1), f(x2), f(x3)), S(3)(f(x4), f(x5), f(x6)), and S(3)(f(x7), f(x8), f(x9)).

Then f behaves like an R(3)-majority on S, which is impossible by Lemma 60.
(3) Suppose thatR(3)(f(x1), f(x2), f(x3)), R(3)(f(x4), f(x5), f(x6)), and S(3)(f(x7), f(x8), f(x9)).

Let e be a self-embedding of G such that for all w ∈ V , all 1 ≤ j ≤ 3, and all 1 ≤ i ≤ 9

we have that N(xji , e(w)). Then (u1, u2, e(f(u1, u2, u3))) ∈ S for all (u1, u2, u3) ∈ S.
Hence, by the above, the ternary operation defined by f(x, y, e(f(x, y, z))) is of type

R(3)-majority on S; but this is impossible by Lemma 60.
(4) Suppose thatR(3)(f(x1), f(x2), f(x3)), S(3)(f(x4), f(x5), f(x6)), andR(3)(f(x7), f(x8), f(x9))

or S(3)(f(x1), f(x2), f(x3)), R(3)(f(x4), f(x5), f(x6)), and R(3)(f(x7), f(x8), f(x9)).
These cases are analogous to the previous case.

Let h(x, y, z) be a ternary injection of type minority generated by f ; it remains to make h
canonical. By Corollary 54, f generates a binary canonical injection g(x, y) of type p1. Set
t(x, y, z) := g(x, g(y, z)). As in the proof of Proposition 29 the function h(t(x, y, z), t(y, z, x), t(z, x, y))
is still of type minority and canonical. �

of Theorem 48. Assume that H2 is not primitive positive definable; by Theorem 4 there exists
a polymorphism f of Γ that violates H2. Since Aut(Γ) contains sw, the relations R(3) and

S(3) consist of only one orbit of triples in Γ. Therefore, since they are preserved by all
endomorphisms of Γ, it follows by Theorem 4 and Lemma 7 that these relations are primitive
positive definable in Γ.

We can now apply Proposition 63 and obtain that {f, sw} generates a ternary injection of
type minority which is canonical as a function from (V ;E) to (V ;E). Corollary 54 implies
that Γ is preserved by a binary injection of type p1 which is canonical as a function from
(V ;E) to (V ;E), and the statement follows from Theorem 24. �

7.5. When the endomorphisms of a reduct are generated by {−, sw}. We next con-
sider Case (e) of Proposition 8. That is, we will assume that the endomorphisms of Γ are
precisely the unary functions generated by {−, sw}. In particular, Aut(Γ) contains −, sw,
and the automorphisms of Γ generate its endomorphisms. The proof for this case is similar
to that for Case (c) of Proposition 8, presented in Section 7.3.

Definition 64. Let H ′2 be the smallest 9-ary relation that is preserved by − and contains
H2.

Proposition 65. CSP(V ;H ′2) is NP-hard.
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Proof. If H ′2 is primitive positive definable in Γ, then one can show similarly as in the proof of
Proposition 21 that CSP(Γ) is NP-hard, by reduction from positive Not-all-three-equal-3SAT

instead of positive 1-in-3-3SAT, and by simulating 1 with R(3) instead of E, and 0 with S(3)

instead of N . �

The following is an analog of Theorem 20 for the situation of this section.

Theorem 66. Let Γ be a reduct of G whose endomorphisms are precisely the unary func-
tions generated by {−, sw}. Then H ′2 is primitive positive definable in Γ, or (b) or (d) from
Theorem 20 applies.

Proof. Note that H ′2 consists of three orbits of 9-tuples in Aut(Γ), and hence, if H ′2 is not
primitive positive definable in Γ, then there exists by Theorem 4 and Lemma 7 a ternary
polymorphism f of Γ that violates H ′2. That is, there are t1, t2, t3 ∈ H ′2 such that f(t1, t2, t3) /∈
H ′2. Note that for each tj , either tj or −tj ∈ H2. In the first case we set gj to be the identity
function on V , in the second case we let gj be the operation −. Now consider the function

f ′ defined by f ′(x1, x2, x3) := f(g1(x1), g2(x2), g3(x3)). We have that sj := g−1
j (tj) ∈ H2, but

f ′(s1, s2, s3) = f(t1, t2, t3) is not in H ′2, and therefore not in H2 either. Hence, f ′ violates H2.

The function h(x) := f ′(x, x, x) is generated by {−, sw}, and hence h either preserves R(3)

and S(3), or it flips them. Since f ′(s1, s2, s3) is not in H ′2, neither is −f ′(s1, s2, s3), and in
particular not in H2, so also −f ′ violates H2. Hence, by replacing f ′ with −f ′ if necessary,
we may assume that h preserves R(3) and S(3).

We claim that f ′ preserves R(3) and S(3). Suppose for contradiction that there are u, v, w ∈
V 3 with R(3)(ui, vi, wi) for all i ∈ {1, 2, 3} such that R(3)(f ′(u), f ′(v), f ′(w)) does not hold; the

case where f ′ violates S(3) can be treated similarly. If (u1, v1, w1), (u2, v2, w2), and (u3, v3, w3)

all lie in the same orbit of triples in G, then we choose a, b, c ∈ V with R(3)(a, b, c) such that
N(x, y) for x ∈ {a, b, c} and y ∈ {u1, v1, w1, u2, v2, w2, u3, v3, w3}. Then by the homogeneity of
G there is for each i ∈ {2, 3} a unary operation αi ∈ Aut(G) such that αi(u1, v1, w1, a, b, c) =
(ui, vi, wi, a, b, c). We then have that the unary function g(x) := f ′(x, α2(x), α3(x)) maps

(u1, v1, w1) ∈ R(3) to (f ′(u), f ′(v), f ′(w)) /∈ R(3). But g and the function h above agree

on {a, b, c}, and hence g preserves R(3) on {a, b, c}, but violates it on {u1, v1, w1}. This
contradicts the assumption that g is generated by {−, sw}.

So suppose in the following thatR(3)(f ′(u), f ′(v), f ′(w)) for all u, v, w ∈ V 3 withR(3)(ui, vi, wi)
for all i ∈ {1, 2, 3} such that u, v, w belong to the same orbit of triples in G. We now show

that R(3)(f ′(u), f ′(v), f ′(w)) for all u, v, w ∈ V 3 with R(3)(ui, vi, wi) for all i ∈ {1, 2, 3}.
To this end, note that for each i ∈ {2, 3} there is a subset Si of {ui, vi, wi} such that
(swSi(ui), swSi(vi), swSi(wi)) and (u1, v1, w1) belong to the same orbit in G. Hence, there
is βi ∈ Aut(G) such that βi(swSi(u1)) = ui, βi(swSi(v1)) = vi, and βi(swSi(w1)) = wi. Pick
a, b, c ∈ V \

⋃
i∈{1,2,3}{ui, vi, wi}. Note that for both i ∈ {2, 3} we have that the triples

(a, b, c) and (swSi(a), swSi(b), swSi(c)) lie in the same orbit. We then have that the function

x 7→ f ′(x, β2(swS2(x)), β3(swS3(x))) maps (u1, v1, w1) ∈ R(3) to (f ′(u), f ′(v), f ′(w)) /∈ R(3).

But the same unary function also maps (a, b, c) ∈ R(3) to a tuple in R(3) since f ′ by assump-

tion preserves R(3) on tuples R(3) that lie in the same orbit, and indeed we have that for
i ∈ {2, 3} the triples (a, b, c) and (βi(swSi(a)), βi(swSi(b)), βi(swSi(c))) lie in the same orbit.
This again contradicts the assumption that the unary function is generated by {−, sw}.
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We therefore have that f ′ preserves R(3) and S(3). Since it violates H2, Proposition 49
implies that {f ′, sw} generates a ternary canonical injection of type minority, and we are
done. �

8. Algorithms

We now prove that if one of the Cases (b) to (f) of Proposition ?? holds for a reduct
Γ = (V ;E,N, 6=, . . . ) of G with a finite language, then CSP(Γ) is in P. Tractability of Cases (b)
and (c) is shown in Subsection 8.1, tractability of Case (d) in Subsection 8.2, of Case (e) in
Subsection 8.3, and finally tractability of Case (f) in Subsection 8.4.

8.1. Tractability of types minority / majority with unbalanced projections. We
show tractability of the CSP for reducts Γ as in Cases (b) and (c) of Proposition ??.

Proposition 67. Let Γ = (V ;E,N, 6=, . . . ) be a finite language reduct of G, and assume that
Pol(Γ) contains a ternary injection of type minority or majority, as well as a binary injection
which is of type p1 and either E-dominated or N -dominated in the second argument. Then
CSP(Γ) is tractable.

It turns out that for such Γ, we can reduce CSP(Γ) to the CSP of the injectivization of Γ.
This implies in turn that the CSP can be reduced to a CSP over a Boolean domain.

Definition 68. A relation is called injective if all its tuples have pairwise distinct entries. A
structure is called injective if it only has injective relations.

With the goal of reducing the CSP to injective structures, we define injectivizations for
relations, atomic formulas, and structures.

Definition 69. • Let R be any relation. Then the injectivization of R, denoted by
inj(R), is the largest injective relation contained in R.
• Let φ(x1, . . . , xn) be an atomic formula in the language of a reduct Γ, where x1, . . . , xn

is a list of the variables that appear in φ. Then the injectivization of φ(x1, . . . , xn)

is the formula Rinjφ (x1, . . . , xn), where Rinjφ is a relation symbol which stands for the

injectivization of the relation defined by φ.
• The injectivization of a relational structure Γ, denoted by inj(Γ), is the relational

structure ∆ with the same domain as Γ whose relations are the injectivizations of the

atomic formulas over Γ, i.e., the relations Rinjφ .

Note that inj(Γ) also contains the injectivizations of relations that are defined by atomic
formulas in which one variable might appear several times. In particular, the injectivization
of an atomic formula φ might have smaller arity than the relation symbol that appears in φ.

To state the reduction to the CSP of an injectivization, we also need the following operations
on instances of CSP(Γ).

Definition 70. Let Γ be a structure in a finite language, ∆ be the injectivization of Γ, and Φ
be an instance of CSP(Γ). Then the injectivization of Φ, denoted by inj(Φ), is the instance Ψ

of CSP(∆) obtained from Φ by replacing each conjunct φ(x1, . . . , xn) of Φ by Rinjφ (x1, . . . , xn).

We say that a constraint (=conjunct) in an instance of CSP(Γ) is false if it defines an
empty relation in Γ. Note that a constraint R(x1, . . . , xn) might be false even if the relation
R is non-empty (simply because some of the variables from x1, . . . , xn might be equal).
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// Input: An instance Φ of CSP(Γ) with variables V
While Φ contains a constraint φ that implies x = y for x, y ∈ V do

Replace each occurrence of x by y in Φ.
If Φ contains a false constraint then reject

Loop
Accept if and only if inj(Φ) is satisfiable in ∆.

Figure 1. Polynomial-time Turing reduction from the CSP(Γ) for Γ closed
under an unbalanced binary injection, to the CSP of its injectivization ∆.

Lemma 71. Let Γ be a finite language reduct of G which is preserved by a binary injection f
of type p1 that is E-dominated or N -dominated in the second argument. Then the algorithm
shown in Figure 1 is a polynomial-time reduction of CSP(Γ) to CSP(∆), where ∆ is the
injectivization of Γ.

Proof. By duality, we may in the following assume that f is E-dominated in the second
argument.

In the main loop, when the algorithm detects a constraint that is false and therefore rejects,
then Φ cannot hold in Γ, because the algorithm only contracts variables x and y when x = y
in all solutions to Φ – and contractions are the only modifications performed on the input
formula Φ. So suppose that the algorithm does not reject, and let Ψ be the instance of CSP(Γ)
computed by the algorithm when it reaches the final line of the algorithm.

By the observation we just made it suffices to show that Ψ holds in Γ if and only if inj(Ψ)
holds in ∆. It is clear that when inj(Ψ) holds in ∆ then Ψ holds in Γ (since the constraints
in inj(Ψ) have been made stronger). We now prove that if Ψ has a solution s in Γ, then there
is also a solution for inj(Ψ) in ∆.

Let s′ be any mapping from the variables of Ψ to G such that for all distinct variables x, y
of Ψ we have that

• if E(s(x), s(y)) then E(s′(x), s′(y));
• if N(s(x), s(y)) then N(s′(x), s′(y));
• if s(x) = s(y) then E(s′(x), s′(y)).

Clearly, such a mapping exists. We claim that s′ is a solution to Ψ in Γ. Since s′ must be
injective, it is then clearly also a solution to inj(Ψ).

To prove the claim, let φ = R(x1, . . . , xn) be a constraint in Ψ. Since we are at the final
stage of the algorithm, we can conclude that φ does not imply equality of any of the variables
x1, . . . , xn, and so there is for all 1 ≤ i < j ≤ n an n-tuple t(i,j) such that R(t(i,j)) and
ti 6= tj hold. Since R(x1, . . . , xn) is preserved by a binary injection, it is also preserved by
injections of arbitrary arity (it is straightforward to build such terms from a binary injection).

Application of an injection of arity
(
n
2

)
to the tuples t(i,j) shows that R(x1, . . . , xn) contains

an injective tuple t = (t1, . . . , tn).
Consider the mapping r : {x1, . . . , xn} → G given by r(xl) := f(s(xl), tl). This assignment

has the property that for all 1 ≤ i, j ≤ n, if E(s(xi), s(xj)) then E(r(xi), r(xj)), and if
N(s(xi), s(xj)) then N(r(xi), r(xj)), because f is of type p1 and because the entries of t are
distinct. Moreover, if s(xi) = s(xj) then E(r(xi), r(xj)) because f is E-dominated in the
second argument. Therefore, (s′(x1), . . . , s′(xn)) and (r(x1), . . . , r(xn)) have the same type
in G. Since f is a polymorphism of Γ, we have that (r(x1), . . . , r(xn)) satisfies the constraint
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R(x1, . . . , xn). Hence, s′ satisfies R(x1, . . . , xn) as well. In this fashion we see that s′ satisfies
all the constraints of Ψ, proving our claim. �

To reduce the CSP for injective structures to Boolean CSPs, we make the following defini-
tion.

Definition 72. Let t be a k-tuple of distinct vertices of G, and let q be
(
k
2

)
. Then Boole(t)

is the q-tuple (a1,2, a1,3, . . . , a1,k, a2,3, . . . , ak−1,k) ∈ {0, 1}q such that ai,j = 0 if N(ti, tj) and
ai,j = 1 if E(ti, tj). If R is a k-ary injective relation, then Boole(R) is the q-ary Boolean
relation {Boole(t) | t ∈ R}. If φ is a formula that defines a relation R over G, then we also
write Boole(φ) instead of Boole(inj(R)). Finally, for an injective reduct Γ, we write Boole(Γ)
for the structure over a Boolean domain which has the relations of the form Boole(R), where
R is a relation of Γ.

Lemma 73. Let Γ be a finite language reduct of G which is injective. Then CSP(Γ) can be
reduced to CSP(Boole(Γ)) in polynomial time.

Proof. Let Φ be an instance of CSP(Γ), with variable set W . We create an instance Ψ of
CSP(Boole(Γ)) as follows. The variable set of Ψ is the set of unordered pairs of variables
from Φ. When φ = R(x1, . . . , xk) is a constraint in Φ, then Ψ contains the constraint

Boole(R)(x1,2, x1,3, . . . , x1,k, x2,3, . . . , xk−1,k).

It is straightforward to verify that Ψ can be computed from Φ in polynomial time, and that Φ is
a satisfiable instance of CSP(Γ) if and only if Ψ is a satisfiable instance of CSP(Boole(Γ)). �

The Boolean majority operation is the unique ternary function f on a Boolean domain
satisfying f(x, x, y) = f(x, y, x) = f(y, x, x) = x. The Boolean minority operation is the
unique ternary function f on a Boolean domain satisfying f(x, x, y) = f(x, y, x) = f(y, x, x) =
y.

Lemma 74. Let Γ be a finite language reduct of G which is injective, and suppose it has
an polymorphism of type minority (majority). Then Boole(Γ) has a minority (majority)
polymorphism, and hence CSP(Boole(Γ)) can be solved in polynomial time.

Proof. It is straightforward to show that Boole(Γ) has a minority (majority) polymorphism,
and well-known (see [26]) that CSP(Boole(Γ)) can then be solved in polynomial time. �

Lemmas 71, 73, and 74 together provide a proof of Proposition 67.

8.2. Tractability of type minority with balanced projections. We move on to reducts
as in Case (d) of Proposition ??.

Proposition 75. Let Γ = (V ;E,N, 6=, . . . ) be a finite language reduct of G, and assume that
Pol(Γ) contains a ternary injection of type minority, as well as a binary injection which is of
type p1 and balanced. Then CSP(Γ) is tractable.

We start by proving that the relations of the reducts under consideration can be defined
in G by first-order formulas of a certain restricted syntactic form; this normal form will later
be essential for our algorithm.

A Boolean relation is called affine if it can be defined by a conjunction of linear equations
modulo 2. It is well-known that a Boolean relation is affine if and only if it is preserved by
the Boolean minority operation (for a neat proof, see e.g. [16]).

In the following, we denote the Boolean exclusive-or connective (xor) by ⊕.
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Definition 76. A graph formula is called edge affine if it is a conjunction of formulas of the
form

x1 6= y1 ∨ . . . ∨ xk 6= yk

∨
(
u1 6= v1 ∧ · · · ∧ ul 6= vl

∧ E(u1, v1)⊕ · · · ⊕ E(ul, vl) = p
)

∨ (u1 = v1 ∧ · · · ∧ ul = vl) ,

where p ∈ {0, 1}, variables need not be distinct, and each of k and l can be 0.

Definition 77. A ternary operation f : V 3 → V is called straight if for every c ∈ V , the
binary operations (x, y) 7→ f(x, y, c), (x, z) 7→ f(x, c, z), and (y, z) 7→ f(c, y, z) are balanced
injections of type p1.

We remark that the existence of straight operations and even straight minority injections
follows from the fact that G contains all countable graphs as induced subgraphs.

Proposition 78. Let R be a relation with a first-order definition over G. Then the following
are equivalent:

(1) R can be defined by an edge affine formula;
(2) R is preserved by every ternary injection which is of type minority and straight;
(3) R is preserved by some ternary injection injection of type minority, and some balanced

binary injection of type p1.

Proof. We first show the implication from 1 to 2, that n-ary relations R defined by edge affine
formulas Ψ(x1, . . . , xn) are preserved by straight injections f of type minority. By injectivity
of f , it is easy to see that we only have to show this for the case that Ψ does not contain
disequality disjuncts (i.e., k = 0). Now let φ be a clause from Ψ, say

φ :=
(
u1 6= v1 ∧ · · · ∧ ul 6= vl

∧ (E(u1, v1)⊕ · · · ⊕ E(ul, vl) = p)
)

∨ (u1 = v1 ∧ · · · ∧ ul = vl) ,

for p ∈ {0, 1} and u1, . . . , ul, v1, . . . , vl ∈ {x1, . . . , xn}. In the following, it will sometimes be
notationally convenient to consider tuples in G satisfying a formula as mappings from the
variable set of the formula to V . Let t1, t2, t3 : {x1, . . . , xn} → V be three mappings that
satisfy φ. We have to show that the mapping t0 : {x1, . . . , xn} → V defined by t0(x) =
f(t1(x), t2(x), t3(x)) satisfies φ.

Suppose first that each of t1, t2, t3 satisfies u1 6= v1 ∧ · · · ∧ ul 6= vl. In this case, t0(u1) 6=
t0(v1)∧· · ·∧t0(ul) 6= t0(vl), since f preserves 6=. Note that E(t0(ui), t0(vi)), for 1 ≤ i ≤ l, if and
only if E(t1(ui), t1(vi))⊕E(t2(ui), t2(vi))⊕E(t3(ui), t3(vi)) = 1. Therefore, since each t1, t2, t3
satisfies E(u1, v1)⊕· · ·⊕E(ul, vl) = p, we find that t0 also satisfies E(u1, v1)⊕· · ·⊕E(ul, vl) =
p⊕ p⊕ p = p.

Next, suppose that one of t1, t2, t3 satisfies ui = vi for some (and therefore for all) 1 ≤ i ≤ l.
By permuting arguments of f , we can assume that t1(ui) = t1(vi) for all i ∈ {1, . . . , l}. Since
the function f is straight, the operation g : (y, z) 7→ f(t1(ui), y, z) is a balanced injection of
type p1. Suppose that t2(ui) = t2(vi). Then E(t0(ui), t0(vi)) if and only if E(t3(ui), t3(vi)),
since g is balanced. Hence, t0 satisfies φ. Now suppose that t2(ui) 6= t2(vi). If also t3(ui) 6=
t3(vi), then E(t0(ui), t0(vi)) if and only if E(t2(ui), t2(vi)) since g is of type p1. If on the
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other hand t3(ui) = t3(vi), then again E(t0(ui), t0(vi)) if and only if E(t2(ui), t2(vi)) since g
is balanced. In either case, t0 satisfies φ. This shows that f preserves φ, and hence also Ψ.

The implication from 2 to 3 is trivial, since every straight injection of type minority gener-
ates a balanced binary injection of type p1 by identification of two of its variables. It is also
here that we have to check the existence of straight injections of type minority; as mentioned
above, this follows easily from the universality of G.

We show the implication from 3 to 1 by induction on the arity n of the relation R. Let
g be the balanced binary injection of type p1, and let h be the operation of type minority.
For n = 2 the statement of the theorem holds, because all binary relations with a first-order
definition in G can be defined over G by expressions as in Definition 76:

• For x 6= y we set k = 1 and l = 0.
• For ¬E(x, y) we can set k = 0, l = 1, p = 0.
• For ¬N(x, y) we can set k = 0, l = 1, p = 1.
• Then, E(x, y) can be expressed as (x 6= y) ∧ ¬N(x, y).
• N(x, y) can be expressed as (x 6= y) ∧ ¬E(x, y).
• x = y can be expressed as ¬E(x, y) ∧ ¬N(x, y).
• The empty relation can be expressed as E(x, y) ∧N(x, y).
• Finally, V 2 can be defined by the empty conjunction.

For n > 2, we construct the formula Ψ that defines the relation R(x1, . . . , xn) as follows.
If there are distinct i, j ∈ {1, . . . , n} such that for all tuples t in R we have ti = tj , consider
the relation defined by ∃xi.R(x1, . . . , xn). This relation is also preserved by g and h, and by
inductive assumption has a definition Φ as required. Then the formula Ψ := (xi = xj ∧ Φ)
proves the claim. So let us assume that for all distinct i, j there is a tuple t ∈ R where ti 6= tj .
Note that since R is preserved by the binary injective operation g, this implies that R also
contains an injective tuple.

Since R is preserved by an operation of type minority, the relation Boole(inj(R)) is pre-
served by the Boolean minority operation, and hence has a definition by a conjunction of
linear equations modulo 2. From this definition it is straightforward to obtain a definition
Φ(x1, . . . , xn) of inj(R) which is the conjunction of

∧
i<j≤n xi 6= xj and of formulas of the

form

E(u1, v1)⊕ · · · ⊕ E(ul, vl) = p ,

for u1, . . . , ul, v1, . . . , vl ∈ {x1, . . . , xn}. It is clear that we can assume that none of the
formulas of the form E(u1, v1) ⊕ · · · ⊕ E(ul, vl) = p in Φ can be equivalently replaced by a
conjunction of shorter formulas of this form.

For all i, j ∈ {1, . . . , n} with i < j, let Ri,j be the relation that holds for the tuple
(x1, . . . , xi−1, xi+1, . . . , xn) iff R(x1, . . . , xi−1, xj , xi+1, . . . , xn) holds. Because Ri,j is preserved
by g and h, but has arity n − 1, it has a definition Φi,j as in the statement by inductive as-
sumption. We call the conjuncts of Φi,j also the clauses of Φi,j . We add to each clause of Φi,j

a disjunct xi 6= xj .
Let Ψ be the conjunction composed of conjuncts from the following two groups:

(1) all the modified clauses from all formulas Φi,j ;
(2) when φ = (E(u1, v1) ⊕ · · · ⊕ E(ul, vl) = p) is a conjunct of Φ, then Ψ contains the

formula

(u1 6= v1 ∧ · · · ∧ ul 6= vl ∧ φ)

∨(u1 = v1 ∧ · · · ∧ ul = vl) .
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Obviously, Ψ is a formula in the required form. We have to verify that Ψ defines R.
Let t be an n-tuple such that t /∈ R. If t is injective, then t violates a formula of the form

E(u1, v1)⊕ · · · ⊕ E(ul, vl) = p

from the formula Φ defining inj(R), and hence it violates a conjunct of Ψ of the second
group. If there are i, j such that ti = tj then the tuple ti := (t1, . . . , ti−1, ti+1, . . . , tn) /∈ Ri,j .
Therefore some conjunct φ of Φi,j is not satisfied by ti, and φ ∨ xi 6= xj is not satisfied by t.
Thus, in this case t does not satisfy Ψ either.

It remains to verify that all t ∈ R satisfy Ψ. Let ψ be a conjunct of Ψ created from some
clause in Φi,j . If ti 6= tj , then ψ is satisfied by t because φ contains xi 6= xj . If ti = tj ,
then (t1, . . . , ti−1, ti+1, . . . , tn) ∈ Ri,j and thus this tuple satisfies Φi,j . This also implies that
t satisfies ψ. Now, let ψ be a conjunct of Ψ from the second group. We distinguish three
cases.

(1) For all 1 ≤ i ≤ l we have that t satisfies ui = vi. In this case we are clearly done since
t satisfies the second disjunct of ψ.

(2) For all 1 ≤ i ≤ l we have that t satisfies ui 6= vi. Suppose for contradiction that t does
not satisfy E(u1, v1) ⊕ · · · ⊕ E(ul, vl) = p. Let r ∈ R be injective, and consider the
tuple s := g(t, r). Then s ∈ R, and s is injective since the tuple r and the function
g are injective. However, since g is of type p1, we have E(s(ui), s(vi)) if and only
if E(t(ui), t(vi)), for all 1 ≤ i ≤ l. Hence, s violates the conjunct E(u1, v1) ⊕ · · · ⊕
E(ul, vl) = p from Φ, a contradiction since s ∈ inj(R).

(3) The remaining case is that there is a proper non-empty subset S of {1, . . . , l} such
that t satisfies ui = vi for all i ∈ S and t satisfies ui 6= vi for all i ∈ {1, . . . , n} \ S.
We claim that this case cannot occur. Suppose that all tuples t′ from inj(R) satisfy
that

⊕
i∈S E(ui, vi) = d for some d ∈ {0, 1}. In this case we could have replaced

E(u1, v1) ⊕ · · · ⊕ E(ul, vl) = p by the two shorter formulas
⊕

i∈S E(ui, vi) = d and⊕
i∈{1,...,n}\S E(ui, vi) = p ⊕ d, in contradiction to our assumption on Φ. So, for

each d ∈ {0, 1} there is a tuple sd ∈ inj(R) where
⊕

i∈S E(ui, vi) = d (and thus⊕
i∈{1,...,n}\S E(ui, vi) = p⊕ d). Now, for the tuple g(t, s1−p) we have⊕

i∈[n]

E(ui, vi) =
⊕
i∈S

E(ui, vi)⊕
⊕

i∈[n]\S

E(ui, vi)

= p⊕ (p⊕ (1− p))
= 1− p 6= p

which is a contradiction since g(t, s1−p) ∈ inj(R).

Hence, all t ∈ R satisfy all conjuncts ψ of Ψ. We conclude that Ψ defines R. �

We now present a polynomial-time algorithm for CSP(Γ) for the case that a reduct Γ has
finitely many edge affine relations.

Definition 79. Let Γ be a finite language reduct of G which has only edge affine relations,
and let Φ be an instance of CSP(Γ). Then the graph of Φ is the (undirected) graph whose
vertices are unordered pairs of distinct variables of Φ, and which has an edge between distinct
sets {a, b} and {c, d} if Φ contains a constraint whose definition as in Definition 76 has a
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// Input: An instance Φ of CSP(Γ) with variables V
Repeat

For each connected component C of the graph of Φ do
Let Ψ be the affine Boolean formula inj(Φ, C).
If Ψ is unsatisfiable then

For each {x, y} ∈ C do
Replace each occurrence of x by y in Φ.

If Φ contains a false constraint then reject
Loop

Until inj(Φ, C) is satisfiable for all components C
Accept

Figure 2. A polynomial-time algorithm for CSP(Γ) when Γ is preserved by
a straight operation of type minority.

conjunct of the form(
u1 6= v1 ∧ · · · ∧ ul 6= vl ∧ (E(u1, v1)⊕ · · · ⊕ E(ul, vl) = p)

)
∨ (u1 = v1 ∧ · · · ∧ ul = vl)

such that {a, b} = {ui, vi} and {c, d} = {uj , vj} for some i, j ∈ {1, . . . , l}.
It is clear that for Γ with finite signature, the graph of an instance Φ of CSP(Γ) can be

computed in linear time from Φ.

Definition 80. Let Γ be a finite language reduct of G which has only edge affine relations,
and let Φ be an instance of CSP(Γ). For a set C of 2-element subsets of variables of Φ, we
define inj(Φ, C) to be the following affine Boolean formula. The set of variables of inj(Φ, C)
is C. The constraints of inj(Φ, C) are obtained from the constraints φ of Φ as follows. If φ
has a definition as in Definition 76 with a clause of the form(

u1 6= v1 ∧ · · · ∧ ul 6= vl ∧ (E(u1, v1)⊕ · · · ⊕ E(ul, vl) = p)
)

∨ (u1 = v1 ∧ · · · ∧ ul = vl)

where all pairs {ui, vi} are in C, then inj(Φ, C) contains the conjunct {u1, v1}⊕· · ·⊕{ul, vl} =
p.

Proposition 75 now follows from the following lemma and Proposition 78.

Lemma 81. Let Γ be a finite language reduct of G which has only edge affine relations. Then
the algorithm shown in Figure 2 solves CSP(Γ) in polynomial time.

Proof. We first show that when the algorithm detects a constraint that is false and therefore
rejects in the innermost loop, then Φ must be unsatisfiable. Since variable contractions are the
only modifications performed on the input formula Φ, it suffices to show that the algorithm
only equates variables x and y when x = y in all solutions. To see that this is true, assume
that Ψ := inj(Φ, C) is an unsatisfiable Boolean formula for some connected component C.
Hence, in any solution s to Φ there must be a {x, y} in C such that s(x) = s(y). It follows
immediately from the definition of the graph of Φ that then s(u) = s(v) for all {u, v} adjacent
to {x, y} in the graph of Φ. By connectivity of C, we have that s(u) = s(v) for all {u, v} ∈ C.
Since this holds for any solution to Φ, the contractions in the innermost loop of the algorithm
preserve satisfiability.
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So we only have to show that when the algorithm accepts, there is indeed a solution to Φ.
When the algorithm accepts, we must have that inj(Φ, C) has a solution sC for all components
C of the graph of Φ. Let s be a mapping from the variables of Φ to the V such that E(xi, xj)
if {xi, xj} is in component C of the graph of Φ and sC({xi, xj}) = 1, and N(xi, xj) otherwise.
It is straightforward to verify that this assignment satisfies all of the constraints. �

8.3. Tractability of type majority with balanced projections. We turn to reducts as
in Case (e) of Proposition ??.

Proposition 82. Let Γ = (V ;E,N, 6=, . . . ) be a finite language reduct of G, and assume that
Pol(Γ) contains a ternary injection of type majority, as well as a binary injection which is of
type p1 and balanced. Then CSP(Γ) is tractable.

A Boolean relation is called bijunctive if it can be defined by a conjunction of clauses of
size at most two (i.e., it is the solution set to a 2SAT instance). It is well-known that a
Boolean relation is bijunctive if and only if it is preserved by the Boolean majority operation
(see e.g. [16]).

Definition 83. A relation R on G is called graph bijunctive if it can be defined in G by a
conjunction of disjunctions of disequalities, and of formulas of the form

x1 6= y1 ∨ . . . ∨ xk 6= yk

∨
(
u1 6= v1 ∧ u2 6= v2 ∧ (X(u1, v1) ∨ Y (u2, v2))

)
∨ (u1 = v1 ∧ u2 = v2) ,

where X,Y ∈ {E,N}, variables need not be distinct, and k can be 0.

Proposition 84. Let R be a relation with a first-order definition in G. Then the following
are equivalent.

(1) R is graph bijunctive;
(2) R is preserved by every ternary injection which is of type majority and straight;
(3) R is preserved by some ternary injection of type majority and some binary balanced

injection of type p1.

Proof. The proof is very similar to the proof of Proposition 78. We first show the implication
from 1 to 2, that relations that are graph bijunctive are preserved by straight injections f of
type majority. By injectivity of f , it suffices to show this for the case that the formulas do not
contain disequality disjuncts (i.e., k = 0). Since the clauses φ of such a formula are such that
Boole(φ) is bijunctive, the claim follows from the fact that bijunctive Boolean relations are
preserved by the Boolean majority operation in very much the same way as in Proposition 78.

For the implication from 2 to 3, observe that straight injections of type majority exist since
G contains all countable graphs, and that identifying two variables of such an operation yields
a balanced injection of type p1.

We show the implication from 3 to 1 by induction on the arity n of the relation R. Let g
be the balanced binary injection of type p1, and let h be the injection of type majority. For
n = 2 the statement of the proposition holds because all binary relations with a first-order
definition over G can be defined as in Definition 83.

• for ¬E(x, y) we can set k = 0, X = Y := N , u1 = v1 := x, u2 = v2 := y; dually,
¬N(x, y) can be defined;
• For x 6= y, this is trivial;
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• E(x, y) can be defined as the conjunct of x 6= y and ¬N(x, y); dually, we can define
N(x, y);
• The relation x = y can be obtained as the conjunction of ¬E(x, y) and ¬N(x, y);
• The empty relation is obtained as the conjunction of E(x, y) and N(x, y);
• Finally, V 2 can be defined by the empty conjunction.

For n > 2, we construct the formula Ψ that defines the relation R(x1, . . . , xn) as follows.
If there are distinct i, j ∈ {1, . . . , n} such that for all tuples t in R we have ti = tj , consider
the relation defined by ∃xi.R(x1, . . . , xn). This relation is also preserved by g and h, and by
inductive assumption has a definition Φ as required. Then the formula Ψ := (xi = xj ∧ Φ)
proves the claim. So let us assume that for all distinct i, j there is a tuple t ∈ R where ti 6= tj .
Note that since R is preserved by the binary injective operation g, this implies that R also
contains an injective tuple.

Since R is preserved by a function of type majority, the relation Boole(inj(R)) is pre-
served by the Boolean majority operation, and hence is bijunctive. From this definition it
is straightforward to obtain a definition Φ(x1, . . . , xn) of inj(R) which is the conjunction of∧

1≤i<j≤n xi 6= xj and of formulas of the form E(u, v), N(u, v), or

X(u1, v1) ∨ Y (u1, v1) ,

for u1, u2, v1, v2 ∈ {x1, . . . , xn}, and X,Y ∈ {E,N}. We can assume (by removing successively
literals from clauses) that this formula is reduced, i.e., that each of the conjuncts is such that
removing any of its literals results in an inequivalent formula.

For all i, j ∈ {1, . . . , n} with i < j, let Ri,j be the relation that holds for the tuple
(x1, . . . , xi−1, xi+1, . . . , xn) iff R(x1, . . . , xi−1, xj , xi+1, . . . , xn) holds. Because also Ri,j is pre-
served by g and h, but has arity n−1, it has a definition Φi,j as in the statement by inductive
assumption. We call the conjuncts of Φi,j also the clauses of Φi,j . We add to each clause of
Φi,j a disjunct xi 6= xj .

Let Ψ be the conjunction composed of conjuncts from the following two groups:

(1) all the modified clauses from all formulas Φi,j ;
(2) when φ = (X(u1, v1) ∨ Y (u2, v2)) is a conjunct of Φ, then Ψ contains the formula

(φ ∧ u1 6= v1 ∧ u2 6= v2) ∨ (u1 = v1 ∧ u2 = v2) .

Obviously, Ψ is a formula in the required form. We have to verify that Ψ defines R.
Let t be an n-tuple such that t /∈ R. If t is injective, then since t /∈ inj(R), it violates a

clause of the form X(u1, v1) ∨ Y (u1, v1) of Φ, and hence the corresponding clause in Ψ. If
there are i, j such that ti = tj then the tuple ti := (t1, . . . , ti−1, ti+1, . . . , tn) /∈ Ri,j . Therefore
some conjunct φ of Φi,j is not satisfied by ti, and φ ∨ xi 6= xj is not satisfied by t. Thus, in
this case t does not satisfy Ψ either.

It remains to verify that all t ∈ R satisfy Ψ. Let ψ be a conjunct of Ψ created from some
clause in Φi,j . If ti 6= tj , then ψ is satisfied by t because ψ contains xi 6= xj . If ti = tj ,
then (t1, . . . , ti−1, ti+1, . . . , tn) ∈ Ri,j and thus this tuple satisfies Φi,j . This also implies that
t satisfies ψ. Now, let ψ be a conjunct of Ψ from the second group, so it is of the form

ψ =
(
u1 6= v1 ∧ u2 6= v2 ∧ (X(u1, v1) ∨ Y (u2, v2))

)
∨ (u1 = v1 ∧ u2 = v2) .

We distinguish three cases.



42 MANUEL BODIRSKY AND MICHAEL PINSKER

(1) The tuple t satisfies both u1 = v1 and u2 = v2. In this case we are clearly done since
t satisfies the second disjunct of ψ.

(2) The tuple t satisfies u1 6= v2 and u2 6= v2. Then the argument is exactly the same as
the argument in the proof of Proposition 78.

(3) The remaining case is that t satisfies u1 = v1 and u2 6= v2 (or u1 6= v1 and u2 =
v2, but the proof there is symmetric). We claim that this case cannot occur. If t
satisfies Y (u2, v2), we are done; so let us assume that t satisfies ¬Y (u2, v2). Since we
assumed that Φ is reduced, it follows that there exists a tuple s ∈ inj(R) (and hence
in R) where ¬X(u1, u1) and Y (u1, v1); otherwise, we could have replaced the clause
X(u1, v1) ∨ Y (u2, v2) by X(u1, v1). Then the tuple r := g(t, s) is also injective, and
satisfies ¬Y (u2, u2) (since g is of type p1) and it also satisfies ¬X(u1, v1) (since g is
balanced). Since g is injective, we have found a tuple r ∈ inj(R) that does not satisfy
X(u1, v1) ∨ Y (u1, v1), a contradiction.

�

Combining the following lemma with Proposition 84 gives us a proof of Proposition 82.

Lemma 85. Let Γ be a reduct of G with a finite signature all of whose relations are graph
bijunctive. Then CSP(Γ) can be solved in polynomial time.

Proof. The algorithm for CSP(Γ) is a straightforward adaptation of the procedure given in
Figure 2, with the difference that instead of affine Boolean equation systems we have to solve
2SAT instances in the inner loop. �

8.4. Tractability of types max and min. We are left with proving tractability of the CSP
for reducts Γ as in case Case (f) of Proposition ??, i.e., for reducts which have a canonical
binary injective polymorphism of type max or min. We first observe that we can assume that
this polymorphism is either balanced, or of type max and E-dominated, or of type min and
N -dominated.

Proposition 86. Let Γ be a reduct of G. If Γ has a canonical binary injective polymorphism
of type max, then it also has a canonical binary injective polymorphism of type max which
is balanced or E-dominated. If it has a canonical binary injective polymorphism of type min,
then it also has a canonical binary injective polymorphism of type min which is balanced or
N -dominated.

Proof. We prove the statement for type max (the situation for min is dual). Let p be the
polymorphism of type max. Then h(x, y) := p(x, p(x, y)) is not N -dominated in the first
argument; this is easy to see. But then p(h(x, y), h(y, x)) is either balanced or E-dominated,
and still of type max. �

We will need the following result which was shown in [3, Proposition 14]. For a relational

structure Γ, we denote by Γ̂ the expansion of Γ that also contains the complement for each
relation in Γ. We call a homomorphism between two structures Γ and ∆ strong if it is also a
homomorphism between Γ̂ and ∆̂.

Proposition 87. Let Γ be an ω-categorical homogeneous structure such that CSP(Γ̂) is
tractable, and let ∆ be a reduct of Γ. If ∆ has a polymorphism which is a strong homo-
morphism from Γ2 to Γ, then CSP(∆) is tractable as well.
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In the following, a strong homomorphism from a power of Γ to Γ will be called strong
polymorphism. We apply Proposition 87 to our setting as follows.

Proposition 88. Let Γ be a reduct of G with a finite signature, and which is preserved by a
binary canonical injection which is of type max and balanced or E-dominated, or of type min
and balanced or N -dominated. Then CSP(Γ) can be solved in polynomial time.

Proof. We have the following.

• A canonical binary injection which is of type min and N -dominated is a strong poly-
morphism of (V ;E,=).
• A canonical binary injection which is of type max and E-dominated is a strong poly-

morphism of (V ;N,=).
• A canonical binary injection which is of type max and balanced is a strong polymor-

phism of (V ;¬E,=).
• A canonical binary injection which is of type min and balanced is a strong polymor-

phism of (V ;¬N,=).

The tractability result follows from Proposition 87, because

CSP(V ;E,¬E,N,¬N,=, 6=)

can be solved in polynomial time. One way to see this is to verify that all relations are
preserved by a straight polymorphism of type majority, and to use the algorithm presented
in Section 8.3. �

This completes the proof of the dichotomy statement of Theorem 1!

9. Classification

We have proven so far that all reducts of the random graph with finitely many relations
define a CSP which is either tractable or NP-complete. This section is devoted to a more
explicit description of the border between tractable and hard reducts.

Definition 89. Let B be a behavior for functions from G2 to G. A ternary injection f : V 3 →
V is hyperplanely of type B if the binary functions (x, y) 7→ f(x, y, c), (x, z) 7→ f(x, c, z), and
(y, z) 7→ f(c, y, z) have behavior B for all c ∈ V .

We have already met a special case of this concept in Definition ?? of Section 8.2: A ternary
function is balanced if and only if it is hyperplanely balanced and of type p1. Let us now
define some more behaviors of binary functions which will appear hyperplanely in ternary
functions in our classification.

Definition 90. A binary injection f : V 2 → V is

• E-constant if the image of f is a clique;
• N -constant if the image of f is an independent set;
• of type xnor if for all u, v ∈ V 2 with 6=6=(u, v) the relation E(f(u), f(v)) holds if and

only if EE(u, v) or NN(u, v) holds;
• of type xor if for all u, v ∈ V 2 with 6=6=(u, v) the relation E(f(u), f(v)) holds if and

only if neither EE(u, v) nor NN(u, v) hold.

Observe that if two canonical functions f, g : V n → V satisfy the same type conditions,
then they generate the same clone. This follows easily from the homogeneity of G and by
local closure.
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Let E6 be the 6-ary relation defined by

{(x1, x2, y1, y2, z1, z2) ∈ V 6 | (x1 = x2 ∧ y1 6= y2 ∧ z1 6= z2)

∨ (x1 6= x2 ∧ y1 = y2 ∧ z1 6= z2)

∨ (x1 6= x2 ∧ y1 6= y2 ∧ z1 = z2)} .

It is easy to see that Pol(E6) contains precisely the essentially unary operations which after
deletion of all dummy variables are injective.

Theorem 91. Let Γ be a reduct of G. Then either one of the relations E6, H1, H ′1, H2, or
H ′2 has a primitive positive definition in Γ, or Γ has a canonical polymorphism of one of the
following 17 types.

(1) A constant operation.
(2) A balanced binary injection of type max.
(3) A balanced binary injection of type min.
(4) An E-dominated binary injection of type max.
(5) An N -dominated binary injection of type min.
(6) A ternary injection of type majority which is hyperplanely balanced and of type pro-

jection.
(7) A ternary injection of type majority which is hyperplanely E-constant.
(8) A ternary injection of type majority which is hyperplanely N -constant.
(9) A ternary injection of type majority which is hyperplanely of type max and E-dominated.

(10) A ternary injection of type majority which is hyperplanely of type min and N -dominated.
(11) A ternary injection of type minority which is hyperplanely balanced and of type pro-

jection.
(12) A ternary injection of type minority which is hyperplanely of type projection and E-

dominated.
(13) A ternary injection of type minority which is hyperplanely of type projection and N -

dominated.
(14) A ternary injection of type minority which is hyperplanely balanced of type xnor.
(15) A ternary injection of type minority which is hyperplanely balanced of type xor.
(16) A binary injection which is E-constant.
(17) A binary injection which is N -constant.

Proof. Assume that none of the relations E6, H1, H ′1, H2, or H ′2 has a primitive positive
definition in Γ. Then Γ has a polymorphism which violates E6; this polymorphism must be
essential. By Lemma 5.3.10 in [2], Γ also has a binary essential polymorphism f .

We apply Proposition 9. There is nothing to show when the first case of that proposition
holds, i.e., when Γ has a constant endomorphism.

Assume the second case holds, i.e., Γ has the endomorphism eE or eN ; without loss of
generality, we consider the case where eE preserves Γ. Then consider the structure ∆ induced
in Γ on the image eE [V ]. This structure ∆ is invariant under all permutations of its domain,
and hence is first-order definable in (eE [V ]; =). It follows from the results in [6] that it
either has a constant polymorphism, or a binary injection, or all polymorphisms of ∆ are
essentially unary. The structure ∆ cannot have a constant endomorphism as otherwise also
Γ has a constant polymorphism by composing the constant of ∆ with eE . We now show that
∆ has an essential operation. Suppose that f(a, a) = f(a, b) for all a, b ∈ V with E(a, b).
We claim that f(u, u) = f(u, v) for every u, v ∈ V . To see this, let w ∈ V be such that
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Binary injection type p1 Type majority Type minority
Balanced Hp. balanced, type p1 Hp. balanced, type p1
E-dominated Hp. E-constant Hp. type p1, E-dominated
N -dominated Hp. N -constant Hp. type p1, N -dominated
Balanced in 1st, E-dom. in 2nd arg. Hp. type max, E-dom. Hp. type xnor, balanced.
Balanced in 1st, N -dom. in 2nd arg. Hp. type min, N -dom. Hp. type xor, balanced.

Figure 3. Minimal tractable canonical functions of type majority / minority
and their corresponding canonical binary injections of type projection.

E(u,w) and E(v, w). Then f(u, u) = f(u,w) = f(u, v), as required. It follows that f does
not depend on its first variable, a contradiction. Hence, there exist a, b ∈ V such that E(a, b)
and f(a, a) 6= f(a, b). Similarly, there exist c, d ∈ V such that E(c, d) and f(c, c) 6= f(d, c).
Let T be an infinite clique adjacent to a, b, c, d. Then f is either essential on T ∪ {a, b} or on
T∪{c, d}, both cliques. Suppose without loss of generality that f is essential on C = T∪{a, b}.
Since all operations with the same behavior as eE generate each other, we can also assume
that the image of eE is C. Then the restriction f ′ of (x1, x2) 7→ eE(f(x1, x2)) to eE [V ] is an
essential polymorphism of ∆. Hence, the above-mentioned result from [6] implies that ∆ has
a binary injective polymorphism h′. Then h(x, y) := h′(eE(x), eE(y)) is a polymorphism of
Γ. But h is a binary canonical injection which is E-constant, and so Γ has a polymorphism
from Item 16 of our list. The argument when Γ is preserved by eN is similar, with Item 17
instead of Item 16.

It remains to discuss the last four cases of Proposition 8. Consider the very last case, i.e.,
where the endomorphisms of Γ are generated by Aut(G). Then Theorem 20 applies, and
recall that we assume that H1 has no primitive positive definition in Γ, excluding the first
case of that theorem. If Γ has a binary canonical injective polymorphism of type max or
min, then by Proposition 86 one of the operations from Item 2 to 5 applies. Otherwise, Γ
has a ternary injective polymorphism t of type minority or majority, and one of the binary
canonical injective polymorphisms of type projection listed in Theorem 20 – denote it by p.
Set s(x, y, z) := t(p(x, y), p(y, z), p(z, x)) and w(x, y, z) := s(p(x, y), p(y, z), p(z, x)). Then the
function w has one of the behaviors that describe functions from Items 6 to 15 – which of
the behaviors depends on the precise behavior of p, and is shown in Figure 3. We leave the
verification to the reader.

When the endomorphisms of Γ are generated by the function − : V → V , then we may
refer to Theorem 44, which brings us back to the preceding case. Similarly, when the endo-
morphisms of Γ are generated by sw or by {−, sw}, then we may refer to Theorems 48 and 66,
respectively, concluding the proof. �

The following is an operational tractability criterion for reducts of G.

Corollary 92. Let Γ be a reduct of G with finite relational signature. Then:

• either Γ has a canonical polymorphism of one of the 17 types listed in Theorem 91,
and CSP(Γ) is tractable, or
• one of the relations E6, H1, H ′1, H2, H ′2 has a primitive positive definition in Γ, and

CSP(Γ) is NP-complete.

Proof. First suppose that one of the relationsE6, H1, H ′1, H2, H ′2 has a primitive positive
definition in Γ. In the case of H1, NP-hardness of CSP(Γ) follows from Proposition 21, in
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the case of H ′1 from Proposition 45, in the case of H2 from Proposition 49, in the case of H ′2
from Proposition 65, and in the case of E6, NP-hardness of CSP(Γ) follows from [6].

Otherwise, by Theorem 91 the reduct Γ has a polymorphism of one of 17 described types,
and we have to prove that CSP(Γ) is in P. In Item 1, that is if Γ is preserved by a constant
polymorphism, then CSP(Γ) is trivially tractable as already stated in Proposition 8. In Item 2
to 5, CSP(Γ) is tractable by Proposition 88. If Γ is preserved by a function of type majority
or minority (Item 6 to 15) then CSP(Γ) is tractable by Propositions 67, 75 and 82. In those
cases, certain binary canonical injections of type projection are required – these are obtained
by identifying the first two variables of the function of type majority / minority, and possibly
exchanging the two arguments – Figure 3 shows which function of type majority / minority
yields which type of binary injection. We leave the verification to the reader.

Finally, suppose that Γ is preserved by an operation f which is an E-constant binary in-
jection from Item 16. Then g(x) := f(x, x) is a homomorphism from Γ to the structure ∆
induced by the image g[V ] in Γ. This structure ∆ is invariant under all permutations of its
domain, and hence is first-order definable in (g[V ]; =); such structures definable by equality
only have been called equality constraint languages in [6], and their computational complexity
has been classified. The structure ∆ has a binary injection among its polymorphisms, namely,
the restriction of f to ∆. It then follows from the results in [6] that CSP(∆) is tractable.
Hence, by Proposition 6 CSP(Γ) tractable as well, since Γ and ∆ are homomorphically equiv-
alent. �

Clearly, if we add relations to a reduct Γ, then the CSP of the structure thus obtained is
computationally at least as complex as the CSP of Γ. On the other hand, by Lemma 3, adding
relations with a primitive positive definition to a reduct does not increase the computational
complexity of the corresponding CSP more than polynomially. Therefore, it makes sense to
call a reduct primitive positive closed if it contains all relations that are primitive positive
definable from it, and work with such reducts. Observe that primitive positive closed reducts
will have infinitely many relations, and hence do not define a CSP; however, as we have
already discussed in Section 3, it is convenient to consider a primitive positive closed reduct
Γ tractable if and only if every reduct which has finitely many relations, all taken from Γ, has
a tractable CSP.

The primitive positive closed reducts of G form a complete lattice, in which the meet of
an arbitrary set S of reducts is their intersection, i.e., the reduct which has precisely those
relations that are relations of all reducts in S. Call a primitive positive closed reduct maximal
tractable if it is tractable and any extension of it by relations that are first-order definable
in G is not tractable anymore. Under the assumption that P does not equal NP, we will
now list the maximal tractable reducts of G; there are 17 of them. Since any chain C of
tractable elements of the lattice of primitive positive closed reducts is bounded from above
by a tractable element (namely, by the reduct which has all relations of all members of C), it
then follows from Zorn’s lemma that a reduct of G is tractable if and only if its relations are
contained in the relations of one of the reducts of our list.

Recall the notion of a clone from Section 3. It follows from Theorem 4 and Proposition 5
that the lattice of primitive positive closed reducts of G and the lattice of locally closed
clones containing Aut(G) are antiisomorphic via the mappings Γ 7→ Pol(Γ) (for reducts Γ)
and C 7→ Inv(C) (for clones C). We refer to the introduction of [4] for a detailed exposition of
this well-known connection. Therefore, the maximal tractable reducts correspond to minimal
tractable clones, which are precisely the clones of the form Pol(Γ) for a maximal tractable
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reduct. We can use Corollary 92 to determine the minimal tractable clones; the maximal
tractable reducts then are those with relations Inv(C) for a minimal tractable clone C.

Corollary 93. Assume P 6= NP. There are 17 minimal tractable clones that contain Aut(G);
equivalently, there are 17 maximal tractable reducts of G.

Proof. By Corollary 92 and the previous discussion, every minimal tractable clone that con-
tains Aut(G) must contain an operation from one of the 17 types of operations listed in
Theorem 91. Also recall that each operation of one of those 17 types generates a clone that
contains every other operation with the same type. It therefore suffices to verify that all of
these 17 clones are incomparable (i.e., no clone of the list contains another clone of the list),
and hence that the clones in our list are indeed minimal.

This task is automatically verifiable: all functions in a clone generated by a set of canonical
functions from a finite power of G to G are canonical – this can be shown by a straightforward
induction over terms, since type conditions propagate through composition. Given a finite
set F of canonical functions in form of their behaviors, for fixed n ≥ 1 we can calculate all
behaviors of the n-ary functions generated by F by composing the behaviors in all possible
ways until we do not obtain any new behaviors. By this method, an algorithm can check that
indeed, the behaviors of the ternary functions of each of the clones in our list are distinct. �

Figure 4 shows the border between the clones of reducts with hard, and those with tractable
CSP. The picture contains all minimal tractable clones as well as all ‘maximal hard clones’,
plus some other clones that are of interest in this context. Lines between the circles that
symbolize clones indicate containment (however, we do not mean to imply that there are no
other clones between them which are not shown in the picture). Clones are symbolized with
a double border when they have a dual clone (generated by the dual function in the sense
of Definition 23, whose behavior is obtained by exchanging E with N , max with min, and
xnor with xor). Of two dual clones, only one representative (the one which has E and max
in its definition) is included in the picture. The numbers of the minimal tractable clones
refer to the numbers in Theorem 91. “E-semidominated” refers to “balanced in the first and
E-dominated in the second argument”.

We conclude by giving the argument for the decidability claim of Theorem 1.

Proposition 94. There is an algorithm which given a finite set Ψ of graph formulas decides
whether or not the problem Graph-SAT(Ψ) is tractable.

Proof. By Corollary 92, the algorithm only has to check whether one of the canonical functions
in Theorem 91 preserves all formulas ψ in Ψ. To do so it applies the canonical operation to
orbit representatives from tuples satisfying ψ in all possible ways, and checks whether the
result satisfies ψ, too. �

We remark that it also follows from the more recent and more general result in [12] that
it is decidable whether or not one of the relations in Corollary 92 has a primitive positive
definition from a given finite language reduct Γ of G (of which the relations are given as graph
formulas). This again yields Proposition 94.

Observe that the algorithm in the proof of Proposition 94 even decides tractability of
Graph-SAT(Ψ) in polynomial time if the formulas ψ in Ψ are given as follows: if R is the,
say, k-ary relation defined by ψ in G, then for every orbit of k-tuples in G that is contained
in R the representation of ψ has a k-tuple representing this orbit (with the information which
relations E, N , and = hold on the tuple). Now since the operations the algorithm has to



48 MANUEL BODIRSKY AND MICHAEL PINSKER

balanced 
max

sw

constant

eE

E-
constant

NP-complete

in P

-

E-dom 
max

E-dom 
p1 balanced 

p1 E-semi-
dom p1

majority
hp balanced 

p1

minority
hp balanced 

p1

majority
hp E-

constant

minority
hp xnor E-

dom

majority
hp E-dom 

max

minority 
hp E-dom p1

Pol(H1)

Pol(H2)

Pol(H'1)

Pol(E6)

12,13:

14,15:
6:

7,8:

11:
9,10:

16,17:

2,3:

1:

4,5:

Pol(H'2)

Figure 4. The border: Minimal tractable and maximal hard clones contain-
ing Aut(G).

consider are at most ternary, the number of possibilities for applying a canonical function to
orbit representatives is at most cubic in the number of orbits satisfying ψ, which equals the
representation size of ψ under this assumption.
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