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Abstract. A partial order is called semilinear iff the upper bounds of each element are
linearly ordered and any two elements have a common upper bound. There exists, up
to isomorphism, a unique countable semilinear order which is dense, unbounded, binary
branching, and without joins, which we denote by (S2;≤). We study the reducts of (S2;≤),
that is, the relational structures with domain S2, all of whose relations are first-order definable
in (S2;≤). Our main result is a classification of the model-complete cores of the reducts of S2.
From this, we also obtain a classification of reducts up to first-order interdefinability, which is
equivalent to a classification of all closed permutation groups that contain the automorphism
group of (S2;≤).

1. Introduction

A partial order (P ;≤) is called semilinear iff for all a, b ∈ P there exists c ∈ P such that
a ≤ c and b ≤ c, and for every a ∈ P the set {b ∈ P : a ≤ b} is linearly ordered, that
is, contains no incomparable pair of elements. Finite semilinear orders are closely related
to rooted trees: the transitive closure of a tree (viewed as a directed graph with the edges
oriented towards the root) is a semilinear order, and the transitive reduction of any finite
semilinear order is a rooted tree. We say that a semilinear order (P ;≤) is

• dense iff for all x, y ∈ P such that x < y there exists z ∈ P such that x < z < y (we
write x < y for (x ≤ y ∧ x 6= y));
• unbounded iff for every x ∈ P there are y, z ∈ P such that y < x < z;
• binary branching iff a) below every element there are two incomparable elements, and

b) for any three incomparable elements of P there is an element in P that is larger
than two out of the three, and incomparable to the third;
• without joins iff for all x, y, z ∈ P with x, y ≤ z and x, y incomparable, there exists a
u ∈ P such that x, y ≤ u and u < z.

It can be shown by a straightforward back-and-forth argument that all countable, binary
branching, dense, and unbounded semilinear orders without joins are isomorphic, and a semi-
linear order with these properties exists; we denote it by (S2;≤). Since all the defining proper-
ties of (S2;≤) can be expressed by first-order formulas, it follows that (S2;≤) is ω-categorical :
it is, up to isomorphism, the unique countable model of its first-order theory. Moreover, it
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is not hard to see that (S2;≤) is universal in the sense that all countable semilinear orders
embed into (S2;≤).

The structure (S2;≤) plays an important role in the study of a natural class of constraint
satisfaction problems (CSPs) in theoretical computer science. CSPs from this class have been
studied in artificial intelligence for qualitative reasoning about branching time [Due05, Hir96,
BJ03], and, independently, in computational linguistics [Cor94, BK02] under the name tree
description or dominance constraints. Our results have applications in this context which
will be described in Section 5.

A reduct of a relational structure ∆ is a relational structure Γ with the same domain as
∆ such that every relation of Γ has a first-order definition over ∆ without parameters. All
reducts of a countable ω-categorical structure are again ω-categorical [Hod93]. In this article
we study the reducts of (S2;≤). Two structures Γ and Γ′ are called (first-order) interdefinable
when Γ is a reduct of Γ′, and Γ′ is a reduct of Γ. We show that the reducts Γ of (S2;≤) fall
into three equivalence classes with respect to interdefinability: either Γ is interdefinable with
(S2; =), with (S2;≤), or with (S2;B), where B is the ternary Betweenness relation. The latter
relation is defined by

B(x, y, z) ⇔ (x < y < z) ∨ (z < y < x) ∨ (x < y ∧ y ⊥ z) ∨ (z < y ∧ y ⊥ x)

where x ⊥ y is a shortcut for ¬(x ≤ y) ∧ ¬(y ≤ x), that is, x ⊥ y holds iff x and y are
incomparable by ≤.

We also classify the model-complete cores of the reducts of (S2;≤). A structure Γ is
called model-complete iff every embedding between models of the first-order theory of Γ
preserves all first-order formulas. A structure ∆ is a core iff all endomorphisms of ∆ are
embeddings. It is known that every ω-categorical structure is homomorphically equivalent
to a model-complete core ∆ (that is, there is a homomorphism from Γ to ∆ and vice versa;
see [Bod07, BHM10]). The structure ∆ is unique up to isomorphism, ω-categorical, and
called the model-complete core of Γ. The concept of model-complete cores is important for
the aforementioned applications in constraint satisfaction, and implicitly used in complete
complexity classifications for the CSPs of reducts of (Q;<) and the CSPs of reducts of the
random graph [BK09, BP11b]; also see [Bod12]. We show that for every reduct Γ of (S2;≤),
the model-complete core of Γ is interdefinable with precisely one out of a list of ten structures
(Corollary 2.2).

There are alternative formulations of our results in the language of permutation groups and
transformation monoids, which also plays an important role in the proofs. By the theorem of
Ryll-Nardzewski, two ω-categorical structures are first-order interdefinable if and only if they
have the same automorphisms. Our result about the reducts of (S2;≤) up to first-order inter-
definability is equivalent to the statement that there are precisely three permutation groups
that contain the automorphism group of (S2;≤) and that are closed in the full symmetric
group Sym(S2) with respect to the topology of pointwise convergence, i.e., the product topol-
ogy on (S2)S2 where S2 is taken to be discrete. The link to transformation monoids comes from
the fact that a countable ω-categorical structure Γ is model-complete if and only if Aut(Γ)

is dense in the monoid Emb(Γ) of self-embeddings of Γ, i.e., the closure Aut(Γ) of Aut(Γ) in
(S2)S2 equals Emb(Γ) [BP14]. Moreover, Γ is a model-complete core if and only if Aut(Γ) is

dense in the endomorphism monoid End(Γ) of Γ, i.e., Aut(Γ) = End(Γ). (see [Bod12]).
The proof method for showing our results relies on an analysis of the endomorphism

monoids of reducts of (S2;≤). For that, we use a Ramsey-type statement for semilattices, due
to Leeb [Lee73] (cf. also [GR74]). By results from [BP11a, BPT13], that statement implies
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that if a reduct of (S2;≤) has an endomorphism that does not preserve a relation R, then it
also has an endomorphism that does not preserve R and that behaves canonically in a formal
sense defined in Section 3. Canonicity allows us to break the argument into finitely many
cases.

We also mention a conjecture of Thomas, which states that every countable homogeneous
structure ∆ with a finite relational signature has only finitely many reducts up to interde-
finability [Tho91]. By homogeneous we mean here that every isomorphism between finite
substructures of ∆ can be extended to an automorphism of ∆. Thomas’ conjecture has been
confirmed for various fundamental homogeneous structures, with particular activity in recent
years [Cam76, Tho91, Tho96, Ben97, Pon11, PPP+11, BPP13, LP14]. The structure (S2;≤)
is not homogeneous, but interdefinable with a homogeneous structure with a finite relational
signature, so it falls into the scope of Thomas’ conjecture.

To prove Thomas’ conjecture, it is necessary and sufficient to prove the following four
statements.

• All reducts Γ of ∆ are interdefinable with a structure that has a finite relational
signature (note that this is weaker than requiring that Γ is homogeneous in a finite
relational signature, which is false; see the discussion in [Tho91]).
• For every reduct Γ of ∆ there are finitely many closed permutation groups that contain

Aut(Γ) and that are inclusion-wise minimal with this property.
• There are no infinite descending chains of closed permutation groups that contain

Aut(∆).
• There are no infinite ascending chains of closed permutation groups that contain

Aut(∆).

All these four steps are open. The step that potentially might be attacked in general with the
method we use here is step number two. What can be shown with this method is that there are
finitely many minimal closed transformation monoids M that contain End(∆) (see [BP11a]);
assuming step one, this even holds for all reducts Γ of ∆. The difficulty in proving step
number two is precisely the transfer from the existence of certain functions in End(Γ) back
to the automorphisms of Γ.

In this context, the structure (S2;≤) is particularly interesting, for the following reason.
For all homogeneous structures for which complete reduct classifications are known, such as
(Q;<) or the random graph, all reducts turn out to be model-complete (see the discussion
in [BP11a]). We have already mentioned above that an ω-categorical structure is model-
complete if and only if the automorphisms of the structure are dense in the self-embeddings.
Therefore, it is not surprising that for model-complete reducts the transfer from results about
the endomorphism monoid back to the automorphism group turns out to be feasible. The
structure (S2;≤), in contrast, has reducts that are not model-complete. Nonetheless, we
manage to derive a classification of the automorphism groups of reducts based on our results
for self-embeddings of reducts. Hence, the classification of the reducts of (S2;≤) is a case study
that provides interesting examples for the approach to Thomas’ conjecture that is based on
canonical functions and Ramsey theory.

2. Main results

To state our classification result, we need to introduce some homogeneous structures that
appear in it. We have mentioned that (S2;≤) is not homogeneous, but interdefinable with a
homogeneous structure with finite relational signature. Indeed, we can add a single ternary
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x y z

Figure 1. Illustration of C(z, xy).

first-order definable relation C to (S2;≤) and obtain a homogeneous structure: we define C
by

C(z, xy) ⇔ x ⊥ y ∧ ∃u(x < u ∧ y < u ∧ u ⊥ z) .
See Figure 1.

We omit the comma between the last two arguments of C on purpose, since it increases
readability, pointing out the symmetry ∀x, y, z (C(z, xy) ⇔ C(z, yx)). By a back-and-forth
argument one can show that (S2;≤, C) is homogeneous, and clearly (S2;≤) and (S2;≤, C) are
interdefinable. Note that the property that (S2;≤) is binary branching can be expressed by
requiring that all pairwise incomparable x, y, z ∈ S2 satisfy

C(z, xy) ∨ C(x, yz) ∨ C(y, xz) .

We write (L2;C) for the structure induced in (S2;C) by any maximal antichain of (S2;≤);
the reducts of (L2;C), the homogeneous binary branching C-relation on leaves were classified
in [BJP14]. We mention in passing that the structure (L2;C ′), where C ′(x, y, z)⇔

(
C(x, yz)∨

(y = z ∧ x 6= y)
)
, is a so-called C-relation; we refer to [AN98] for the definition since we will

not make further use of it.
It is known that two ω-categorical structures have the same endomorphisms if and only if

they are existentially positively interdefinable, that is, if and only if each relation in one of
the structures can be defined by an existential positive formula in the other structure [BP14].
We can now state one of our main results.

Theorem 2.1. Let Γ be a reduct of (S2;≤). Then at least one of the following cases applies.

(1) End(Γ) contains a function whose range induces a chain in (S2;≤), and Γ is homo-
morphically equivalent to a reduct of the order of the rationals (Q;<).

(2) End(Γ) contains a function whose range induces an antichain in (S2;≤), and Γ is
homomorphically equivalent to a reduct of (L2;C).

(3) End(Γ) equals Aut(S2;B); equivalently, Γ is existentially positively interdefinable with
(S2;B).

(4) End(Γ) equals Aut(S2;≤); equivalently, Γ is existentially positively interdefinable with
(S2;<,⊥).

The reducts of (L2;C) have been classified in [BJP14]. Each reduct of (L2;C) is interde-
finable with either

• (L2;C) itself,
• (L2;D) whereD(x, y, u, v) has the first-order definition (C(u, xy)∧C(v, xy))∨(C(x, uv)∧
C(y, uv)) over (L2;C), or
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• (L2; =).

.
The reducts of (Q;<) have been classified in [Cam76]. To describe them, it is convenient

to write −−−−−→x1 · · ·xn whenever x1, . . . , xn ∈ Q are such that x1 < · · · < xn. Each reduct of (Q;<)
is interdefinable with either

• the dense linear order (Q;<) itself,
• the structure (Q; Betw), where Betw is the ternary relation{

(x, y, z) ∈ Q3 : −−→xyz ∨ −−→zyx
}
,

• the structure (Q; Cyc), where Cyc is the ternary relation{
(x, y, z) : −−→xyz ∨ −−→yzx ∨ −−→zxy

}
,

• the structure (Q; Sep), where Sep is the 4-ary relation{
(x1, y1, x2, y2) : −−−−−−→x1x2y1y2 ∨ −−−−−−→x1y2y1x2 ∨ −−−−−−→y1x2x1y2 ∨ −−−−−−→y1y2x1x2

∨ −−−−−−→x2x1y2y1 ∨ −−−−−−→x2y1y2x1 ∨ −−−−−−→y2x1x2y1 ∨ −−−−−−→y2y1x2x1

}
, or

• the structure (Q; =).

Corollary 2.2. Let Γ be a reduct of (S2;≤). Then its model-complete core has only one ele-
ment, or it is isomorphic to a structure which is interdefinable with either (S2;<,⊥), (S2;B),
(L2;C), (L2;D), (Q;<), (Q; Betw), (Q; Cyc), (Q; Sep), or (Q; 6=).

Theorem 2.3. Let Γ be a reduct of (S2;≤). Then Γ is first-order interdefinable with either
(S2;≤), (S2;B), or (S2; =). Equivalently, Aut(Γ) equals either Aut(S2;≤), Aut(S2;B), or
Aut(S2; =).

The permutation groups on S2 that are closed within Sym(S2) are precisely the auto-
morphism groups of structures with domain S2. Moreover, the closed permutation groups
on S2 that contain Aut(S2;≤) are precisely the automorphism groups of reducts of (S2;≤).
Therefore, the following is an immediate consequence of Theorem 2.3.

Corollary 2.4. The closed subgroups of Sym(S2) which contain Aut(S2;≤) are precisely
Aut(S2;≤), Aut(S2;B), and Aut(S2; =).

3. Preliminaries

3.1. The convex linear Ramsey extension. Let (S;≤) be a semilinear order. A linear
order ≺ on S is called a convex linear extension of ≤ iff the following three conditions hold;
here, the relations <, B, and C are defined over (S;≤) as they were defined over (S2;≤).

• ≺ is an extension, i.e., x < y implies x ≺ y for all x, y ∈ S;
• for all x, y, z ∈ S, if B(x, y, z), then y also lies between x and z with respect to ≺,

i.e., (x ≺ y ≺ z) ∨ (z ≺ y ≺ x);
• for all x, y, z ∈ S we have that C(x, yz) implies that x cannot lie between y and z

with respect to ≺, i.e., (x ≺ y ∧ x ≺ z) ∨ (y ≺ x ∧ z ≺ x).

For finite semilinear orders (S;≤), the convex linear extensions are precisely those linear
orders obtained by first defining ≺ arbitrarily on the largest element of (S;≤), then ordering
the elements just below it, and so on. From this, ≺ is uniquely determined by the above
convexity extension rules.
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Using Fräıssé’s theorem [Hod93] one can show that in the case of (S2;≤), there exists a
convex linear extension ≺ of ≤ such that (S2;≤, C,≺) is homogeneous and such that (S2;≤,≺)
is universal in the sense that it contains all isomorphism types of convex linear extensions of
finite semilinear orders; this extension is unique in the sense that all expansions of (S2;≤, C)
by a convex linear extension with the above properties are isomorphic. We henceforth fix any
such extension ≺. The structure (S2;≤, C,≺) is combinatorially well-behaved in the following

sense. For structures Σ,Π in the same language, we write
(

Σ
Π

)
for the set of all substructures

of Σ which are isomorphic to Π.

Definition 3.1. A countable relational structure ∆ is called a Ramsey structure iff for all
finite substructures Ω of ∆, all substructures Γ of Ω, and all χ :

(
∆
Γ

)
→ 2 there exists Ω′ ∈

(
∆
Ω

)
such that the restriction of χ to

(
Ω′

Γ

)
is constant.

The following theorem is a special case of a Ramsey-type statement for semilinearly ordered
semilattices due to Leeb [Lee73] (cf. also [GR74]). A semilinearly ordered semilattice (S;∨,≤)
is a semilinear order (S;≤) which is closed under the binary function ∨, the join function,
satisfying for all x and y, that x ∨ y is the least upper bound of {x, y} with respect to ≤.
If ≺ is a convex linear extension of ≤, then (S;∨,≤,≺) is a convex linear extension of the
semilinearly ordered semilattice (S;∨,≤). By Fräıssé’s Theorem [Hod93] and a back and
forth argument, there is a countably infinite homogeneous structure (T;∨,≤,≺) which is the
Fräıssé limit of the class of finite, semilinearly ordered semilattices.

Theorem 3.2 (Leeb). (T;∨,≤,≺) is a Ramsey structure.

Corollary 3.3. (S2;≤, C,≺) is a Ramsey structure.

Proof. Take a finite substructure Ω of (S2;≤, C,≺) and a substructure Γ of Ω and let χ :
(S2

Γ

)
→

2 be a 2-colouring of
(S2

Γ

)
. Let Γ̂ be the finite substructure of (T;∨,≤,≺) obtained from Γ by

adding a new point s∨ t for every incomparable pair in Γ which is related to all other points
subject to satisfying C(x; yz) → (x ∨ y) = (x ∨ z) > (y ∨ z), that ∨ is a least upper bound

function with respect to ≤ and ≺ a convex linear extension. Note that Γ̂ is the disjoint union
Γ∪{s∨ t : s, t ∈ Γ̂ and s ⊥ t}. We call Γ̂ the join completion of Γ. Similarly let Ω̂ be the join

completion of Ω and for any Γ′ ∈
(S2

Γ

)
let Γ̂′ be the join completion of Γ′. Note that both Γ̂

and Ω̂ are binary branching. Let χ̂ :
(T

Γ̂

)
→ 2 be any colouring of

(T
Γ̂

)
such that χ̂(Γ̂′) = χ(Γ′)

for every Γ′ ∈
(S2

Γ

)
. As (T;∨,≤,≺) is a Ramsey structure by Leeb’s Theorem 3.2, there is an

Ω̂′ ∈
(T

Ω̂

)
such that χ̂ restricted to Ω̂′ is constant. Let Ω′ be the {≤, C,≺}–structure induced

on Ω̂′ \ {s ∨ t : s, t ∈ Ω̂′ and s ⊥ t}. The set {s ∨ t : s, t ∈ Ω̂′ and s ⊥ t} and the relation

C from Ω′ are definable in Ω̂′. Note that Ω′ ∈
(S2

Ω

)
as any isomorphism θ̂ : Ω̂ → Ω̂′ restricts

to an isomorphism θ : Ω → Ω′. In particular Ω′ is binary branching and it is a substructure

of (S2;≤, C,≺). Furthermore, any Γ′ ∈
(

Ω′

Γ

)
can be obtained similarly from an appropriate

Γ̂′ ∈
(Ω̂′

Γ̂

)
, so for the colourings we have χ(Γ′) = χ̂(Γ̂′). We conclude that, as the restriction

of χ̂ to Ω̂′ is constant, so is the restriction of χ to Ω′. �

3.2. Canonical functions. The fact that (S2;≤, C,≺) is a relational homogeneous Ramsey
structure implies that endomorphism monoids of reducts of this structure, and hence also of
(S2;≤, C), can be distinguished by so-called canonical functions.

Definition 3.4. Let ∆ be a structure, and let a be an n-tuple of elements in ∆. The type of
a in ∆ is the set of first-order formulas with free variables x1, . . . , xn that hold for a in ∆.
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Definition 3.5. Let ∆ and Γ be structures. A type condition between ∆ and Γ is a pair
(t, s), such that t is the type on an n-tuple in ∆ and s is the type of an n-tuple in Γ, for some
n ≥ 1. A function f : ∆→ Γ satisfies a type condition (t, s) iff the type of (f(a1), . . . , f(an))
in Γ equals s for all n-tuples (a1, . . . , an) in ∆ of type t.

A behaviour is a set of type conditions between ∆ and Γ. We say that a function f : ∆→ Γ
has a given behaviour iff it satisfies all of its type conditions.

Definition 3.6. Let ∆ and Γ be structures. A function f : ∆→ Γ is canonical iff for every
type t of an n-tuple in ∆ there is a type s of an n-tuple in Γ such that f satisfies the type
condition (t, s). That is, canonical functions send n-tuples of the same type to n-tuples of
the same type, for all n ≥ 1.

Note that any canonical function induces a function from the types over ∆ to the types
over Γ.

Definition 3.7. Let F ⊆ (S2)S2 . We say that F generates a function g : S2 → S2 iff g is
contained in the smallest closed submonoid of (S2)S2 which contains F . This is the case iff
for every finite subset A ⊆ S2 there exists an n ≥ 1 and f1, . . . , fn ∈ F such that f1 ◦ · · · ◦ fn
agrees with g on A.

Our proof relies on the following proposition which is a consequence of [BP11a, BPT13]
and the fact that (S2;≤, C,≺) is a homogeneous Ramsey structure. For a structure ∆ and
elements c1, . . . , cn in that structure, let (∆, c1, . . . , cn) denote the structure obtained from ∆
by adding the constants c1, . . . , cn to the language.

Proposition 3.8. Let f : S2 → S2 be any injective function, and let c1, . . . , cn ∈ S2. Then
{f} ∪Aut(S2;≤,≺) generates an injective function g : S2 → S2 such that

• g agrees with f on {c1, . . . , cn};
• g is canonical as a function from (S2;≤, C,≺, c1, . . . , cn) to (S2;≤, C,≺).

4. The Proof

4.1. Rerootings and betweenness. We start by examining what the self-embeddings, au-
tomorphisms, and endomorphisms of (S2;B) look like.

Definition 4.1. A rerooting of (S2;<) is an injective function f : S2 → S2 for which there
exists a set S ⊆ S2 such that

• S contains no incomparable elements and is upward closed with respect to <;
• f reverses the order < on S;
• f preserves < and ⊥ on S2 \ S;
• whenever x ∈ S2 \ S and y ∈ S, then x < y implies f(x) ⊥ f(y) and x ⊥ y implies
f(x) < f(y).

We then say that f is a rerooting with respect to S.

It is not hard to see that whenever S ⊆ S2 is as above, then there is a rerooting with
respect to S. A rerooting with respect to S is a self-embedding of (S2;<) if and only if S is
empty, and the image of any rerooting with respect to S is isomorphic to (S2;<) if and only if
S is a maximal chain or empty. In particular, there exist rerootings which are permutations
of S2 and which are not self-embeddings of (S2;<).

Proposition 4.2. Emb(S2;B) consists precisely of the rerootings of (S2;<).
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Proof. It is easy to check that rerootings preserve B and its negation. Let f ∈ Emb(S2;B).
We first claim that either f ∈ Emb(S2;<), or there exist x, y ∈ S2 such that x < y and
f(x) > f(y). To see this, suppose first that f violates ⊥. Pick a, b ∈ S2 with a ⊥ b and
such that f(a) < f(b). There exists c ∈ S2 such that c > b and such that B(a, c, b). Since f
preserves B we then must have f(c) < f(b), and our claim follows. Now suppose f violates
<, and pick a, b ∈ S2 with a < b witnessing this. Then for any c ∈ S2 with c > b we have
f(c) < f(b), proving the claim.

Let S := {x ∈ S2 | ∃y ∈ S2(x < y ∧ f(y) < f(x))}. By the above, S is non-empty. Since
f preserves B, it follows easily that whenever x ∈ S, y ∈ S2 and x < y, then f(y) > f(x).
From this and again because f preserves B it follows that S is upward closed, i.e., if x ∈ S
and y ∈ S2 satisfy y > x, then y ∈ S. Hence, S cannot contain incomparable elements x, y,
as otherwise for any z ∈ S with x < z and y < z we would have f(x) > f(z) and f(y) > f(z),
and so f(x) and f(y) would have to be comparable. But then f would violate ¬B on {x, y, z}.

Consider a ∈ S2 \ S and b ∈ S with a < b. Pick c ∈ S with c > b. Then f(c) < f(b) and
B(a, b, c) imply that f(a) > f(b) or f(a) ⊥ f(b). The first case is impossible by the definition
of S, and so f(a) ⊥ f(b).

Next consider a ∈ S2 \ S and b ∈ S with a ⊥ b. Picking c ∈ S with B(a, c, b), we derive
that f(a) < f(b).

Let x, y ∈ S2 \ S with x < y. Pick z ∈ S such that y < z. Then B(f(x), f(y), f(z)),
f(x) ⊥ f(z) and f(y) ⊥ f(z) imply that f(x) < f(y).

Finally, given x, y ∈ S2 \S with x ⊥ y, we can pick z ∈ S such that x < z and y < z. Then
f(x) ⊥ f(z), f(y) ⊥ f(z), ¬B(f(x), f(y), f(z)), and ¬B(f(y), f(x), f(z)) together imply
f(x) ⊥ f(y). �

Corollary 4.3. Aut(S2;B) consists precisely of the surjective rerootings with respect to a
maximal chain or with respect to the empty set.

Corollary 4.4. Emb(S2;B) is generated by any of its functions which do not preserve <.

Proof. By homogeneity of (S2;≤, C) and topological closure. �

Proposition 4.5. Any function in (S2)S2 that preserves B is injective and preserves ¬B.

Consequently, End(S2;B) = Emb(S2;B) = Aut(S2;B).

Proof. The existential positive formula

(a = b) ∨ (b = c) ∨ (c = a) ∨ ∃x(B(a, x, b) ∧B(b, x, c))

is equivalent to ¬B(a, b, c). Therefore B and ¬B are existentially positively interdefinable,
and hence preserved by the same unary functions on S2 (cf. the discussion in the introduction).
Moreover, for all a, b ∈ S2 we have that a 6= b iff there exists c ∈ S2 such that B(a, b, c), so
inequality has an existential positive definition from B, and functions preserving B must be
injective. Hence, every endomorphism of (S2;B) is an embedding.

From Proposition 4.2 and 4.3 it follows that the restriction of any self-embedding of (S2;B)

to a finite subset of S2 extends to an automorphism, and hence Emb(S2;B) = Aut(S2;B). �

4.2. Ramsey-theoretic analysis.

4.2.1. Canonical functions without constants. Every canonical function f : (S2;≤, C,≺) →
(S2;≤, C,≺) induces a function on the 3-types of (S2;≤, C,≺). Our first lemma shows that
only few functions on those 3-types are induced by canonical functions, i.e., there are only
few behaviors of canonical functions.
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Definition 4.6. We call a function f : S2 → S2

• flat iff its image induces an antichain in (S2;≤);
• thin iff its image induces a chain in (S2;≤).

Lemma 4.7. Let f : (S2;≤, C,≺) → (S2;≤, C,≺) be an injective canonical function. Then
either f is flat, or f is thin, or f ∈ End(S2;<,⊥).

Proof. Let u1, u2, v1, v2 ∈ S2 be so that u1 < u2, v1 ⊥ v2, and v1 ≺ v2. If f(u1) ⊥ f(u2) and
f(v1) ⊥ f(v2), then f is flat by canonicity. If f(u1) 6⊥ f(u2) and f(v1) 6⊥ f(v2), then f is
thin. It remains to check the following cases.

Case 1: f(u1) ⊥ f(u2) and f(v1) < f(v2). Let x, y, z ∈ S2 be such that x < y, x ⊥ z,
y ⊥ z, z ≺ x, and z ≺ y. Then f(x) ⊥ f(y), f(x) > f(z), and f(y) > f(z), in contradiction
with the axioms of the semilinear order.

Case 2: f(u1) ⊥ f(u2) and f(v1) > f(v2). Let x, y, z ∈ S2 be such that x < y, x ⊥ z,
y ⊥ z, x ≺ z, and y ≺ z. Then f(x) ⊥ f(y), f(x) > f(z), and f(y) > f(z), in contradiction
with the axioms of the semilinear order.

Case 3: f(u1) < f(u2) and f(v1) ⊥ f(v2). Then f preserves < and ⊥.
Case 4: f(u1) > f(u2) and f(v1) ⊥ f(v2). Let x, y, z ∈ S2 such that x ⊥ y, x ≺ y, x < z,

and y < z. Then f(x) ⊥ f(y), f(x) > f(z), and f(y) > f(z), in contradiction with the
axioms of the semilinear order. �

4.2.2. Canonical functions with constants.

Lemma 4.8. Let f : S2 → S2 be a function. If f preserves incomparability but not compara-
bility in (S;≤), then {f} ∪Aut(S2;≤) generates a flat function. If f preserves comparability
but not incomparability in (S;≤), then {f} ∪Aut(S2;≤) generates a thin function.

Proof. We show the first statement; the proof of the second statement is analogous. We first
claim that for any finite set A ⊆ S2, f generates a function which sends A to an antichain.
To see this, let A be given, and pick a, b ∈ S2 such that a < b and f(a) ⊥ f(b). If A contains
elements u, v with u < v, then let α ∈ Aut(S2;≤) be so that α(u) = a and α(b) = v. The
function f ◦α sends A to a set which has less pairs (u, v) satisfying u < v than A. Repeating
this procedure on the image of A and so forth and composing functions we obtain a function
which sends A to an antichain. Now let {s0, s1, . . .} be an enumeration of S2, and pick for
every n ≥ 0 a function gn generated by {f} ∪ Aut(S2;≤) which sends {s0, . . . , sn} to an
antichain. Since (S;≤) is ω-categorical, by thinning out the sequence we may assume that
for all n ≥ 0 and all i, j ≥ n the type of the tuple (gi(s0), . . . , gi(sn)) equals the type of
(gj(s0), . . . , gj(sn)) in (S;≤). By composing with automorphisms of (S;≤) from the left, we
may even assume that these tuples are equal. But then the sequence (gn)n∈ω converges to a
flat function. �

Definition 4.9. When n ≥ 1 and R ⊆ Sn2 is an n-ary relation, then we say that R(X1, . . . , Xn)
holds for sets X1, . . . , Xn ⊆ S2 iff R(x1, . . . , xn) holds whenever xi ∈ Xi for all 1 ≤ i ≤ n. We
also use this notation when some of the Xi are elements of S2 rather than subsets, in which
case we treat them as singleton subsets.

Definition 4.10. For a ∈ S2, we set

• Ua
< := {p ∈ S2 | p < a};

• Ua
> := {p ∈ S2 | p > a};

• Ua
⊥,≺ := {p ∈ S2 | p ⊥ a ∧ p ≺ a};
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• Ua
⊥,� := {p ∈ S2 | p ⊥ a ∧ a ≺ p};

• Ua
⊥ := Ua

⊥,� ∪ Ua
⊥,≺.

The first four sets defined above are precisely the infinite orbits of Aut(S2;≤,≺, a).

Lemma 4.11. Let a ∈ S2, and let f : (S2;≤, C,≺, a)→ (S2;≤, C,≺) be an injective canonical
function. Then one of the following holds:

(1) {f} ∪Aut(S2;≤) generates a flat or a thin function;
(2) f ∈ End(S2;<,⊥);
(3) f�S2\{a} behaves like a rerooting function with respect to Ua

>, and f(a) 6< f [Ua
>].

Moreover, if f(a) 6> f [Ua
<] and f(a) 6> f [Ua

>], then {f}∪Aut(S2;≤) generates a flat or a thin
function.

Proof. The set Ua
< induces an isomorphic copy of (S2;≤, C,≺), and the restriction of f to

this copy is canonical. By Lemma 4.7 we may assume that f preserves < and ⊥ on Ua
< as

otherwise {f} ∪Aut(S2;≤) generates a flat or a thin function.
When u, v ∈ Ua

⊥,≺ satisfy u < v, then there exists a subset of Ua
⊥,≺ containing u and v

which induces an isomorphic copy of (S2;≤, C,≺). As above, we may assume that f preserves
< and ⊥ on this subset, and hence f(u) < f(v). If u, v ∈ Ua

⊥,≺ satisfy u ⊥ v, then there
exist subsets R,S of Ua

⊥,≺ containing u and v respectively such that both R and S induce

isomorphic copies of (S2;≤, C,≺) and such that for all r ∈ R and s ∈ S the type of (r, s)
equals the type of (u, v) in (S2;≤, C,≺). Assuming as above that f preserves < and ⊥ on
both copies, f(u) < f(v) would imply f [R] < f [S] and hence a contradiction with the axioms
of a semilinear order. Hence, we may assume that f preserves < and ⊥ on Ua

⊥,≺, and by a
similar argument also on Ua

⊥,�.
The sets Ua

⊥,≺, Ua
⊥,�, and Ua

< are pairwise incomparable, and the relation ⊥ between them
cannot be violated, as this would contradict the axioms of the semilinear order. Thus we
may assume that f preserves < and ⊥ on Ua

⊥ ∪ Ua
<. Moreover, for no p ∈ {a} ∪ Ua

> we have
f(p) < f [Ua

⊥,≺], f(p) < f [Ua
⊥,�], or f(p) < f [Ua

<], again by the properties of semilinear orders.
Assume that Ua

> is mapped to an antichain by f . Then canonicity of f implies that
f [Ua

>] ⊥ f [Ua
⊥ ∪ Ua

<], as all other possibilities are in contradiction with the axioms of the
semilinear order. In particular, f then preserves ⊥ on S2 \{a}. Given a finite A ⊆ S2 which is
not an antichain, there exists α ∈ Aut(S2;≤) such that α[A] ⊆ S2 \ {a}, and two comparable
points are mapped into Ua

> by α. Thus f ◦ α preserves ⊥ on A, and it maps at least one
comparable pair in A to an incomparable one. As in Lemma 4.8, we see that {f}∪Aut(S2;≤)
generates a flat function. So we may assume that the order on Ua

> is either preserved or
reversed by f . The rest of the proof is an analysis of the possible behaviours of f in these two
cases. In order to talk about the behaviour of f , we choose elements u1 ∈ Ua

⊥,≺, u2 ∈ Ua
⊥,�

and z1, z2 ∈ Ua
> such that z1 < z2, ui ⊥ z1, and ui < z2 for i ∈ {1, 2}.

Case 1: f preserves the order on Ua
>. If f(u1) < f(z1), then by transitivity of < and

canonicity of f we have that f [Ua
⊥,≺] < f [Ua

>]. Given a finite A ⊆ S2 which is not a chain,

there exists α ∈ Aut(S2;≤) such that α[A] ⊆ Ua
⊥,≺ ∪ Ua

> and such that α(x) ∈ Ua
⊥,≺ and

α(y) ∈ Ua
> for some elements x, y ∈ A with x ⊥ y. Thus f ◦ α preserves < on A, and it maps

at least one incomparable pair in A to a comparable one. As in Lemma 4.8, we conclude
that {f}∪Aut(S2;≤) generates a thin function. We can argue similarly when f(u2) < f(z1).
Thus we may assume that f(ui) ⊥ f(z1) for i ∈ {1, 2}. If f(ui) ⊥ f(z2) for some i ∈ {1, 2},
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then a similar argument shows that {f} ∪ Aut(S2;≤) generates a flat function. Hence, we
may assume that f(ui) < f(z2) for i ∈ {1, 2}, and so f preserves < and ⊥ on Ua

⊥ ∪ Ua
>.

Assume that f [Ua
<] ⊥ f [Ua

>]. Given a finite A ⊆ S2 which is not an antichain, there exists
α ∈ Aut(S2;≤) such that α[A] ⊆ S2 \ {a} and such that α(x) ∈ Ua

< and α(y) ∈ Ua
> for some

x, y ∈ A with x < y. Thus f ◦ α preserves ⊥ on A, and it maps at least one comparable pair
in A to an incomparable one. The proof of Lemma 4.8 shows that {f}∪Aut(S2;≤) generates
a flat function. So we may assume that f [Ua

<] < f [Ua
>], and consequently, f preserves < and

⊥ on S2 \ {a}.
If f(a) > f [Ua

>], then by transitivity of < we have f(a) > f [S2 \ {a}], and we can easily
show that {f} ∪Aut(S2;≤) generates a thin function. Similarly, if f(a) ⊥ f [Ua

>], then by the
axioms of the semilinear order we have f(a) ⊥ f [S2\{a}], and {f}∪Aut(S2;≤) generates a flat
function. Thus we may assume that f(a) < f [Ua

>]. If f(a) > f [Ua
⊥,≺] or f(a) > f [Ua

⊥,�], then

by transitivity of < we have f [Ua
⊥,≺] < f [Ua

>] or f [Ua
⊥,�] < f [Ua

>], a contradiction. Hence,

f(a) ⊥ f [Ua
⊥]. Finally, if f(a) ⊥ f [Ua

<], then {f}∪Aut(S2;≤) generates a flat function. Thus
we may assume that f(a) > f [Ua

<], and so f preserves < and ⊥, proving the lemma.
Case 2: f reverses the order on Ua

>. If f(u1) ⊥ f(z1), then by f(z2) < f(z1) and the
axioms of the semilinear order we have that f(u1) ⊥ f(z2). Moreover, f�Ua

⊥,≺∪U
a
>

preserves

⊥. Since the comparable elements u1, z2 are sent to incomparable ones, the standard iterative
argument shows that {f}∪Aut(S2;≤) generates a flat function. An analogous argument works
if f(u2) ⊥ f(z1). Thus we may assume that f(ui) < f(z1) for i ∈ {1, 2}. If f(ui) < f(z2)
for some i ∈ {1, 2}, then a similar argument shows that {f} ∪ Aut(S2;≤) generates a thin
function. Thus we may assume that f(ui) ⊥ f(z2) for i ∈ {1, 2}, and f�Ua

⊥∪U
a
>

behaves like a

rerooting.
Assume that f [Ua

<] < f [Ua
>]. Let A ⊆ S2 be finite. Pick a minimal element b ∈ A,

and let C ⊆ A be those elements c ∈ A with b ≤ c. Let α ∈ Aut(S2;≤) be such that
α(b) ∈ Ua

<, α[C \ {b}] ⊆ Ua
> and α[A \ C] ⊆ Ua

⊥. Then there exists β ∈ Aut(S2;≤) such
that β ◦ f ◦ α[C] ⊆ Ua

> and β ◦ f ◦ α[A \ C] ⊆ Ua
⊥. Let g := f ◦ β ◦ f ◦ α. Then g�A\{b}

preserves < and ⊥, and g(b) ≥ g[A]. By iterating such steps, A can be mapped to a chain.
Hence, as in Lemma 4.8, {f} ∪ Aut(S2;≤) generates a thin function. Thus we may assume
that f [Ua

<] ⊥ f [Ua
>]. By replacing Ua

< with {a} in this argument, one can show that if
f(a) < f [Ua

>], then {f} ∪ Aut(S2;≤) generates a thin function. Thus we may assume that
f(a) 6< f [Ua

>], and so Item (3) applies.
To show the second part of the lemma, suppose that f(a) 6> f [Ua

<] and f(a) 6> f [Ua
>]. Then

f violates <, thus Item (2) cannot hold for f . Hence, either {f} ∪ Aut(S2;≤) generates a
flat or a thin function, or the conditions in Item (3) hold for f . We assume the latter. In
particular, f(a) ⊥ f [Ua

⊥], by the axioms of the semilinear order, and hence f(a) ⊥ f [Ua
>].

Let A ⊆ S2 be finite such that A is not an antichain. Pick some x ∈ A with is maximal
in A with respect to ≤ and such that there exists y ∈ A with y < x. Let α ∈ Aut(S2;≤) be
such that α(x) = a. Then f ◦ α preserves ⊥ on A, and f(y) ⊥ f(x). Hence, iterating such
steps A can be mapped to an antichain, and {f} ∪Aut(S2;≤) generates a flat function. �

4.2.3. Applying canonicity.

Lemma 4.12. Let f : S2 → S2 be an injective function that violates <. Then either {f} ∪
Aut(S2;≤) generates a flat or a thin function, or {f} ∪Aut(S2;≤) generates End(S2;B).

Proof. If f preserves comparability and incomparability, then f cannot violate <. If f pre-
serves comparability and violates incomparability, then {f} ∪ Aut(S2;≤) generates a thin
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function by Lemma 4.8. Thus we may assume that f violates comparability. Let a, b ∈ S2

such that a < b and f(a) ⊥ f(b). According to Proposition 3.8, there exists a canonical
function g : (S2;≤, C,≺, a, b)→ (S2,≤, C,≺) that is generated by {f} ∪Aut(S2;≤) such that
g(a) ⊥ g(b). The set U b

< induces in (S2;≤, C,≺, a) a structure isomorphic to (S2;≤, C,≺, a),
and the restriction of g to this set is canonical. By Lemma 4.11 either {g} ∪ Aut(S2;≤)
generates a thin or a flat function, or a rerooting, or g preserves < and ⊥ on U b

<. We may
assume the latter. By a similar argument, either {g} ∪ Aut(S2;≤) generates a thin or a flat
function, or a rerooting, or g preserves < and ⊥ on Ua

<∪U b
⊥∪U b

>∪{b}. However, the latter is
impossible as it would imply that g(t) < g(a) and g(t) < g(b) for all t ∈ Ua

< while g(a) ⊥ g(b),
which is in contradiction with the axioms of the semilinear order. �

Lemma 4.13. Let f : S2 → S2 be an injective function that violates B. Then {f}∪Aut(S2;B)
generates a flat or a thin function.

Proof. Let a, b, c ∈ S2 be such that B(a, b, c) and ¬B(f(a), f(b), f(c)). Then it follows from
Corollary 4.4 that there exist α, β ∈ Aut(S2;B) such that α(a) < α(b) < α(c) and such
that {β(f(a)), β(f(b)), β(f(c))} induces an antichain. Replacing f by β ◦ f ◦ α−1, we may
assume that there are a, b, c ∈ S2 such that a < b < c and such that {f(a), f(b), f(c)}
induce an antichain. By Proposition 3.8, there exists a canonical function g : (S2;≤, C,≺
, a, b, c)→ (S2,≤, C) that is generated by {f}∪Aut(S2;≤) such that {g(a), g(b), g(c)} induces
an antichain.

By the axioms of the semilinear order, at most one y ∈ {g(a), g(b), g(c)} can satisfy y >
g[Ua

<] and at most one such element can satisfy y > g[U c
>]. Hence, there exists an x ∈ {a, b, c}

such that g(x) 6> g[Ua
<] and g(x) 6> g[U c

>]. The set X := Ua
< ∪ {x} ∪ U c

> ∪ U c
⊥ induces in

(S2;≤, C,≺) a structure isomorphic to (S2;≤, C,≺), and g�X is canonical as a function from
(S2;≤, C,≺, x) to (S2;≤, C,≺). According to the second part of Lemma 4.11, {g}∪Aut(S2;≤)
generates a flat or a thin function.

�

4.3. Endomorphisms and the proof of Theorem 2.1.

Proposition 4.14. Let Γ be a reduct of (S2;≤). Then one of the following holds.

(1) End(Γ) contains a flat or a thin function.

(2) End(Γ) = Aut(S2;≤).

(3) End(Γ) = Aut(S2;B).

Proof. Assume that there exist x, y ∈ S2 with x < y and f ∈ End(Γ) such that f(x) =
f(y). By collapsing comparable pairs one-by-one using f and automorphisms of (S2;≤), it
is possible to generate a flat function. Similarly, if there exist a pair of elements x ⊥ y
and f ∈ End(Γ) such that f(x) = f(y), then {f} ∪ Aut(S2;≤) generates a thin function.
Hence, we may assume that every endomorphism of Γ is injective. If End(Γ) preserves < and

⊥, then End(Γ) = Emb(S2;≤) = Aut(S2;≤). If End(Γ) preserves < and violates ⊥, then
End(Γ) contains a thin function. Thus we may assume that some f ∈ End(Γ) violates <.
By Lemma 4.12 either End(Γ) contains a flat or a thin function, or Emb(S2;B) ⊆ End(Γ).

Since Emb(S2;B) = Aut(S2;B), we may assume that Emb(S2;B) ( End(Γ), as otherwise
Item (1) or (3) holds. Hence, there exists a function f ∈ End(Γ) that violates either B or
¬B. By Proposition 4.5 f violates B, and then End(Γ) contains a flat or a thin function by
Lemma 4.13. �
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Lemma 4.15. Let Γ be a reduct of (S2;≤) which has a flat endomorphism. Then Γ is
homomorphically equivalent to a reduct of (L2;C).

Proof. Let f be that endomorphism. By Zorn’s lemma, there exists a maximal antichain
M in S2 that contains the image of f . By definition M induces in (S2;C) a structure Σ
which is isomorphic to (L2;C). The structure ∆ with domain M and all relations that are
restrictions of the relations of Γ to M is a reduct of Σ, as (S2;≤, C) has quantifier elimination.
The inclusion map of M into S2 is a homomorphism from ∆ to Γ, and the function f is a
homomorphism from Γ to ∆. �

Lemma 4.16. Let Γ be a reduct of (S2;≤) which has a thin endomorphism. Then Γ is
homomorphically equivalent to a reduct of the dense linear order.

Proof. Analogous to the proof of Lemma 4.15, using the obvious fact that maximal chains in
(S2;≤) are isomorphic to (Q;≤). �

Proof of Theorem 2.1. Follows directly from Propositions 4.5 and 4.14, Lemmas 4.15 and
4.16, and the easily verifiable fact that End(S2;<,⊥) = Aut(S2;≤). �

4.4. Embeddings and the proof of Theorem 2.3.

Lemma 4.17. Let Γ be a reduct of (S2;≤) with a thin self-embedding. Then Γ is isomorphic
to a reduct of (Q;<).

Proof. By Proposition 3.8 there exists a thin canonical function g : (S2;≤, C,≺) → (S2;≤
, C,≺) such that g ∈ Emb(Γ). There are four possible behaviours of g, as it can preserve or
reverse <, and independently, it can preserve or reverse ≺ on incomparable pairs. In all four
of these cases, the structure Σ induced by the image of f in (S2;≤) is isomorphic to (Q;≤).
The structure ∆ on this image whose relations are the restrictions of the relations of Γ to
f [S2] is a reduct of Σ, as (S2;≤, C) has quantifier elimination. The claim follows as g is an
isomorphism between Γ and ∆. �

Lemma 4.18. Let Γ be a reduct of (S2;≤) which is isomorphic to a reduct of (Q;<). Then
Γ is existentially interdefinable with (S2; =).

Proof. Pick any pairwise incomparable elements a1, . . . , a5 ∈ S2. Then there exist distinct
i, j ∈ {1, . . . , 5} and an automorphism of (S2;≤) which flips ai, aj and fixes the other three
elements. From Cameron’s classification of the reducts of (Q;<) ([Cam76], cf. the description
in Section 2) we know that the only automorphism group of such a reduct which can perform
this is the full symmetric group, since all other groups fix at most one or all of five elements
when they act on them. Hence, Aut(Γ) contains all permutations of S2. Thus, all injections
of S2 are self-embeddings of Γ, and the lemma follows. �

Definition 4.19. Let R(x, y, z) be the ternary relation on S2 defined by the formula

C(z, xy) ∨ (x < z ∧ y < z) ∨ (x ⊥ z ∧ y ⊥ z ∧ (x < y ∨ y < x)).

Proposition 4.20. (S2;R) and (S2;≤) are interdefinable. However, (S2;R) is not model-

complete, i.e., it has a self-embedding which is not an element of Aut(S2;R).

Proof. By definition, R has a first-order definition in (S2;≤). To see the converse, observe
that for a, b ∈ S2 we have that a ≤ b if and only if there exists no c ∈ S2 such that R(b, c, a).
Hence, (S2;R) and (S2;≤) are interdefinable, and in particular, Aut(S2;R) = Aut(S2;≤).
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To show that (S2;R) is not model-complete, let f ∈ (S2)S2 map S2 to an antichain in (S2;≤)
in such a way that R(a, b, c) if and only if C(f(c), f(a)f(b)) for all a, b, c ∈ S2. It is an easy

proof by induction that such a mapping exists. Clearly, f is not an element of Aut(S2;R),
since it does not preserve comparability. �

The previous proposition is the reason for the special case concerning R in the following
lemma.

Lemma 4.21. Let Γ be a reduct of (S2;≤) with a flat self-embedding. Then Γ is isomorphic
to a reduct of (Q;<), or it has a flat self-embedding that preserves R.

Proof. Let f be the flat self-embedding. By Proposition 3.8 we may assume that f is canonical
as a function from (S2;≤, C,≺) to (S2;≤, C,≺). By composing f , if necessary, from the right
with an automorphism α of (S2;≤, C) which reverses the order ≺ on incomparable pairs,
we may assume that f is canonical as a function from (S2;≺) to (S2;≺); that is, it either
preserves or reverses the order ≺. In the latter case, α ◦ f preserves ≺, so in any case we
may assume that f preserves ≺. To simplify notation, we shall write x′ instead of f(x) for
all x ∈ S2, and we write xy|z or z|xy instead of C(z, xy) for all x, y, z ∈ S2.

Let a1, . . . , a5 ∈ S2 be so that a1 ≺ · · · ≺ a5 and so that a1 ⊥ a2, a1, a2 < a3, a3 ⊥ a4,
and a1, . . . , a4 < a5. We shall analyse the possible behaviours of f on these elements. Since
f preserves ≺, we have that either a′1a

′
2|a′3 or a′1|a′2a′3.

We claim that in the first case, a′2a
′
3|a′4. Otherwise, pick x > a2 such that a1x|a4. Since

a′1a
′
2|a′3, we must have a′1a

′
2|a′4 by the properties of ≺, and so a′1x

′|a′4 by canonicity. But then
a′2x
′|a′4 since a′1 ≺ a′2 ≺ x′, and hence indeed a′2a

′
3|a′4 by canonicity. This together with a′1a

′
2|a′3

implies a′1a
′
3|a′4. Since a′1a

′
2|a′3, we have a′1a

′
4|a′5 by canonicity, leaving us with the following

possibility which uniquely determines the type of the tuple (a′1, . . . , a
′
5) in (S2;≤, C,≺):

(A1) a′1a
′
2|a′3, a′1a

′
3|a′4, a′1a

′
4|a′5.

Now assume a′1|a′2a′3; then a′1|a′2a′5 by canonicity. The latter implies a′1|a′3a′4, and thus
a′2|a′3a′4 again by canonicity. Taking into account that a′1|a′2a′3 and canonicity imply a′3|a′4a′5,
this leaves us with the following possibility:

(A2) a′1|a′2a′5, a′2|a′3a′5, a′3|a′4a′5.

Next let b1, . . . , b5 ∈ S2 be so that b1 ≺ · · · ≺ b5 and so that b1 ⊥ b4, b2, b3 < b4, b2 ⊥ b3,
and b1, . . . , b4 < b5.

If b′2|b′3b′4, then canonicity implies b′1|b′2b′5 and b′2|b′3b′5 leaving us with only two non-isomorphic
possibilities, namely b′3|b′4b′5 and b′3b

′
4|b′5.

(B1) b′1|b′2b′5, b′2|b′3b′5, b′3|b′4b′5;
(B2) b′1|b′2b′5, b′2|b′3b′5, b′3b

′
4|b′5.

If on the other hand b′2b
′
3|b′4, then canonicity tells us that b′1b

′
4|b′5. One possibility here is that

b′1b
′
2|b′3, which together with b′2b

′
3|b′4 implies b′1b

′
3|b′4, and so we have:

(B3) b′1b
′
4|b′5, b′1b

′
3|b′4, b′1b

′
2|b′3.

Finally, suppose that b′2b
′
3|b′4 and b′1|b′2b′3. Pick x > b3 such that b2 ⊥ x. Then b′1|b′2x′ by

canonicity, and hence b′2 ≺ b′3 ≺ x implies that we must have b′1|b′3x′. But then canonicity
gives us b′1|b′2b′4, and hence the following:

(B4) b′1b
′
4|b′5, b′1|b′2b′4, b′2b

′
3|b′4.

We now consider all possible combinations of these situations. Assume first that (A1)
holds; then neither (B1) nor (B2) hold because otherwise a′1a

′
4|a′5 and b′1|b′4b′5 together would
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contradict canonicity. If we have (B3), then for all a, b, c in the range of f we have that ab|c iff
a, b ≺ c. Hence, the formula a ≺ c∧ b ≺ c defines the relation C on the image. It is clear that
the structure induced by f [S2] in (S2;≺) is isomorphic to (Q;<), since (S2;≺) is isomorphic
to it and since f preserves ≺. Thus Γ is isomorphic to a reduct of (Q;<). If we have (B4),
then f is a flat self-embedding of Γ that preserves R.

Now assume that (A2) holds. Then a′1|a′4a′5 and canonicity imply that (B1) or (B2) is the
case. However, (B2) is in fact impossible by virtue of a′1a

′
3|a′5 and b′2|b′4b′5, leaving us with

(B1). Here, we argue that Γ is isomorphic to a reduct of (Q;<) precisely as in the case
(A1)+(B3). �

Lemma 4.22. Let Γ be a reduct of (S2;≤). Assume that there is a flat function in Aut(Γ)
that preserves R. Then Γ is isomorphic to a reduct of (Q;<).

Proof. Let f be that function. We use induction to show that the action of Aut(Γ) is n-set
transitive for all n ≥ 1, i.e., if two subsets of S2 have the same finite cardinality n, then
there exists an automorphism of Γ sending one set to the other. The statement is obvious for
n = 1, 2. Assume that the claim holds for some n ∈ N, and let A1, A2 be (n + 1)−element
subsets with ai ∈ Ai for i ∈ {1, 2}. By the induction hypothesis, for all i ∈ {1, 2} there
exists an αi ∈ Aut(Γ) such that αi[Ai \ {ai}] is a chain. Using the fact that f preserves R,
we then get that (f ◦ α1)[A1] and (f ◦ α2)[A2] induce isomorphic substructures in (S2;≤, C):
namely, for both i ∈ {1, 2} there exists a linear order vi on (f ◦ αi)[Ai] such that for all
pairwise distinct a, b, c ∈ (f ◦ αi)[Ai] the relation C(c, ab) holds if and only if a vi c and
b vi c. Thus there exist β1, β2, γ ∈ Aut(Γ) such that βi�Ai

= (f ◦ αi)�Ai
for i ∈ {1, 2} and

γ[(f ◦ α1)[A1]] = (f ◦ α2)[A2]. Hence, β−1
2 ◦ γ ◦ β1[A1] = A2.

As Γ is n-set transitive for all n ≥ 1, the assertion follows from Cameron’s theorem in
[Cam76]. �

Proof of Theorem 2.3. Let Γ′ be the structure that we obtain from Γ by adding all first-order
definable relations in Γ. Then Aut(Γ) = Aut(Γ′) and Aut(Γ′) = Emb(Γ′) = End(Γ′). The
theorem follows by applying Proposition 4.14 and Lemmas 4.17, 4.18, 4.21 and 4.22 to the
structure Γ′. �

5. Applications in Constraint Satisfaction

Let Γ be a structure with a finite relational signature τ . Then CSP(Γ), the constraint sat-
isfaction problem for Γ, is the computational problem of deciding for a given finite τ -structure
whether there exists a homomorphism to Γ. There are several computational problems in the
literature that can be formulated as CSPs for reducts of (S2;≤).

When Γb is the reduct of (S2;≤) that contains precisely the binary relations with a first-
order definition in (S2;≤), then CSP(Γb) has been studied under the name “network consis-
tency problem for the branching-time relation algebra” by Hirsch [Hir96]; it is shown there
that the problem can be solved in polynomial time. For concreteness, we mention that in
particular the problem CSP(S2;<,⊥) can be solved in polynomial time, since it can be seen as
a special case of CSP(Γb). Broxvall and Jonsson [BJ03] found a better algorithm for CSP(Γb)
which improves the running time from O(n5) to O(n3.326), where n is the number of variables
in the input. Yet another algorithm with a running time that is quadratic in the input size
has been described in [BK02]. The complexity of disjunctive reducts of (S2;≤,≺) has been
determined in [BJ03]; a disjunctive reduct is a reduct each of whose relations can be defined
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by a disjunction of the basic relations in such a way that the disjuncts do not share common
variables.

Independently from this line of research, motivated by research in computational linguistics,
Cornell [Cor94] studied the reduct Γc of (S2;≤,≺) containing all binary relations that are
first-order definable over (S2;≤,≺). Contrary to a conjecture of Cornell, it has been shown
that CSP(Γc) (and in fact already CSP(S2;<,⊥)) cannot be solved by establishing path
consistency [BM11]. However, CSP(Γc) can be solved in polynomial time [BK07].

It is a natural but challenging research question to ask for a classification of the complexity
of CSP(Γ) for all reducts of (S2;≤). In this context, we call the reducts of (S2;≤) tree
description constraint languages. Such classifications have been obtained for the reducts
of (Q;≤) and the reducts of the random graph [BK09, BP11b]. In both these previous
classifications, the classification of the model-complete cores of the reducts played a central
role. Our Theorem 2.1 shows that every tree description language belongs to at least one
out of four cases; in cases one and two, the CSP has already been classified. It is easy to
show (and this will appear in forthcoming work) that the CSP is NP-hard when case three
of Theorem 2.1 applies. It is also easy to see (again we have to refer to forthcoming work)
that in case four of Theorem 2.1, adding the relations < and ⊥ to Γ does not change the
computational complexity of the CSP. The corresponding fact for the reducts of (Q;≤) and
the reducts of the random graph has been extremely useful in the subsequent classification.
Therefore, the present paper and in particular Theorem 2.1 are highly relevant for the study
of the CSP for tree description constraint languages.
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