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King Kong. I shall tell thee of a problem as dreadful as the three-
tongued Würgerin von Nizhnij [5]; a thousand nights I have dreamt of
it, but to solve it I have failed.

1. Notions and setting of the problem

Godwin Zilla. Speak then, King, of what weighs so heavy on thy mind.
Kong. Imagine, God, a countably infinite base set X, the set O of

all finitary operations on X, and for all n ≥ 1 let the set O(n) of n-ary
operations on X. For simplicity of some formulations we assume X to be
equipped with the order of the natural numbers (e.g. when we talk about
maximum or minimum functions). Thou attend’st not!

Zilla. O, good sir, I do! Thou intend’st, I reckon, a tale of the clone
lattice.

Kong. I pray thee mark me. Indeed, we are interested in the structure of
the interval [〈O(1)〉, O] of the clone lattice (〈O(1)〉 is the clone generated by
O(1) and therefore the clone of all essentially unary functions, i.e. functions
which depend on at most one of their variables). More specifically, we are
interested in the “upper part” of this interval. By a result of Gavrilov’s
[1], there exist only two precomplete clones above O(1). Every clone of the
interval in contained in a precomplete one, as O is generated by O(1) plus
only finitely many functions (e.g. O(1) together with any binary injection
generate O). The interval is as large as the whole clone lattice, which has
been shown recently by Goldstern and Shelah [4]. Dost thou hear?

Zilla. Your tale, sir, would cure deafness. Canst thou describe the
precomplete clones of the interval?

Kong. Be of comfort. They can be described using the following concept:
For n ≥ 1 and a set G ⊆ O(n), define Pol(G ) to consist of all f ∈ O
satisfying: Whenever g1, . . . , gm ∈ G , then the composite f(g1, . . . , gm) ∈ G
(m is the arity of f). This definition is identical with the usual definition of
the Pol-operator in clone theory (preservation of a relation), if G ⊆ O(2) is
considered an infinitary relation (of arity X2, since O(2) = XX2

).
Zilla. I prithee, define the first precomplete clone.
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Kong. A function f ∈ O(n) is called almost unary iff there exists 1 ≤
k ≤ n such that for all c ∈ X we have that

{f(x1, . . . , xk−1, c, xk+1, . . . , xn) : x1, . . . , xk−1, xk+1, . . . , xn ∈ X}
is finite. In words, there is a variable of f such that the value of this variable
determines the function value up to a finite set. Using the order of X we
may equivalently define f to be almost unary iff there exist 1 ≤ k ≤ n and
F ∈ O(1) such that f(x1, . . . , xn) ≤ F (xk) for all x1, . . . , xn ∈ X.

Zilla. I assume, King, that there exist functions of such noble kind.
Kong. God, there are. An example of an almost unary function is

min(x1, . . . , xn) (note that X has the order of the natural numbers); also, if
p(x1, x2) is any binary function, then

p∆(x1, x2) =

{
p(x1, x2) , x1 > x2

0 , otherwise

is almost unary. If p is an injection, then p∆ is a “canonical” almost unary
function:

Fact 1 (Pinsker [7]). Let p ∈ O(2) be injective. Then 〈{p∆} ∪ O(1)〉 = {f ∈
O : f almost unary}.

Zilla. Tell me thus, I prithee, are all functions almost unary?
Kong. Examples of functions which are not almost unary: max(x1, . . . , xn),

any binary injection p, and the median of three med(x1, x2, x3).
Zilla. But wherefore hast thou introduced the notion of almost unary?
Kong. The set of all almost unary functions is a clone which we denote

by U . Write

T1 = U (2) = {f ∈ O(2) : f almost unary}.
Then Pol(T1) is a maximal clone above O(1) (Gavrilov [1]). An example of
a function in Pol(T1) but not in 〈T1〉 is the median function. Observe that
〈T1〉 = U by Fact 1.

Zilla. More to know did never meddle with my thoughts.
Kong. ’Tis time I should inform thee farther. Let ∆ = {(x1, x2) ∈ X2 :

x2 < x1} and ∇ = {(x1, x2) ∈ X2 : x1 < x2}. For S1, S2 ⊆ X we set
∆S1,S2 = ∆∩ (S1×S2) and ∇S1,S2 = ∇∩ (S1×S2). Denote by [X]ω the set
of all infinite subsets of X. Now define

T2 = {f ∈ O(2) : ∀S1, S2 ∈ [X]ω neither f ¹∆S1,S2
nor f ¹∇S1,S2

are injective}.
Zilla. I might call it a thing divine, for nothing natural I ever saw so

noble. Canst thou show me but one function in T2?
Kong. Indeed I can: max(x1, x2), min(x1, x2). Examples of functions not

in T2: Any injection p ∈ O(2), and for any such injection the corresponding
p∆ as defined before. Now mind the words of Gavrilov [1]:

Theorem 2. Pol(T1) and Pol(T2) are maximal clones which contain O(1),
and there exist no other maximal clones above O(1).
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Zilla. I see a beauteous theorem, but not hast thou shown me a problem.
Kong. Know thus far forth: An example of an essentially ternary func-

tion in Pol(T2) is med(x1, x2, x3). In fact, med(x1, x2, x3) ∈ 〈T2〉 since T2

contains the maximum and minimum functions which clearly generate the
median.

The definition of T2 can be understood better with an application of the
infinite Ramsey’s theorem. This theorem says that the partition relation
ℵ0 → (ℵ0)22 holds; in words this means that whenever G is a countably infi-
nite undirected complete graph and its edges are coloured with two colours,
then there is a (countably) infinite complete subgraph of G on which the
coloring is constant.

Zilla. The connection with T2...
Kong. ... is the following: Using Ramsey’s theorem, one can prove that

if f(x1, x2) ∈ O(2) is arbitrary, and S1, S2 ⊆ X are infinite, then these sets
S1, S2 can be “thinned out” to infinite S′1 ⊆ S1 and S′2 ⊆ S2 such that
f ¹∆S′1,S′2

is one of the following:

(1) Constant.
(2) A unary injective function of x1.
(3) A unary injective function of x2.
(4) Injective.

Of course, the same can be achieved for f ¹∇S′1,S′2
. A function f ∈ O(2)

is in T2 iff f is not of type (4) (injective) on any ∆S′1,S′2 or ∇S′1,S′2 . This
application of Ramsey’s theorem is due to Goldstern and Shelah [3].

Zilla. Dost thou not want to speak of a problem?
Kong. Hear a little further, and then I’ll bring thee to the present busi-

ness which now is upon us. In general, if C is a clone, then

Pol(C (1)) ⊇ Pol(C (2)) ⊇ . . . ⊇ Pol(C (n)) ⊇ . . .

Moreover,

Pol(C (n))(n) = C (n) and
⋂

n≥1

Pol(C (n)) = C .

In the case of C = U , in [7] it has been shown that the clones obtained
this way are distinct and the only ones containing U :

Pol(U (1)) = O ) Pol(U (2)) = Pol(T1) ) . . . ) Pol(U (n)) ) . . .

and there exist no more clones containing T1. Also, it has been shown there
that all clones above T1 are finitely generated over O(1), and a generating
system has been given for all those clones. This puts us into the following
situation.
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[U , O] = {U , . . . ,Pol(U (3)), Pol(U (2)), Pol(U (1))}

Zilla. What dost thou mean by the “upper part” of the interval?
Kong. Machida [6] has introduced a natural metric d on the clone lattice:

For two clones C , D set d(C , D) = 0 if C = D , and d(C , D) = 1
2n−1 if

C 6= D and n = min{k ≥ 1 : C (k) 6= D (k)}. In the interval [〈O(1)〉, O]
we are considering, all clones have the same unary part O(1). The two
maximal clones have distinct binary parts, and the interval [〈T1〉, Pol(T1)]
consists exactly of the clones C for which d(Pol(T1),C ) < 1

2 , and the interval
[〈T2〉, Pol(T2)] of those clones C for which d(Pol(T2), C ) < 1

2 . Therefore,
it can be argued that the missing step in describing the “upper part” of
the interval [〈O(1)〉, O], or more precisely the clones “closest” to the two
precomplete clones of the interval, is to determine the interval [〈T2〉, Pol(T2)].

Zilla. Wherefore hast thou not yet described the interval?
Kong. It can be expected that describing clones above T2 is more difficult

than describing clones above T1: Goldstern [2] has shown that none of the
nontrivial clones containing T2 is countably generated over O(1) (whereas all
clones containing T1 are finitely generated over O(1), see Pinsker [7]). There
is also a reason involving descriptive set theory supporting that conjecture,
see [2] and [7].

2. Approaches to solving the problem

Zilla. Methinks the interval is rather large?
Kong. Surprisingly, so far we even failed to find out whether or not this

interval has more than one element, i.e., whether or not 〈T2〉 6= Pol(T2).

Question 3. Is 〈T2〉 = Pol(T2), or 〈T2〉 ( Pol(T2)?
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The major problem seems to be finding a “nice” description of 〈T2〉; the
elements of Pol(T2) can be explicitly described as we will show in the fol-
lowing. We first give a number of equivalent definitions of T2. We use the
following abbreviations: “inj” stands for “injective”, “const” for “constant”,
“s.m.” for “strictly monotone”, “s.m. in one var.” for “strictly monotone
in one variable” (for a binary essentially unary function), and “ess. unary”
for “essentially unary”. Note that 〈O(1)〉(2) is the set of binary essentially
unary operations.

Lemma 4. Let f ∈ O(2). Then f ∈ T2 iff one (or all) of the following hold:
• ∀S1, S2 ∈ [X]ω (neither f ¹∆S1,S2

nor f ¹∇S1,S2
inj).

• ∀S1, S2 ∈ [X]ω∃S′1 ∈ [S1]ω ∃S′2 ∈ [S2]ω (f ¹∆S′1,S′2
and f ¹∇S′1,S′2

ess. unary).
• ∀g1, g2 ∈ O(1) inj (neither f(g1x1, g2x2) ¹∆ nor f(g1x1, g2x2) ¹∇

inj).
• ∀g1, g2 ∈ O(1) inj ∃S′ ∈ [X]ω (f(g1x1, g2x2) ¹∆S′2 and f(g1x1, g2x2) ¹∇S′2

ess. unary).
• ∀g1, g2 ∈ O(1) inj ∃h ∈ O(1) inj (f(g1hx1, g2hx2) ¹∆ and f(g1hx1, g2hx2) ¹∇

ess. unary).
• ∀g1, g2 ∈ O(1) inj ∃h1, h2 ∈ O(1) inj

(f(g1h1x1, g2h2x2) ¹∆ and f(g1h1x1, g2h2x2) ¹∇ ess. unary).

Proof. This is a straightforward verification using the application of Ram-
sey’s theorem mentioned before. ¤
Lemma 5. Let f ∈ O(n). Then f ∈ Pol(T2) iff one (or all) of the following
hold:

• ∀g1, . . . , gn ∈ T2 (f(g1, . . . , gn) ∈ T2)
• ∀g1, . . . , gn ∈ 〈O(1)〉(2) (f(g1, . . . , gn) ∈ T2)
• ∀g1, . . . , gn ∈ 〈O(1)〉(2)∃h ∈ O(1) inj

(f(g1(hx1, hx2), . . . , gn(hx1, hx2)) ¹∆ ess. unary)
• ∀g1, . . . , gn ∈ 〈O(1)〉(2)∃S′ ∈ [X]ω (f(g1, . . . , gn) ¹∆S′2 ess. unary)
• ∀g1, . . . , gn ∈ 〈O(1)〉(2) const or s.m. in one var. ∃h ∈ O(1) s.m.

(f(g1(hx1, hx2), . . . , gn(hx1, hx2)) ¹∆ ess. unary)
• ∀g1, . . . , gn ∈ 〈O(1)〉(2) const or s.m. in one var. ∃h1, . . . , hn ∈ O(1) s.m.

(f(g1(h1x1, h1x2), . . . , gn(hnx1, hnx2)) ¹∆ ess. unary)
• ∀g1, . . . , gn ∈ 〈O(1)〉(2) const or s.m. in one var. ∃S′ ∈ [X]ω

(f(g1, . . . , gn) ¹∆S′2 ess. unary)
• ∀g1, . . . , gn ∈ 〈O(1)〉(2) const or s.m. in one var. ∀S ∈ [X]ω

(f(g1, . . . , gn) ¹∆S2 not inj)
• ∀g1, . . . , gn ∈ 〈O(1)〉(2) const or s.m. in one var.

(f(g1, . . . , gn) ¹∆ not inj)

Proof. To verify this, one again uses Ramsey’s theorem as well as the fact
(see [1]) that f ∈ Pol(T2) iff for all g1, . . . , gn ∈ 〈O(1)〉(2) it is true that
f(g1, . . . , gn) ∈ T2. ¤
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Zilla. How, King, dost thou advise to attack the problem?
Kong. God, a first approach to Question 3 is to consider ternary func-

tions: We know that 〈T2〉(1) = Pol(T2)(1) = O(1) and 〈T2〉(2) = Pol(T2)(2) =
T2.

Question 6. Is there a function f ∈ Pol(T2)(3) which is not generated by
T2?

Clearly, if f ∈ O has finite range, then f ∈ Pol(T2). Therefore, a positive
answer to the following questions would solve Questions 3 and 6 respectively.

Question 7. Does there exist a function with finite range which is not gen-
erated by T2? Does there exist a ternary function with finite range which is
not generated by T2?

Zilla. Dost thou, King, know of a function with finite range wicked
enough to make thee believe it be not generated by T2?

Kong. Assume 0, 1 ∈ X. We call an operation f ∈ O boolean iff the range
of f is contained in {0, 1} = 2. Let f : X3 → 2 be so that for all finite A ⊆ X
we have: For all g : A2 → 2 there exists c ∈ X such that f(x1, x2, c) ¹A2=
g(x1, x2), where f(x1, x2, c) ¹A2 is considered a binary function from A2 to
2. This is possible, since X has only countably many finite subsets A, and
on all such subsets there are only finitely many functions from A2 to 2.

Lemma 8. f is not generated by binary boolean functions.

The following lemma is a direct consequence of the application of Ram-
sey’s theorem mentioned before.

Lemma 9. Let h ∈ O(2). If the range of h is finite, then there exists an
infinite S ⊆ X such that h ¹∆S2 is constant.

Proof of Lemma 8. Assume to the contrary that f has a representation as
a term t of binary boolean functions. Let t1, . . . , tk be all the functions
which appear in t. Then f can be written as follows: f = s(t1, . . . , tk),
where s : 2k → 2 and ti : X3 → 2, and all ti depend only on two variables.
There are only 2k possibilities for the arguments of s, since the ti take only
two values and there are k arguments. Therefore f can also be written as
f = s′(g1(x1, x2), g2(x1, x3), g3(x2, x3)), where gi : X2 → 2k, i = 1, 2, 3, and
s′ : (2k)3 → 2. By Lemma 9, we can “thin out” X to an infinite subset
S in such a way that the restriction of g1 to ∆S2 is constant. Therefore,
on ∆S2 we have f = s′′(g2(x1, x3), g3(x2, x3)), where s′′ : (2k)2 → 2. Now
choose any A1, A2 ⊆ S of size 2k + 1 so that A1 ×A2 ⊆ ∆S2 , i.e., maxA2 <
minA1. Let g : A1 × A2 → 2 be so that if a, b ∈ A1 are distinct, then
there exists c ∈ A2 such that g(a, c) 6= g(b, c). This is possible since for
every fixed a ∈ A1 we have 22k+1 possibilities of defining the unary function
g(a, x2) : A2 → 2, and we only have to define it for 2k + 1 values of a ∈
A1. Now let d ∈ X be so that f(x1, x2, d) ¹A1×A2= g(x1, x2); d exists by
the construction of f . Since |A1| = 2k + 1 and g2 takes only 2k values,
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there exist distinct a, b ∈ A1 such that g2(a, d) = g2(b, d). There is c ∈
A2 such that g(a, c) 6= g(b, c), for we have chosen g that way; therefore,
f(a, c, d) 6= f(b, c, d). Thus, s′′(g2(a, d), g3(c, d)) 6= s′′(g2(b, d), g3(c, d)). But
this is impossible since g2(a, d) = g2(b, d), and we arrive at a contradiction.

¤
Question 10. Is the f as in Lemma 8 generated by T2?

Zilla. The strangeness of your story put heavyness in me.
Kong. Shake it off; here, mind the references.
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