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Abstract. One of the most fundamental mathematical contributions of Garrett Birkhoff
is the HSP theorem, which implies that a finite algebra B satisfies all equations that hold
in a finite algebra A of the same signature if and only if B is a homomorphic image of a
subalgebra of a finite power of A. On the other hand, if A is infinite, then in general one
needs to take an infinite power in order to obtain a representation of B in terms of A, even
if B is finite.

We show that by considering the natural topology on the functions of A and B in addition
to the equations that hold between them, one can do with finite powers even for many
interesting infinite algebras A. More precisely, we prove that if A and B are at most
countable algebras which are oligomorphic, then the mapping which sends each function
from A to the corresponding function in B preserves equations and is continuous if and only
if B is a homomorphic image of a subalgebra of a finite power of A.

Our result has the following consequences in model theory and in theoretical computer
science: two ω-categorical structures are primitive positive bi-interpretable if and only if
their topological polymorphism clones are isomorphic. In particular, the complexity of the
constraint satisfaction problem of an ω-categorical structure only depends on its topological
polymorphism clone.

1. Introduction

The algebraic result we present has a motivating application in model theory, which in
turn has implications for the study of the computational complexity of constraint satisfaction
problems in theoretical computer science. We start our introduction with this model-theoretic
perspective on our result, and describe the central algebraic theorem of this article later in
the introduction, in Section 1.2.

1.1. The model-theoretic perspective. A countable structure Γ is called ω-categorical iff
all countable models of the first-order theory of Γ are isomorphic to Γ. A substantial amount
of information about an ω-categorical structure Γ is already coded into the automorphism
group Aut(Γ) of Γ, viewed abstractly as a topological group whose topology is the topology
of pointwise convergence. In particular, Ahlbrandt and Ziegler [AZ86] proved that two count-
able ω-categorical structures are first-order bi-interpretable if and only if their automorphism
groups are isomorphic as topological groups. The concept of interpretation we use here is
standard [Hod93], and will be recalled in Section 4.

Recently, the following variant of the theorem of Ahlbrandt and Ziegler has been shown,
replacing the automorphism group by the endomorphism monoid (which, of course, contains
more information about the original structure than the automorphism group) [BJ11]: two
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ω-categorical structures Γ and ∆ without constant endomorphisms are existential positive
bi-interpretable (i.e., bi-interpretable by means of existential positive first-order formulas) if
and only if their endomorphism monoids End(Γ) and End(∆) are isomorphic as abstract
topological monoids, i.e., iff there exists a bijective function ξ : End(Γ) → End(∆) which
sends the identity function on Γ to the identity on ∆, which satisfies ξ(f ◦ g) = ξ(f) ◦ ξ(g) for
all f, g ∈ End(Γ), and such that both ξ and its inverse are continuous.

In the same paper, it is stated as an open problem whether this statement can be mod-
ified further to characterize primitive positive bi-interpretability, if one replaces the endo-
morphism monoid by the polymorphism clone. A primitive positive interpretation is a first-
order interpretation where all the involved formulas are primitive positive, i.e., of the form
∃x1, . . . , xn(φ1 ∧ · · · ∧φm) where φ1, . . . , φm are atomic formulas. A polymorphism of a struc-
ture Γ is a homomorphism from Γk to Γ for some finite k ≥ 1; the polymorphism clone Pol(Γ)
of Γ is the set of all polymorphisms of Γ and contains, in particular, at least the information
of End(Γ), which is the unary fragment of Pol(Γ). In general, a (concrete) clone is a set
of finitary functions on a fixed set which contains all projections and which is closed under
composition; it is not hard to see that Pol(Γ) is a clone in this sense. Moreover, Pol(Γ) is

a closed subset of the topological space OΓ =
⋃

k≥1 ΓΓk
of all finitary functions on Γ, just

like Aut(Γ) is a closed subset of the space of all permutations on Γ and End(Γ) is a closed
subset of the space of unary functions on Γ. The topology of OΓ is obtained by viewing

this space as the sum space of the spaces ΓΓk
, and each ΓΓk

as a power of Γ, which itself is
taken to be discrete. Similarly to automorphism groups and endomorphism monoids, where
we distinguish between the concrete permutation groups and transformation monoids on the
one hand and abstract topological groups and topological monoids with their laws of com-
position and topology on the other hand, polymorphism clones can be viewed abstractly as
topological clones carrying an algebraic and a topological structure. The topology on Pol(Γ)

is inherited from the space OΓ; note that each ΓΓk
, and in fact also OΓ, is homeomorphic to

the Baire space, and that therefore the space Pol(Γ) is a closed subspace of the Baire space.
The algebraic structure of Pol(Γ) is that of a multi-sorted algebra with operations that cor-
respond to the composition of the elements of Pol(Γ) and constant symbols corresponding
to the projections. We can avoid a formal description of this ghastly structure here (and
refer the interested reader, for example, to [Tay93] or the survey paper [GP08]) since we only
need the very natural notion of a homomorphism between clones C ,D : these are functions
ξ : C → D which send every projection in C to the corresponding projection in D , and such
that ξ(f(g1, . . . , gn)) = ξ(f)(ξ(g1), . . . , ξ(gn)) for all n-ary f ∈ C and all m-ary g1, . . . gn ∈ C .
In particular, two polymorphism clones Pol(Γ),Pol(∆) are isomorphic as topological clones
iff there exists a bijection ξ from Pol(Γ) onto Pol(∆) such that both ξ and its inverse are con-
tinuous clone homomorphisms. The above-mentioned problem in [BJ11] asked whether for
two ω-categorical structures Γ,∆ having isomorphic polymorphism clones and being primitive
positive bi-interpretable is one and the same thing.

Besides the theoretical interest they might have, primitive positive interpretations are
additionally motivated by an application in theoretical computer science: every relational
structure Γ with a finite signature defines a computational problem, called the constraint
satisfaction problem of Γ and denoted by CSP(Γ), and it is known that when a relational
structure ∆ has a primitive positive interpretation in a relational structure Γ, then CSP(∆)
has a polynomial-time reduction to CSP(Γ). Very general and deep complexity classification
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results rely on this fact – see for example the collection of survey articles in [CKV08]; more
on this application can be found in Section 6.

In this paper, we give an affirmative answer to the question from [BJ11] about primitive
positive interpretability. A reduct of a structure ∆′ is a structure on the same domain obtained
by forgetting some relations or functions of ∆′. We prove the following.

Theorem 1. Let Γ and ∆ be finite or countable ω-categorical structures. Then:

• ∆ has a primitive positive interpretation in Γ if and only if ∆ is a reduct of a finite
or ω-categorical structure ∆′ such that there exists a continuous homomorphism from
Pol(Γ) into Pol(∆′) whose image is dense in Pol(∆′).
• Γ and ∆ are primitive positive bi-interpretable if and only if their polymorphism clones

are isomorphic as topological clones.

It follows from this theorem and the remarks above that the computational complexity of
the constraint satisfaction problem for a relational structure in a finite language only depends
on its topological polymorphism clone.

Corollary 2. Let Γ and ∆ be finite or countable ω-categorical relational structures with
finite signatures. If Pol(Γ) and Pol(∆) are isomorphic as topological clones, then CSP(Γ)
and CSP(∆) are polynomial-time equivalent.

1.2. Topological Birkhoff. To prove Theorem 1 we show an algebraic result which is of
independent interest and which can be seen as a topological version of Birkhoff’s HSP theorem.

An algebra is a structure with a purely functional signature. The clone of an algebra A with
signature τ , denoted by Clo(A), is the set of all functions with finite arity on the domain A
of A which can be written as τ -terms over A. More precisely, every abstract τ -term t induces
a function tA on A, and Clo(A) consists precisely of the functions of this form.

Let A, B be algebras of the same signature τ . The assignment ξ from Clo(A) to Clo(B)
which sends every element tA of Clo(A) to tB is a well-defined function if and only if for all
τ -terms s, t we have that sB = tB whenever sA = tA. In that case, it is in fact a surjective
homomorphism between clones; we then call ξ the natural homomorphism from Clo(A) onto
Clo(B).

When C is a class of algebras with common signature τ , then P(C) denotes the class of
all products of algebras from C, Pfin(C) denotes the class of all finite products of algebras
from C, S(C) denotes the class of all subalgebras of algebras from C, and H(C) denotes the
class of all homomorphic images of algebras from C. A pseudovariety is a class V of algebras
of the same signature such that V = H(V) = S(V) = Pfin(V), i.e., a class closed under
homomorphic images, subalgebras, and finite products; the pseudovariety generated by a
class of algebras C (or by a single algebra A) is the smallest pseudovariety that contains C
(contains A, respectively). For finite algebras, Birkhoff’s HSP theorem takes the following
form (see Exercise 11.5 in combination with the proof of Lemma 11.8 in [BS81]).

Theorem 3 (Birkhoff). Let A,B be finite algebras with the same signature. Then the fol-
lowing three statements are equivalent.

(1) The natural homomorphism from Clo(A) onto Clo(B) exists.
(2) B ∈ HSPfin(A).
(3) B is contained in the pseudovariety generated by A.

When A and B are of arbitrary cardinality, then the equivalence of (2) and (3) still holds;
however, if one wants to maintain equivalence with item (1), then another version of Birkhoff’s



4 MANUEL BODIRSKY AND MICHAEL PINSKER

theorem states that one has to replace finite powers by arbitrary powers in the second item,
that is, one has to replace HSPfin(A) by HSP(A); the third item has to be adapted using the
notion of a variety of algebras, i.e., a class of algebras of common signature closed under the
operators H, S and P.

Our topological variant of Birkhoff’s theorem shows that one can keep finite powers for
a large class of infinite algebras if one additionally requires that the natural homomorphism
from Clo(A) onto Clo(B) is continuous when we view Clo(A) and Clo(B) as topological
clones as described above.

A permutation group G on a countable set A is called oligomorphic iff for each finite
n ≥ 1, the componentwise action of G on An has finitely many orbits. In our context it is
worth noting that the theorem of Ahlbrandt and Ziegler implies that being oligomorphic is
a property of the abstract topological group G , i.e., for isomorphic permutation groups G
and H one is oligomorphic iff the other one is; for a characterization by abstract properties
see [Tsa]. An algebra A is called oligomorphic iff the unary invertible operations in Clo(A),
that is, the unary bijective operations whose inverse is also in Clo(A), form an oligomorphic

permutation group. We call it locally oligomorphic iff the topological closure Clo(A) in the
space OA of all finitary functions on the domain of A is oligomorphic. Clearly, oligomorphic
algebras are also locally oligomorphic; the algebra on a countable set A which has all unary
operations on A which are not permutations is an example which shows that the two notions
are not equivalent.

One of the motivations for oligomorphic groups is the theorem of Engeler, Svenonius, and
Ryll-Nardzewski (see e.g. the textbook [Hod93]): the automorphism group of a countable
structure Γ is oligomorphic if and only if Γ is ω-categorical. This implies that any poly-
morphism algebra of Γ, i.e., any algebra on the domain on Γ whose functions are precisely
the elements of Pol(Γ) indexed in some arbitrary way, is oligomorphic if and only if Γ is
ω-categorical; note that such polymorphism algebras are oligomorphic if and only if they are
locally oligomorphic, since their clone Pol(Γ) is always a closed subset of OΓ. It is not hard
to see that all algebras in the pseudovariety generated by an oligomorphic (locally oligomor-
phic) algebra are again oligomorphic (locally oligomorphic). In this paper, we will prove the
equivalence of (1) and (2) in the following theorem, which is a topological characterization of
pseudovarieties of oligomorphic algebras. As mentioned above, the equivalence of (2) and (3)
holds for arbitrary algebras A,B and is well-known from Birkhoff’s work.

Theorem 4. Let A,B be locally oligomorphic or finite algebras with the same signature.
Then the following three statements are equivalent.

(1) The natural homomorphism from Clo(A) onto Clo(B) exists and is continuous.
(2) B ∈ HSPfin(A).
(3) B is contained in the pseudovariety generated by A.

Note that Theorem 3 really is a special case of Theorem 4, since the topology of any clone
on a finite set is discrete, and hence the natural homomorphism from the clone of a finite
algebra to that of another algebra is always continuous.

We will see in Section 4 how to derive Theorem 1 from Theorem 4 and a certain correspon-
dence between primitive positive interpretations and pseudovarieties – confer also Figure 1.

1.3. Related Work. Pseudovarieties consisting of finite algebras have been studied by many
researchers in many different contexts, and are important in particular in formal language
theory. There is also an equational characterization for pseudovarieties of finite algebras,
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Figure 1. Topological clones, primitive positive interpretations, and pseudovarieties.

the Eilenberg-Schützenberger theorem [ES76]. The topology used in subsequent publica-
tions [Ban83, Rei82] concerning pseudovarieties of finite algebras is different from the topol-
ogy that we use here; also note that our results are about pseudovarieties that also contain
infinite algebras.

[MP11], in connection with pioneering work on homomorphism-homogeneous structures [CN06],
introduce the notion of weakly oligomorphic for relational structures via their endomorphism
monoid. It could make sense to use their notion for algebras as another weakening of “oligo-
morphic” rather than “locally oligomorphic”. In fact, every weakly oligomorphic algebra
would then be locally oligomorphic, and yet it is quite possible that Theorem 4 holds and can
be proven our same methods even for the class of weakly oligomorphic algebras. However, we
gave preference to “locally oligomorphic” with its more group theoretic flavor.

In our proof of Theorem 4 we will work with the closure Clo(A) of Clo(A) in OA rather than
with Clo(A) itself, allowing for a certain compactness argument. Even when the functions of
A are assumed to form, say, a closed set, Clo(A) can be topologically complicated: [GPS11]
give an example of a (topologically) closed algebra A which has only unary operations and
for which Clo(A) is not a Borel set.

1.4. Outline of the paper. This introduction is followed by Section 2, in which we will
provide the proof of Theorem 4. We then give some examples in Section 3 which examine
the differences between continuous and non-continuous clone homomorphisms in our context.
Section 4 brings us back to the model-theoretic perspective in more detail and links Theo-
rems 1 and 4. We will provide concrete instances of Theorem 1 in Section 5. In Section 6 we
discuss applications to constraint satisfaction problems; the discussion will be followed by a
concrete example in Section 7. We conclude the paper with an outlook and open problems in
Section 8.

1.5. Further conventions. All ω-categorical structures in this paper are assumed to be
countable.

If F is a set of finitary functions on a set and k ≥ 1, then we write F (k) for the k-ary
functions in F ; this applies in particular to Pol(Γ) and Clo(A).

For an n-tuple a and 1 ≤ i ≤ n, we write ai for the i-th component of a. We do not always
distinguish between the domain of a structure and the structure itself, so we write things like
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“a ∈ Γ” to refer to an element of Γ. In the case of algebras, however, we also write A for the
domain of A.

When we write fg for a composite of unary functions f, g, we mean that g is applied first.

2. Pseudovarieties and Topological Clones

2.1. Continuity of the natural homomorphism. The following lemma shows the easy
direction of the equivalence of Theorem 4, namely that (2) implies (1).

Proposition 5. Let A and B be a algebras of the same signature τ . If B ∈ HSPfin(A), then
the natural homomorphism from Clo(A) onto Clo(B) exists and is continuous.

Proof. We show the statement for the cases where B is a finite product of A, or a subalgebra
of A, or a homomorphic image of A; the full statement then follows by combining the three.
It is well-known that in all three cases, the natural homomorphism exists; this is because
products, subalgebras, and homomorphic images of A satisfy at least the equations between
τ -terms that hold in A. It thus remains to show that the natural homomorphism ξ from
Clo(A) onto Clo(B) is continuous.

Assume first that B = An for some finite n ≥ 1. Let U be an open set from the subbasis
of the topology on Clo(An)(k), where k ≥ 1; that is, there exist a k-tuple a ∈ (An)k and a
value v ∈ An such that U consists precisely of those k-ary terms of An which send a to v.
Now viewing a as a matrix in Ak×n, denote for all 1 ≤ i ≤ n by ci the i-th column of a. Then
ξ−1[U ] consists of those k-ary terms of A which send ci to vi, for all 1 ≤ i ≤ n; an open set.
Hence, ξ is continuous.

Assume now that B is a subalgebra of A. Then the preimage of any subbasis set U of
Clo(B)(k) is equal to U , and hence also open in Clo(A)(k).

Finally, let B be a homomorphic image of A. Then B is isomorphic to A/∼ for a congruence
relation ∼ of A, and we may assume B = A/∼. Let U be a subbasis set of the topology

of Clo(B)(k); so U consists of those functions in Clo(B)(k) which send a certain tuple a of

(A/∼)k to some v ∈ (A/∼). Then a function f ∈ Clo(A)(k) is an element of ξ−1[U ] iff there
exists a k-tuple c ∈ Ak and d ∈ A such that ci ∈ ai for all 1 ≤ i ≤ n, such that d ∈ v, and
such that f(c) = d. For fixed c, d, the set of all f ∈ Clo(A)(k) satisfying f(c) = d is an open

set in Clo(A)(k), and so ξ−1[U ] is the union of open sets and itself open. �

2.2. The converse. We will now show that (1) implies (2) in Theorem 4.
Let X,Y be countably infinite sets, and let G be a group acting on Y . We equip the set

Y X of all functions from X to Y with the topology of the Baire space, i.e., we consider Y as
a discrete space and give Y X the product topology. Now define an equivalence relation ∼G

on Y X which identifies two functions f, g ∈ Y X iff there exists α ∈ G such that f = αg. We
then consider the factor space Y X/∼G with the quotient topology, and write also Y X/G for
this space; therefore, a subset O ⊆ Y X/G is open iff

⋃
O is open in Y X .

Proposition 6. Let X,Y be countably infinite sets, and let G be a group which acts on Y .
Then Y X/G is compact if and only if the action of G on Y is oligomorphic.

Proof. We first prove that if the action of G is oligomorphic, then Y X/G is compact. Say
without loss of generality X = ω. Pick for every n ≥ 1 and every orbit of the componentwise
action of G on Y n a representative tuple of this orbit in such a way that being a representative
of an orbit is closed under taking initial segments; this can be done inductively. Write R for
the set of representatives. When we partially order R by saying for a, b ∈ R that a is smaller



TOPOLOGICAL BIRKHOFF 7

or equal than b if and only if a is an initial segment of b, then R becomes a finitely branching
tree, the branches of which are elements of Y X . Consider the subspace B of Y X of those
functions which are branches of R; in other words, for f ∈ Y X we have f ∈ B if and only if
the restriction f�n of f to {0, . . . , n} is in R, for all n ≥ 1. Then B is compact by Tychonoff’s
theorem as it is homeomorphic with a closed subspace of

∏
n∈ω k(n), where k(n) is the (finite)

number of representatives of length n. Moreover, G · B := {αf |α ∈ G ∧ f ∈ B} is dense in
Y X , and so (G ·B)/G is dense in Y X/G. But no two elements f, g of B satisfy f ∼G g, and
so (G ·B)/G is homeomorphic to B. Hence, Y X/G has a dense compact subset, proving that
Y X/G is compact itself.

For the other direction, assume that the action of G is not oligomorphic. Pick an n ≥ 1
such that the componentwise action of G on Y n has infinitely orbits, and enumerate these
orbits by (Oi)i∈ω. Now for all i ∈ ω, let Ui consist of all classes [f ]∼G in Y X/G with the
property that f�n belongs to Oi; this is well-defined since for all f, g ∈ Y X with f ∼G g we
have that f�n belongs to Oi iff g�n belongs to Oi. Then Y X/G is the disjoint union of the
Ui. But each Ui is open, and hence Y X/G is not compact. �

We remark that the space Y X/G is not Hausdorff, which explains that it can have a dense
compact subset which is not equal to the whole space – some readers might have wondered
about this.

Lemma 7. Let X,Y be countable sets, and let G be a group with an oligomorphic action on
Y . Let S be a closed subset of Y X which is invariant under G, i.e., G · S ⊆ S. Then S/G is
compact.

Proof. S/G is a closed subspace of the compact space Y X/G. �

For a structure ∆, we write Emb(∆) for the set of self-embeddings of ∆.

Corollary 8. Let ∆ be an ω-categorical structure. Then the following spaces are compact:

• Emb(∆)/Aut(∆);
• End(∆)/Aut(∆);

• Pol(k)(∆)/Aut(∆), for all k ≥ 1.

Moreover, if A is a locally oligomorphic algebra and G is the group of all invertible unary

bijections in Clo(A), then Clo(A)
(k)
/G is compact, for all k ≥ 1.

Proof. Emb(∆), End(∆) and Pol(k)(∆) are closed subsets of ∆∆ and ∆∆k
, respectively, which

are invariant under Aut(∆). Since ∆ is ω-categorical, the action of Aut(∆) on ∆ is oligomor-
phic by the theorem of Engeler, Svenonius, and Ryll-Nardzewski (see [Hod93]), and hence the
first statement follows Lemma 7. The argument for the second statement is identical. �

Note that Pol(∆)/Aut(∆) is never compact since it is the disjoint union of the spaces

Pol(k)(∆)/Aut(∆).

Notation 9. Let D be a set, and let f be a k-ary function on D for some k ≥ 1. If C ∈ Dm×k

for some m ≥ 1, then we write f(C) for the tuple of size m obtained by applying f to each
row of the matrix C.

Lemma 10. Let A,B algebras of the same signature, where A is locally oligomorphic. As-
sume that the natural homomorphism ξ from Clo(A) onto Clo(B) exists and is continuous.
Then for all finite F ⊆ B and all k ≥ 1 there exist an m ≥ 1 and C ∈ Am×k such that for all
f, g ∈ Clo(k)(A) we have that f(C) = g(C) implies ξ(f)�F = ξ(g)�F .
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Proof. We denote the unique continuous extension of ξ to Clo(A) by ξ̄. So ξ̄ is a continuous

mapping from Clo(A) into Clo(B). Moreover, it is a homomorphism: if f ∈ Clo(A)
(n)

and

g1, . . . , gn ∈ Clo(A)
(l)

, where n, l ≥ 1, then there exist sequences (f i)i∈ω and (gij)i∈ω of

functions in Clo(A)(n) and in Clo(A)(l) which converge to f and gj , respectively, and so

ξ̄(f(g1, . . . , gn)) = ξ̄( lim
i→∞

(f i(gi1, . . . , g
i
l))) = lim

i→∞
ξ(f i(gi1, . . . , g

i
n))

= lim
i→∞

ξ(f i)(ξ(gi1), . . . , ξ(gin)) = ξ̄(f)(ξ̄(g1), . . . , ξ̄(gn)).

We will prove the existence of m ≥ 1 and C ∈ Am×k such that for all f, g ∈ Clo(A)
(k)

we
have that f(C) = g(C) implies ξ̄(f)�F = ξ̄(g)�F ; the lemma then clearly follows.

Recall that the basic open sets of Clo(A)
(k)

are precisely the sets of the form

OD,a := {f ∈ Clo(A)
(k) | f(D) = a},

for l ≥ 1, a matrix D ∈ Al×k and a vector a ∈ Al; the basic open sets of Clo(B)
(k)

are defined

similarly. Call a basic open set O of Clo(A)
(k)

an island iff ξ̄(f)�F = ξ̄(g)�F for all f, g ∈ O.

From the definition of the basic open sets it is clear that for f ∈ Clo(A)
(k)

, the set of all

h ∈ Clo(B)
(k)

which agree with ξ̄(f) on F is open in Clo(B). Hence, the continuity of ξ̄

implies that every f ∈ Clo(A)
(k)

is contained in a basic open island.

Write G for the group of unary invertible bijections in Clo(A). Then G is oligomorphic

as A is locally oligomorphic. Observe next that for any basic open island OD,a of Clo(A)
(k)

,

the set G ·OD,a = {αf |α ∈ G ∧ f ∈ OD,a} is an open subset of Clo(A)
(k)

which is invariant

under G ; hence, it defines an open subset VD,a of Clo(A)
(k)
/G , namely the set of all ∼G -

classes which have a representative in OD,a. So every class [f ]∼G is contained in some set

VD,a for a basic open island OD,a. Since Clo(A)
(k)
/G is compact by Proposition 6, there are

finitely many basic open islands OD1,a1 , . . . , ODn,an such that the corresponding sets VDi,ai

cover Clo(A)
(k)
/G . We then have that Clo(A)

(k)
is covered by the sets G · ODi,ai . Set

m := l1 + · · · + ln, where li denotes the number of rows of Di, for 1 ≤ i ≤ n. Let C be the
matrix of dimension m× k which is obtained by superposing the Di. To see that C satisfies

the desired property, let f, g ∈ Clo(A)
(k)

. Assume wlog that f ∈ G ·OD1,a1 ; then there exists
α ∈ G such that f(D1) = α(a1). Since f(C) = g(C), we have f(D1) = g(D1), and so also
g(D1) = α(a1). Hence, α−1f and α−1g are in OD1,a1 , implying ξ̄(α−1f)�F = ξ̄(α−1g)�F since
OD1,a1 is an island. Thus, ξ̄(f)�F = ξ̄(g)�F since ξ̄ is a homomorphism. �

Definition 11. We say that an algebra A of signature τ is finitely generated iff there exists
a finite subset F of the domain of A such that the only subalgebra of A containing F is A
itself; in other words, every element a of A can be written as tA(b1, . . . , bk) for some k ≥ 1,
a k-ary τ -term t, and b1, . . . , bk ∈ F .

Proposition 12. Let A,B be algebras of the same signature τ , where A is locally oligomor-
phic and B is finitely generated. If the natural homomorphism from Clo(A) onto Clo(B)
exists and is continuous, then B ∈ HSPfin(A).
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Proof. Let F = {b1, . . . , bk} be a set of generators of B, and let m ≥ 1 and C ∈ Am×k be
given by Lemma 10. Let S be the subalgebra of Am generated by the columns c1, . . . , ck of
C; so the elements of S are precisely those of the form tA

m
(c1, . . . , ck), for a k-ary τ -term

t. Define a function µ : S → B by setting µ(tA
m

(c1, . . . , ck)) := tB(b1, . . . , bk). Then µ is
well-defined, for if tA

m
(c1, . . . , ck) = sA

m
(c1, . . . , ck), then tB(b1, . . . , bk) = sB(b1, . . . , bk) by

the properties of C. Since B is generated by F , µ is onto. We claim that µ is moreover a
homomorphism; it then follows that B is the homomorphic image of the subalgebra S of Am,
and so B ∈ HSPfin(A). To this end, let f be any function symbol of τ , let n be its arity, and
let s1, . . . , sn ∈ S. Write si = tA

m

i (c1, . . . , ck) = tSi (c1, . . . , ck) for all 1 ≤ i ≤ n. Then

µ(fS(s1, . . . , sn)) = µ(fS(tS1 (c1, . . . , ck), . . . , tSn(c1, . . . , ck))) = µ(fS(tS1 , . . . , t
S
n)(c1, . . . , ck))

= µ((f(t1, . . . , tn))S(c1, . . . , ck)) = (f(t1, . . . , tn))B(b1, . . . , bk)

= fB(tB1 (b1, . . . , bk), . . . , tBn (b1, . . . , bk))

= fB(µ(s1), . . . , µ(sn)).

�

Proposition 13. Let B be an algebra which is locally oligomorphic. Then B is finitely
generated.

Proof. Let G be the permutation group of invertible unary bijections of Clo(B). Since B is
locally oligomorphic, the action of G on B has finitely many orbits. Picking a representative
from each orbit one obtains a generating set for B. �

Theorem 4 now follows from Propositions 5, 12, and 13. Note that in the theorem, it would
have been sufficient to assume that B be finitely generated rather than locally oligomorphic,
but since we are mainly interested in polymorphism clones of ω-categorical structures we have
chosen to formulate the theorem as it is. The following is the stronger variant which follows
from Propositions 5 and 12.

Theorem 14. Let A,B be algebras with the same signature, where A is locally oligomorphic
and B is finitely generated. Then the following three statements are equivalent.

(1) The natural homomorphism from Clo(A) onto Clo(B) exists and is continuous.
(2) B ∈ HSPfin(A).
(3) B is contained in the pseudovariety generated by A.

3. Pseudovariety Examples

We now give two examples examining the continuity condition on the natural homomor-
phism in Theorem 4. The first example is due to Keith Kearnes [Kea07], and demonstrates
that there are oligomorphic algebras A such that the variety generated by A contains finite
members which the pseudovariety generated by A does not contain.

Proposition 15. There are algebras A,B with common signature such that

• A is locally oligomorphic;
• B is finite;
• B ∈ HSP(A);
• B /∈ HSPfin(A).

Hence, the natural homomorphism from Clo(A) onto Clo(B) exists but is not continuous.
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Proof. Let the signature τ consist of unary function symbols (fi)i∈ω and (gi)i∈ω. Let A be
any algebra on ω with signature τ such that the functions fAi form a locally oligomorphic per-
mutation group, such that no gAi is injective, and such that fA0 is contained in the topological
closure of {gAi }i∈ω. Let B be the τ -algebra on {0, 1} such that fBi is the identity function
for all i ∈ ω and such that gBi is the constant function with value 0. It is easy to see that
the natural homomorphism from Clo(A) onto Clo(B) exists. However, it is not continuous
since fA0 is contained in the topological closure of {gAi }i∈ω, but fB0 is not contained in the
topological closure of {gBi }i∈ω. �

We remark that one can easily modify the previous example to obtain algebras A,B with
finite signature and the same properties. On the other hand, by taking an uncountable
signature, one can make A even oligomorphic.

The next example becomes relevant when one has (concrete) clones without a signature of
a corresponding algebra; this is for example the case for polymorphism clones of structures,
as in Theorem 1 and in the following sections. It shows that when we are given two such
clones C ,D , then it might happen that there exists a homomorphism from C onto D which
is not continuous, as well as a continuous clone homomorphism onto D . In other words,
when we make algebras out of C and D by matching the functions in C and D with an
appropriate functional signature τ , then we might do so in such a way that the natural
homomorphism from C onto D exists and is continuous, and in another way such that the
natural homomorphism from C onto D exists but is not continuous.

Proposition 16. There are algebras A,B such that

• A is oligomorphic;
• B is finite;
• there exists a non-continuous clone homomorphism from Clo(A) onto Clo(B);
• there exists a continuous clone homomorphism from Clo(A) onto Clo(B).

Proof. Let B be as in Proposition 15. Let A be the algebra on ω which has the following
three sets of functions.

F1 := {f ∈ ωω | f(0) = f(1) = 1 and (∀n ≥ 2 f(n) ≥ 2) and f is not surjective},
F2 := {f ∈ ωω | f(0) = f(1) = 1 and f�[2,∞) is a permutation on [2,∞]},
F3 := {f ∈ ωω | f(0) = 0 and f(1) = 1 and f is a permutation on ω}.

Now observe that if f ∈ Fi and g ∈ Fj , then f ◦ g ∈ Fmin(i,j). The function which
sends all elements of F1 ∪F2 to the constant function of B and all elements of F3 to the
identity induces a continuous homomorphism from Clo(A) onto Clo(B). On the other hand,
the function which sends all elements of F1 to the constant unary function of Clo(B) and all
elements of F2∪F3 to the identity in Clo(B) induces a non-continuous homomorphism from
Clo(A) onto Clo(B). �

4. Primitive Positive Interpretations

In this section we prove Theorem 1. Our definition of interpretations follows [Hod93] and
is standard, and will be recalled in the following. Let τ be a signature, and let Γ be a τ -
structure. If δ(x1, . . . , xk) is a first-order τ -formula with k free variables x1, . . . , xk, we write
δ(Γk) for the k-ary relation that is defined by δ on Γ.
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An atomic τ -formula is called unnested iff it is of the form x0 = x1, of the form x0 =
f(x1, . . . , xn), or of the form R(x1, . . . , xn), for some n-ary function symbol f ∈ τ or relation
symbol R ∈ τ , and variables x0, x1, . . . , xn. It is straightforward to see that every atomic τ -
formula is equivalent to a primitive positive τ -formula whose atomic subformulas are unnested
(see Theorem 2.6.1 in [Hod93]).

Definition 17. A σ-structure ∆ has a (first-order) interpretation I in a τ -structure Γ iff
there exists a natural number d ≥ 1, called the dimension of I, and

• a τ -formula δI(x1, . . . , xd) – called domain formula,
• for each unnested atomic σ-formula φ(y1, . . . , yk) a τ -formula φI(x1, . . . , xk) where the
xi denote disjoint d-tuples of distinct variables – called the defining formulas,
• a surjective map h : δI(Γd)→ ∆ – called coordinate map,

such that for every unnested atomic σ-formula φ and all tuples ai ∈ δI(Γd)

∆ |= φ(h(a1), . . . , h(ak)) ⇔ Γ |= φI(a1, . . . , ak) .

If the formulas δI and φI are primitive positive (existential positive), we say that the
interpretation I is primitive positive (existential positive). Note that the dimension d, the
set S := δI(Γd), and the coordinate map h determine the defining formulas up to logical
equivalence; hence, we sometimes denote an interpretation by I = (d, S, h).

4.1. Primitive positive interpretations and pseudovarieties. For ω-categorical struc-
tures Γ, primitive positive interpretability in Γ can be characterized in terms of the pseu-
dovariety generated by a polymorphism algebra of Γ. Via the results of the previous section,
pseudovarieties also correspond to topological clones – so they provide the link between prim-
itive positive interpretations and topological clones, which will be used to prove Theorem 1
in Section 4.2 (confer also Figure 1).

Definition 18. Let Γ be a structure, and A an algebra. Then A is called a polymorphism
algebra of Γ iff A and Γ have the same domain, and the set of operations of A is precisely
the set of polymorphisms of Γ.

Clearly, every structure Γ has a polymorphism algebra, which can be obtained by assigning
function names to the polymorphisms in some arbitrary way.

Theorem 19. Let Γ be a finite or ω-categorical structure, and let ∆ be an arbitrary structure.
Then the following are equivalent.

(1) for every polymorphism algebra C of Γ there is an algebra B ∈ HSPfin(C) such that
Clo(B) ⊆ Pol(∆);

(2) there is a polymorphism algebra C of Γ and an algebra B ∈ HSPfin(C) such that
Clo(B) ⊆ Pol(∆);

(3) ∆ has a primitive positive interpretation in Γ.

The equivalence between (1) and (2) emphasizes the fact that for our purposes, it does
not matter in what way we assign function names to the polymorphisms of Γ. Theorem 19
already appeared in the survey article [Bod08]; it has been inspired by results obtained in
the context of constraint satisfaction problems for finite structures [BKJ05]. Since we need
Theorem 19 in a more detailed form (Proposition 21), we provide its full proof here.

Let Γ be τ -structure with domain D, and R ⊆ Dk a k-ary relation. We say that R is
primitive positive definable in Γ iff there exists a primitive positive τ -formula φ(x1, . . . , xk)
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such that for all (c1, . . . , ck) ∈ Dk it is true that (c1, . . . , ck) ∈ R if and only if Γ satisfies
φ(c1, . . . , ck). We say that a τ -formula φ with k free variables is preserved by a function
f : Dl → D (over Γ) iff for all t11, . . . , t

k
l ∈ D, if Γ |= φ(t1i , . . . , t

k
i ) for all i ≤ l, then Γ |=

φ(f(t11, . . . , t
1
l ), . . . , f(tk1, . . . , t

k
l )). Note that f is a polymorphism of Γ if and only if f preserves

all atomic unnested τ -formulas over Γ. We say that a relation R ⊆ Dk (a function g : Dk → D)
is preserved by f iff f is a polymorphism of the structure (D;R) (of (D; g)).

We need the following characterization of primitive positive definability in ω-categorical
structures Γ; for finite structures Γ, this is due to [Gei68, BKKR69].

Theorem 20 (from [BN06]). Let Γ be finite or ω-categorical. Then a relation R has a
primitive positive definition in Γ if and only if R is preserved by all polymorphisms of Γ.

For example, whenD is the domain of an ω-categorical structure Γ and C is a polymorphism
algebra of Γ, then an equivalence relation relation R ⊆ D2 is a congruence of C if and only
if R is primitive positive definable in Γ.

Proof of Theorem 19. The implication from (1) to (2) follows from the existence of a poly-
morphism algebra C of Γ.

(2)⇒ (3). Write τ for the signature of C. There exists a finite number d ≥ 1, a subalgebra
S of Cd with domain S, and a surjective homomorphism h from S to B. We claim that ∆
has the primitive positive interpretation I := (d, S, h) in Γ. All operations of C preserve S
(viewed as a d-ary relation over Γ), since S is a subalgebra of Cd. Theorem 20 implies that S
has a primitive positive definition δ(x1, . . . , xd) in Γ, which becomes the domain formula δI .

Let ψ be an unnested atomic formula over the signature of ∆ and with k free variables
x1, . . . , xk. Let R ⊆ Cdk be the relation defined by

(a1
1, . . . , a

d
1, . . . , a

1
k, . . . , a

d
k) ∈ R ⇔ ∆ |= ψ(h(a1

1, . . . , a
d
1), . . . , h(a1

k, . . . , a
d
k)) ,

and let f ∈ τ be arbitrary. By assumption, fB preserves ψ. Since h is a homomorphism,
it follows that fC preserves R. We conclude that all polymorphisms of Γ preserve R. Since
Γ is ω-categorical and by Theorem 20, the relation R has a primitive positive definition in
Γ, which becomes the defining formula for ψ(x1, . . . , xk). So I is indeed a primitive positive
interpretation of ∆ in Γ.

To prove (3)⇒ (1), suppose that ∆ has a primitive positive interpretation I = (d, S, h) in
Γ. Let C be a polymorphism algebra of Γ, and let τ be the signature of C. We have to show
that HSPfin(C) contains a τ -algebra B such that all operations in B are polymorphisms of ∆.
The set S is preserved by all operations of Clo(C) = Pol(Γ), because it is primitive positive
definable in Γ by the domain formula of I (Theorem 20). Therefore, S induces a subalgebra
S of Cd. Let K be the kernel of the coordinate map h of I. Then for all tuples a, b ∈ S,
the 2d-tuple (a, b) satisfies =I in Γ if and only if (a, b) ∈ K. Since =I is primitive positive
definable in Γ, it is preserved by all operations of C by Theorem 20. It follows that K is a
congruence of S. As a consequence, h induces a τ -algebra B on its image, which equals the
domain of ∆, in such a way that h is a homomorphism from S onto B: let f ∈ τ be m-ary,
and let c1, . . . , cm be arbitrary elements of ∆. Then pick a1, . . . , am ∈ S such that h(ai) = ci,
and define fB(c1, . . . , cm) := h(fS(a1), . . . , fS(am)). This is well-defined since the kernel K
of h is a congruence of S, and by definition of B, h is a homomorphism from S onto B. It
remains to verify that for all f ∈ τ , fB is a polymorphism of ∆, i.e., every unnested atomic
formula φ over ∆ is preserved by fB. From the definitions of φI and fB, one easily sees that
fB preserves φ over ∆ if and only if fC preserves φI over Γ. Since fC is a polymorphism of
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Γ, and since φI is a primitive positive τ -formula over Γ, fC indeed preserves φI , and hence
fB preserves φ. �

The proof of Theorem 19 above gives more information about the link between polymor-
phism algebras and primitive positive interpretations, and we state it explicitly.

Proposition 21. Let Γ be a finite or ω-categorical structure with domain D, and let ∆ be an
arbitrary structure with domain B. Then for all d ≥ 1, S ⊆ Dd, and h : S → B the following
are equivalent.

(1) For every polymorphism algebra C of Γ the set S induces a subalgebra S of Cd, the
kernel of h is a congruence of S, and the homomorphic image B of S under h satisfies
Clo(B) ⊆ Pol(∆);

(2) ∆ has the primitive positive interpretation (d, S, h) in Γ.

4.2. Primitive positive interpretations and topological clones. We can now show the
first part of Theorem 1.

Proposition 22. Let Γ be finite or ω-categorical, and ∆ be arbitrary. Then ∆ has a primitive
positive interpretation in Γ if and only if ∆ is the reduct of a finite or ω-categorical structure
∆′ such that there exists a continuous clone homomorphism from Pol(Γ) to Pol(∆′) whose
image is dense in Pol(∆′).

Proof. Let C be a polymorphism algebra of Γ.
Suppose first that ∆ has a primitive positive interpretation in Γ. By Theorem 19 there is

an algebra B in the pseudovariety generated by C such that all operations of B are polymor-
phisms of ∆. Since Γ is finite or ω-categorical, C is finite or oligomorphic, and the algebra B is
finite or oligomorphic as well. By Theorem 4 the natural homomorphism ξ from Clo(C) onto
Clo(B) exists and continuous. Let ∆′ be the structure with the same domain as B that con-
tains all relations and all functions preserved by all operations of B. Since Clo(B) ⊆ Pol(∆′),
it follows that ∆′ is finite or ω-categorical by the theorem of Engeler, Svenonius, and Ryll-
Nardzewski. Moreover, it is easy to see and well-known that Pol(∆′) = Clo(B), so the image
of ξ is dense in Pol(∆′). Since all operations of B are polymorphisms of ∆, all relations and
functions of ∆ are relations and functions of ∆′, and this shows that ∆ is indeed a reduct of
∆′.

To prove the converse, let ∆′ be a finite or ω-categorical structure such that ∆ is a reduct of
∆′, and such that there is a continuous homomorphism ξ from Pol(Γ) to Pol(∆′) whose image
is dense in Pol(∆′). Let B be the algebra with the same domain as ∆, the same signature τ

as C, and where f ∈ τ denotes the operation ξ(fC) of Pol(∆′). Then Clo(B) = Pol(∆′) since
the image of ξ is dense in Pol(∆′). Hence, B is finite or locally oligomorphic since ∆′ is finite
or ω-categorical. We can therefore apply Theorem 4 to infer B ∈ HSPfin(C). By Theorem 19,
∆′ has a primitive positive interpretation in Γ. It follows that in particular ∆ has a primitive
positive interpretation in Γ. �

In Section 5 we will present an example showing that in Proposition 22 we cannot simply
require the continuous clone homomorphism ξ to be surjective. In particular, the image of a
closed oligomorphic clone under a continuous homomorphism need not be closed.

How do we recognize whether two structures Γ and ∆ have isomorphic topological poly-
morphism clones?
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Definition 23. Two structures Γ and ∆ such that Γ has a primitive positive interpretation
in ∆ and ∆ has a primitive positive interpretation in Γ are called mutually primitive positive
interpretable.

We will see in Section 5 that there are ω-categorical structures Γ and ∆ that are mutually
primitive positive interpretable and have non-isomorphic topological polymorphism clones. To
characterize the situation where Γ and ∆ have isomorphic topological polymorphism clones,
we need the following stronger notion.

Definition 24. Two structures Γ and ∆ are called primitive positive bi-interpretable1 iff there
is an interpretation I = (d1, S1, h1) of ∆ in Γ and an interpretation J = (d2, S2, h2) of Γ in
∆ such that the (1 + d1d2)-ary relation RIJ defined by

x = h1(h2(y1,1, . . . , y1,d2), . . . , h2(yd1,1, . . . , yd1,d2))

is primitive positive definable in ∆, and the (1 + d1d2)-ary relation RJI defined by

x = h2(h1(y1,1, . . . , y1,d1), . . . , h1(yd2,1, . . . , yd2,d1))

is primitive positive definable in Γ.

In the following, we write h1 ◦ h2 for the function defined by

(y1,1, . . . , y1,d2 , . . . , yd1,1, . . . , yd1,d2) 7→ h1(h2(y1,1, . . . , y1,d2), . . . , h2(yd1,1, . . . , yd1,d2)) .

Proposition 25. Let Γ and ∆ be finite or ω-categorical. Then the following are equivalent.

(1) Pol(Γ) and Pol(∆) are isomorphic as topological clones.
(2) Γ has a polymorphism algebra A, and ∆ has a polymorphism algebra B such that

HSPfin(A) = HSPfin(B).
(3) Γ and ∆ are primitive positive bi-interpretable.

Proof. We prove (1) ⇒ (2) ⇒ (3) ⇒ (1). Let A be a polymorphism algebra of Γ with
signature τ , and suppose that Pol(Γ) and Pol(∆) are isomorphic via a homeomorphism ξ.
Let B be the algebra with the same domain as ∆ and signature τ such that fB = ξ(fA)
for all f ∈ τ . Then B is a polymorphism algebra of ∆, and it follows from Theorem 4 that
HSPfin(A) = HSPfin(B). Thus (1) indeed implies (2).

(2) ⇒ (3). Suppose that Γ has a polymorphism algebra A and ∆ has a polymorphism
algebra B such that HSPfin(A) = HSPfin(B). So there is a d1 ≥ 1, a subalgebra S1 of Ad1 ,
and a surjective homomorphism h1 from S1 to B. Similarly, there is a d2 ≥ 1, a subalgebra S2

of Bd2 , and a surjective homomorphisms h2 from S2 to A. By Proposition 21, I := (d1, S1, h1)
is an interpretation of ∆ in Γ, and J := (d2, S2, h2) is an interpretation of Γ in ∆. Because
the statement is symmetric it suffices to show that RIJ is primitive positive definable in ∆.
Theorem 20 asserts that this is equivalent to showing that h1◦h2 is preserved by all operations
fB of B. So let k be the arity of fB, let D be the domain of ∆, and let bi = (bi1,1, . . . , b

i
d1,d2

)

be elements of Dd1d2 , for 1 ≤ i ≤ k. Then

fB((h1 ◦ h2)(b1), . . . , (h1 ◦ h2)(bk)) = h1

(
fA(h2(b11,1, . . . , b

1
1,d2), . . . , h2(bk1,1, . . . , b

k
1,d2)), . . . ,

fA(h2(b1d1,1, . . . , b
1
d1,d2), . . . , h2(bkd1,1, . . . , b

k
d1,d2))

)
= (h1 ◦ h2)(fB(b1, . . . , bk)) .

1Here we follow the analogous definition for first-order bi-interpretability as introduced in [AZ86].
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(3)⇒ (1). Suppose that Γ and ∆ are primitive positive bi-interpretable via an interpreta-
tion I = (d1, S1, h1) of ∆ in Γ and an interpretation J = (d2, S2, h2) of Γ in ∆. Let A be a
polymorphism algebra of Γ, and B be a polymorphism algebra of ∆. Then by Proposition 21
S1 induces an algebra S1 in Ad1 and h1 is a surjective homomorphism from S1 to an alge-
bra B′ satisfying Clo(B′) ⊆ Pol(∆). Similarly, S2 induces in Bd2 an algebra S2 and h2 is a
homomorphism from S2 onto an algebra A′ such that Clo(A′) ⊆ Pol(Γ). By Theorem 4 the
natural homomorphisms ξ1 from Clo(A) onto Clo(B′) and ξ2 from Clo(B) onto Clo(A′) exist
and are continuous. We will verify that ξ2ξ1 is the identity on Clo(A); the proof that ξ1ξ2

on Clo(B) is the identity is analogous. It then follows that ξ1 and ξ2 are isomorphisms and
homeomorphisms between Clo(A) and Clo(B).

Write τ for the signature of A. Write C for the τ -algebra on the domain of A obtained
by setting fC := (ξ2ξ1)(fA) for all f ∈ τ . Let f ∈ τ be k-ary; we show fC = fA. Let
a1, . . . , ak ∈ Γ be arbitrary. Since h2 ◦h1 is surjective onto Γ, there are bi = (bi1,1, . . . , b

i
d1,d2

) ∈
Γd1d2 such that ai = h2 ◦ h1(bi). Then

fC(a1, . . . , ak) = fC(h2 ◦ h1(b1), . . . , h2 ◦ h1(bk))

= h2

(
fB

′
(h1(b11,1, . . . , b

1
d1,1), . . . , h1(bk1,1, . . . , b

k
d1,1)), . . . ,

fB
′
(h1(b11,d2 , . . . , b

1
d1,d2), . . . , h1(bk1,d2 , . . . , b

k
d1,d2))

)
= h2 ◦ h1(fA(b1, . . . , bk))

= fA(h2 ◦ h1(b1), . . . , h2 ◦ h1(bk))

= fA(a1, . . . , ak)

where the second and third equations hold since h2 and h1 are algebra homomorphisms, and
the fourth equation holds because fA preserves h2 ◦ h1: this follows from Theorem 20 and
the assumption that RJI is primitive positive definable in Γ. Hence, fA = fC = ξ2ξ1(fA) for
all f ∈ τ , which is what we had to show. �

The following fact has been proven recently for finite algebras, independently by Marković,
Maroti, McKenzie [MMM], and by Davey, Jackson, Pitkethly, and Szabó [DJPS]. An algebra
A is called finitely related iff there exists a structure Γ with the same domain as A and with
finite relational signature such that Clo(A) = Pol(Γ). We present a generalization to all
locally oligomorphic algebras.

Corollary 26. Let A and B be finite or locally oligomorphic algebras such that Clo(A) and

Clo(B) are isomorphic as topological clones. Then A is finitely related if and only if B is
finitely related.

Proof. Suppose that A is finitely related; that is, there exists a structure Γ with finite re-
lational signature such that Clo(A) = Pol(Γ). Let ∆ be the relational structure with the
same domain as B that has all relations that are preserved by all operations of B. Then
Pol(∆) = Clo(B), and thus it suffices to show that ∆ has a reduct ∆′ with finite signature
and the same polymorphisms as ∆.

Note that the automorphisms of Γ and ∆ are exactly the unary invertible operations in
Clo(A) and Clo(B), respectively. Since A and B are finite or locally oligomorphic, Γ and ∆
are finite or ω-categorical. By Proposition 25, Γ and ∆ are primitive positive bi-interpretable.
Let I1 and I2 be the corresponding interpretations of Γ in ∆ and ∆ in Γ, respectively. Let σ
be the signature of ∆, and let σ′ ⊆ σ be the set of all relation symbols that appear in all the
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formulas of I1; since the signature τ of Γ is finite, σ′ is finite as well. Let ∆′ be the σ′-reduct
of ∆. We will show that there is a primitive positive definition of ∆ in ∆′; by Theorem 20,
this implies that ∆ and ∆′ have the same polymorphisms.

Let ψ be an atomic σ-formula with k free variables x1, . . . , xk. We specify an equivalent
primitive positive σ′-formula. Suppose that the interpretation I1 of Γ in ∆ is d1-dimensional,
and that the interpretation I2 of ∆ in Γ is d2-dimensional. Let φ(x, y1,1, . . . , yd1,d2) be the
primitive positive formula that defines RI2I1 in ∆. Note that the primitive positive τ -formula
ψI2 has kd2 free variables; we can assume without loss of generality that ψI2 only contains
unnested atomic formulas as conjuncts. Let (ψI2)I1 be the primitive positive σ′-formula
obtained from ψI2 by replacing each conjunct ψ′ of ψI2 by (ψ′)I1 , and pushing existential
quantifiers to the front. Then the formula

∃y1
1,1, . . . , y

k
d1,d2

( ∧
i≤k

φ(xi, y
i
1,1, . . . , y

i
d1,d2) ∧ (ψI2)I1(y1

1,1, . . . , y
1
d1,d2 , . . . , y

k
1,1, . . . , y

k
d1,d2)

)
is a primitive positive σ′-formula that defines ψ(x1, . . . , xk) over ∆′. �

5. Primitive Positive Interpretation Examples

Example 1. Let Γ be the structure with domain N2 and a single binary relation M :=
{((u1, u2), (v1, v2)) | u2 = v1 and u1, u2, v1, v2 ∈ N}. Then Γ and the structure ∆ := (N; =)
are primitive positive bi-interpretable. The interpretation I of Γ in ∆ is 2-dimensional, the
domain formula is true, and the coordinate map h is the identity. The interpretation J of ∆
in Γ is 1-dimensional, the domain formula is true, and the coordinate map g sends (x, y) to
x. Both interpretations are clearly primitive positive. Then g(h(x, y)) = z is definable by the
formula x = z, and h(g(u), g(v)) = w is primitive positive definable by

M(w, v) ∧ ∃p (M(u, p) ∧M(w, p)) .

Example 2. An instructive example of two structures Γ and ∆ that are not primitive positive
bi-interpretable, even though they are mutually primitive positive interpretable, is

Γ :=
(
N2; {((u1, u2), (v1, v2)) |u1 = v1 and u1, u2, v1, v2 ∈ N}

)
and ∆ := (N; =). The two structures are not even first-order bi-interpretable. To see this,
observe that the binary relation of Γ is an equivalence relation, and that Aut(Γ) has a proper
closed normal subgroup that is distinct from the one-element group, namely the set of all
permutations that setwise fix the equivalence classes of this equivalence relation. On the
other hand, Aut(∆) is the symmetric permutation group of a countably infinite set, which
has no proper closed normal subgroup that is distinct from the one-element group (it has
exactly four proper normal subgroups [SS33], of which only the one-element subgroup is
closed).

Example 3. The image of a continuous homomorphism ξ from Pol(Γ) to Pol(∆) might be
dense in Pol(∆) without being surjective, for ω-categorical structures Γ and ∆. The basic
idea of this example is due to Dugald Macpherson, and can be found in [Hod93] (on page 354).
Let Γ be the structure (Q;<,P, P4) where

• < is the usual strict order of the rational numbers,
• P ⊆ Q is such that both P and Q := Q \ P are dense in (Q;<), and
• P4 is the relation {(x1, x2, x3, x4) ∈ Q4 | x1 = x2 or x3 = x4}.



TOPOLOGICAL BIRKHOFF 17

It is a well-known fact that all polymorphisms of Γ are essentially unary2 since they have to
preserve P4 (see e.g. Lemma 5.3.2 in [Bod12]). The substructure ∆ induced by P in Γ has the
primitive positive interpretation (1, P, id) in Γ. And indeed, since all functions of Pol(Γ) are
essentially unary, the mapping which sends every unary function f of Pol(Γ) to f�P induces
a function ξ from Pol(Γ) to Pol(∆) which is a continuous homomorphism and whose image
is dense in Pol(∆). We claim that ξ is not surjective.

A Dedekind cut (S, T ) of P is a partition of P into subsets S, T with the property that for all
s ∈ S, t ∈ T we have s < t. Those cuts are obtained by choosing either an irrational number
r ∈ R\Q or an element r ∈ Q, and setting S := {a ∈ P | a < r} and T := {a ∈ P | a > r}. Let
(S1, T1) be a Dedekind cut obtained from an element q in Q, and let (S2, T2) be a Dedekind
cut obtained from an irrational number i. By a standard back-and-forth argument, there
exists an α ∈ Aut((P,<)) that maps S1 to S2 and T1 to T2. Suppose for contradiction that
there is β ∈ Aut(Γ) with β�P = α. Then s < β(q) < t for all s ∈ S2, t ∈ T2, contradicting
the irrationality of i.

6. Constraint Satisfaction Problems

Primitive positive interpretations play an important role in the study of the computational
complexity of constraint satisfaction problems. For a structure Γ with finite relational signa-
ture τ , the constraint satisfaction problem for Γ (denoted by CSP(Γ)) is the computational
problem to decide whether a given primitive positive τ -sentence (that is, a primitive posi-
tive formula without free variables) is true in Γ. For example, when Γ = ({0, 1, 2}; 6=), then
CSP(Γ) is the 3-coloring problem. When Γ = (Q;<), then CSP(Γ) is the acyclicity problem
for finite directed graphs. Many computational problems studied in qualitative reasoning in
artificial intelligence, but also in many other areas of theoretical computer science, can be
formulated as constraint satisfaction problems for ω-categorical structures.

The subclass of problems of the form CSP(Γ) for finite Γ attracted considerable interest
in recent years. Feder and Vardi [FV99] conjectured that such CSPs are either in P, or
NP-complete. A very fruitful approach to this conjecture is the so-called universal-algebraic
approach. One of the basic insights of this approach is that for finite Γ, the complexity of
CSP(Γ) only depends on the pseudovariety generated by any of the polymorphism algebras
of Γ. For ω-categorical Γ, the same statement follows from Theorem 19 and the following,
which can be seen as a different formulation of results obtained in [BKJ05].

Theorem 27 (from [Bod08]). Let Γ and ∆ be structures with finite relational signatures. If
there is a primitive positive interpretation of Γ in ∆, then there is a polynomial-time reduction
from CSP(Γ) to CSP(∆).

For finite structures Γ, this also shows that the complexity of CSP(Γ) is captured by the
abstract polymorphism clone of Γ; see Theorem 3. In other words, if Γ and ∆ are such that
their abstract polymorphism clones are isomorphic, then CSP(Γ) and CSP(∆) are polynomial-
time equivalent.

Corollary 2 gives a generalization of this fact for ω-categorical structures: the complexity
of CSP(Γ) only depends on the topological polymorphism clone of Γ. In the following we
explain that this is not only a fact of theoretical interest, but that Theorem 1 also provides
a practical tool to prove hardness of CSP(Γ). An example will be given in Section 7.

2A function f : Dl → D is called essentially unary iff there exists an i ≤ l and a function g : D → D such
that f(x1, . . . , xl) = g(xi) for all x1, . . . , xl ∈ D.
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Note that all algebras with domain of size at least two and with the property that all their
operations are projections have, up to isomorphism, the same abstract clone, which we denote
by 1. For 1 ≤ i ≤ k, we denote the element of 1 which correponds to the k-ary projection
onto the i-th coordinate by πki . So {πki | i, k ∈ N, i ≤ k} is the set of elements of the abstract
clone 1. Note that the topology on 1 is the discrete topology since 1 has only finitely many
elements for each arity.

An example of a structure whose polymorphism clone is isomorphic to 1 is the structure
({0, 1}; 1IN3), where 1IN3 := {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. The CSP for this structure is the
well-known positive 1-IN-3-3SAT problem, which can be found in [GJ78] and which is NP-
complete.

Theorem 28. Let Γ be an ω-categorical structure. Then the following are equivalent.

(1) All finite structures have a primitive positive interpretation in Γ.
(2) The structure ({0, 1}; 1IN3) has a primitive positive interpretation in Γ.
(3) Γ has a polymorphism algebra C such that the pseudovariety generated by C contains

a two-element algebra A all of whose operations are projections.
(4) There exists a continuous homomorphism from Pol(Γ) to 1.

If one of those conditions applies, and Γ has a relational signature, then Γ has a finite signa-
ture reduct Γ′ such that CSP(Γ′) is NP-hard.

Proof. The equivalence of (1) and (2) with (4) follows from Theorem 1, and the equivalence
of (3) with (4) from Theorem 4. We remark that the equivalence between (1), (2) and (3)
can also be found in [Bod12].

To prove the statement about NP-hardness, let Γ′ be the reduct of Γ that contains ex-
actly those relations that appear in the formulas of the primitive positive interpretation
of ({0, 1}; 1IN3) in Γ. Note that Γ′ has finite signature, and still interprets ({0, 1}; 1IN3)
primitively positively. NP-hardness of CSP(Γ′) now follows from the mentioned fact that
CSP(({0, 1}; 1IN3)) is NP-hard, and Theorem 27. �

7. Constraint Satisfaction Example

Consider the structure Γ = (Q; Betw) where Betw is the ternary relation {(x, y, z) ∈
Q3 | x < y < z ∨ z < y < x}. Then CSP(Γ) is a well-known NP-complete problem known
as the Betweenness problem [Opa79, GJ78]. Applying the method presented in Section 6,
we will show NP-hardness of this problem by exhibiting a continuous clone homomorphism ξ
from Pol(Γ) to 1.

In the following, for k ≥ 1 and x, y ∈ Γk, we write 6=(x, y) iff xj 6= yj for all 1 ≤ j ≤ k.
Claim. Let k ≥ 1 and let f ∈ Pol(Γ) be k-ary. Then one of the following holds:

(1) there is 1 ≤ d ≤ k such that f(x) < f(y) for all x, y ∈ Γk with 6=(x, y) and xd < yd;
(2) there is 1 ≤ d ≤ k such that f(x) > f(y) for all x, y ∈ Γk with 6=(x, y) and xd < yd.

Since d is clearly unique for each f , setting ξ(f) := πkd defines a function ξ from Pol(Γ) onto 1.
It is straightforward to check that ξ is a homomorphism. To see that ξ is continuous, observe
that for 1 ≤ d ≤ k the preimage of any πkd under ξ equals the intersection of Pol(Γ) with
the set of all k-ary functions on Γ which satisfy either (1) or (2); since the set of functions
satisfying (1) or (2) is closed, so is ξ−1[{πki }].

So we are left with the proof of the claim above. Observe first that either f(0, . . . , 0) <
f(1, . . . , 1) or f(0, . . . , 0) > f(1, . . . , 1) holds: for if the two values were equal, this would
contradict Betw(f(0, . . . , 0), f(1, . . . , 1), f(2, . . . , 2)). We will now show that f(0, . . . , 0) <
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f(1, . . . , 1) implies (1); then by symmetry of the statements, f(0, . . . , 0) > f(1, . . . , 1) implies
(2).

Observe the following: whenever a, a′, b, b′ ∈ Γk are so that 6=(a, a′), 6=(b, b′), and ai < a′i iff
bi < b′i for all 1 ≤ i ≤ k, then f(a) < f(a′) iff f(b) < f(b′). To see this, suppose without loss of
generality that f(a) < f(a′) and f(b) ≥ f(b′). Pick for all 1 ≤ i ≤ k any ci < min(ai, a

′
i, bi, b

′
i)

if ai < a′i, and ci > max(ai, a
′
i, bi, b

′
i) otherwise. Pick moreover di < min(ai, a

′
i, bi, b

′
i) if

ai > a′i, and di > max(ai, a
′
i, bi, b

′
i) otherwise. Now Betw(ci, ai, a

′
i) for all 1 ≤ i ≤ k and

f(a) < f(a′) imply f(c) < f(a); likewise, Betw(ai, a
′
i, di) for all 1 ≤ i ≤ k and f(a) < f(a′)

imply f(a′) < f(d), and so f(c) < f(d). However, the same argument with b and b′ yields
f(d) < f(c), a contradiction.

Now suppose that (1) does not hold, and let c0 ∈ Γk be arbitrary. We will inductively
define tuples c1, . . . , ck ∈ Γk such that f(c0) ≥ f(c1) ≥ · · · ≥ f(ck) and such that c0

i < cki
for all 1 ≤ i ≤ k, which contradicts our observation since f(0, . . . , 0) < f(1, . . . , 1). For
0 ≤ j < k, we define cj+1 from cj as follows. Consider x, y ∈ Γk witnessing the failure of (1)
for d = j; that is, 6=(x, y), xj < yj , and f(x) ≥ f(y) hold. Select t ∈ Γk such that 6=(cj , t)

and such that cji < ti iff xi < yi for all 1 ≤ i ≤ k. Then cjj < tj , and the observation shows

that f(cj) ≥ f(t). For 1 ≤ i ≤ k, set cj+1
i := cji + k if ti > cji , and cj+1

i := cji − 1 otherwise.
By our observation, f(cj) ≥ f(cj+1); and since in the process every coordinate is increased
by k at least once, and decreased by 1 at most k− 1 times, we have c0

i < cki for all 1 ≤ i ≤ k.

8. Discussion

Our results demonstrate that many properties of an ω-categorical structure Γ are already
determined by the polymorphism clone of Γ viewed as a topological clone, i.e., viewed as an
abstract algebraic structure additionally equipped with the topology of pointwise convergence.
One might ask which properties of Γ are captured by the abstract algebraic structure of the
polymorphism clone of Γ without the topology. Observe that for finite Γ, the two concepts
coincide.

We would like to point out that there is a considerable literature about ω-categorical
structures where the topology on the automorphisms is uniquely determined by the abstract
automorphism group; this is for instance the case if Aut(Γ) has the so-called small index
property, that is, all subgroups of countable index are open. (This is equivalent to saying that
all homomorphisms from Aut(Γ) to S∞, the symmetric group on a countably infinite set, are
continuous.) The small index property has for instance been shown

• for Aut(N; =) by Dixon, Neumann, and Thomas [DPT86];
• for Aut(Q;<) and for the automorphism group of the atomless Boolean algebra by

Truss [Tru89];
• for the automorphism groups of the random graph [HHLS93];
• for all ω-categorical ω-stable structures [HHLS93];
• for the automorphism groups of the Henson graphs by Herwig [Her98].

An example of two ω-categorical structures (with infinite relational signature) whose auto-
morphism groups are isomorphic as abstract groups but not as topological groups can be
found in [EH90].

It is well-known that every Baire measurable homomorphism between Polish groups is con-
tinuous (see e.g. [Kec95]). So let us remark that there exists a model of ZF+DC where every
set is Baire measurable [She84]. For the structures Γ that we need to model computational
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problems as CSP(Γ) it therefore seems fair to assume that the abstract automorphism group
of Γ always determines the topological automorphism group (thanks to Todor Tsankov for
pointing this out to us; consistency of this statement with ZF has already been observed
in [Las91]). However, this does not answer the question in which situations the abstract
polymorphism clone determines the topological polymorphism clone.

In Theorem 3, if B ∈ HSPfin(A), then B is in fact a homomorphic image of a subalgebra

of An, where n = |A||B|; that is, we have an explicit bound for the size of the power of A
we have to take in order to represent B. Peter Cameron has asked us whether a bound was
known also in the locally oligomorphic case, i.e., in Theorem 4. By its nature of a compactness
argument, our proof does not provide such a bound, and it would be interesting to find out
whether a bound could be given also in our case.
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[Las91] Daniel Lascar. Autour de la propriété du petit indice. Proceedings of the London Mathematical

Society, 62(1):25–53, 1991.
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