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The clone lattice

X . . . base set of size κ (here: infinite).

O(n) = XXn

= {f : Xn → X} . . . n-ary functions on X.

O =
⋃

n≥1 O(n) . . . finitary operations on X.
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X . . . base set of size κ (here: infinite).

O(n) = XXn

= {f : Xn → X} . . . n-ary functions on X.

O =
⋃

n≥1 O(n) . . . finitary operations on X.

C ⊆ O clone iff

C contains the projections and

C closed under composition.
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O(n) = XXn

= {f : Xn → X} . . . n-ary functions on X.
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∀n ≥ 1∀1 ≤ k ≤ n (C contains πn
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The clone lattice

X . . . base set of size κ (here: infinite).

O(n) = XXn

= {f : Xn → X} . . . n-ary functions on X.

O =
⋃

n≥1 O(n) . . . finitary operations on X.

C ⊆ O clone iff

∀n ≥ 1∀1 ≤ k ≤ n (C contains πn

k
(x1, . . . , xn) = xk)

∀f ∈ C ∀g1, . . . , gn ∈ C (f(g1, . . . , gn) ∈ C )

Cl(X) . . . lattice of clones (with inclusion).

Problem. Describe Cl(X).

Fact. X infinite → |Cl(X)| = 22κ

.

Monoids above the permutations – p. 2/15



Clones above O (1)

Thm. (Gavrilov) κ = ℵ0. There exist exactly 2 precomplete
clones Pol(T1),Pol(T2) above O(1).
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Clones above O (1)

Thm. (Gavrilov) κ = ℵ0. There exist exactly 2 precomplete
clones Pol(T1),Pol(T2) above O(1).

Thm. (Goldstern, Shelah) On some larger X, the same is
true. On most larger X, there exist 22κ

precomplete clones
above O(1).

Thm. (Goldstern, Shelah) κ = ℵ0. There exist 22ℵ0 clones
above O(1).
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Clones above the permutations

S . . . permutations of X.
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Clones above the permutations

S . . . permutations of X.
Thm. κ regular. The precomplete clones containing S but not
O(1) are the polymorphism clones of the following monoids:

1. A = {f ∈ O(1) : f−1[{y}] is small for almost all y ∈ X}

2. B = {f ∈ O(1) : f−1[{y}] is small for all y ∈ X}

3. E = {f ∈ O(1) : f is almost surjective}

4. F = {f ∈ O(1) : f is almost surjective or constant}

5. Gλ = {f ∈ O(1) : if A ⊆ X has cardinality λ then
|X \ f [X \ A]| ≥ λ} (1 ≤ λ ≤ ω)
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Clones above the permutations

S . . . permutations of X.
Thm. κ regular. The precomplete clones containing S but not
O(1) are the polymorphism clones of the following monoids:

1. A = {f ∈ O(1) : f−1[{y}] is small for almost all y ∈ X}

2. B = {f ∈ O(1) : f−1[{y}] is small for all y ∈ X}

3. E = {f ∈ O(1) : f is almost surjective}

4. F = {f ∈ O(1) : f is almost surjective or constant}

5. Gλ = {f ∈ O(1) : if A ⊆ X has cardinality λ then
|X \ f [X \ A]| ≥ λ} (1 ≤ λ ≤ ω)

Cor. If κ = ℵα, the number of such clones is max(ℵ0, |α|).
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Maximal clones

Question. Can we determine [S ,O] \ [O(1),O]?

u
J

22κ

u
S

≤ κ

u
O(1)

2 or 22κ

or ?

22κ

uO
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Monoids above S

Set |X| = κ = ℵα, λ = max(|α|,ℵ0).

λ is the number of cardinals below κ.
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Prop. There are at most 22λ

monoids above S (elements of
[S ,O(1)]).

Monoids above the permutations – p. 6/15



Monoids above S

Set |X| = κ = ℵα, λ = max(|α|,ℵ0).

λ is the number of cardinals below κ.

Prop. There are at most 22λ

monoids above S (elements of
[S ,O(1)]).

Thm. There is an order embedding of the power set of 2λ into
[S ,O(1)].
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Monoids above S

Set |X| = κ = ℵα, λ = max(|α|,ℵ0).

λ is the number of cardinals below κ.

Prop. There are at most 22λ

monoids above S (elements of
[S ,O(1)]).

Thm. There is an order embedding of the power set of 2λ into
[S ,O(1)].

Cor. |[S ,O(1)]| = 22λ

.
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Many monoids containing S

v

{id}

v

S

v O(1)

2
2λ
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Precomplete monoids

Thm. (Gavrilov) |X| = ℵ0. The precomplete submonoids of
O(1) containing S are A , Gℵ0

, G1, M and N , where

M = {f ∈ O(1) : f surjective or not injective}

and
N = {f ∈ O(1) : f almost surjective or

not almost injective}.
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Maximal monoids above S (κ = ℵ0)

v
S

v O(1)

2
2ℵ0

v v v v v

G1 Gℵ0
A M1 Mℵ0

������

�
��

Q
QQ

PPPPPP
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Precomplete monoids

Thm. κ regular: The precomplete submonoids of O(1) which
contain S are exactly A and Gλ and Mλ for λ = 1 and
ℵ0 ≤ λ ≤ κ, λ a cardinal, where

Mλ = {f ∈ O(1) : f λ-surjective or

not λ-injective}.
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Precomplete monoids

Thm. κ regular: The precomplete submonoids of O(1) which
contain S are exactly A and Gλ and Mλ for λ = 1 and
ℵ0 ≤ λ ≤ κ, λ a cardinal, where

Mλ = {f ∈ O(1) : f λ-surjective or

not λ-injective}.

κ singular: Replace A by A ′, where

A ′ = {f ∈ O(1) :∃λ < κ

( {x ∈ X : |f−1[x]| > λ} small ) }.
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Maximal monoids above S

v
S

v O(1)

2
2λ

v · · · v v v · · · v

G1 Gκ A M1 Mκ
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Intervals below precomplete monoids

Question. G precomplete monoid. |[S ,G ]| =?
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Thm. κ regular: |[S ,G ]| = 22λ

for every precomplete monoid
above S .
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Intervals below precomplete monoids

Question. G precomplete monoid. |[S ,G ]| =?

Thm. κ regular: |[S ,G ]| = 22λ

for every precomplete monoid
above S .

In fact, |[S ,D ]| = 22λ

, where D is the intersection of the
precomplete elements of [S ,O(1)].
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Intervals below precomplete monoids

Question. G precomplete monoid. |[S ,G ]| =?

Thm. κ regular: |[S ,G ]| = 22λ

for every precomplete monoid
above S .

In fact, |[S ,D ]| = 22λ

, where D is the intersection of the
precomplete elements of [S ,O(1)].

κ singular and λ < κ: Same.
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Interval cardinalities (κ regular)

v
S

v O(1)

2
2λ

v · · · v v v · · · v

v D

G1 Gκ A M1 Mκ
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Interval cardinalities (κ singular)

κ singular and λ = κ:
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Interval cardinalities (κ singular)

κ singular and λ = κ:

|[S ,G ]| = 22κ

for every precomplete monoid above S except
A ′.
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Interval cardinalities (κ singular)

κ singular and λ = κ:

|[S ,G ]| = 22κ

for every precomplete monoid above S except
A ′.

|[S ,A ′]| = 2κ<κ

.

Fact. If GCH holds, then 2(κ<κ) = 22κ

.
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Interval cardinalities (κ singular)

κ singular and λ = κ:

|[S ,G ]| = 22κ

for every precomplete monoid above S except
A ′.

|[S ,A ′]| = 2κ<κ

.

Fact. If GCH holds, then 2(κ<κ) = 22κ

.

Fact. It is consistent with ZFC that 2κ < 2(κ<κ) < 22κ

.

Cor. Whether or not |[S ,A ′]| = |[S ,M1]| is independent from
ZFC.
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Interval cardinalities (κ singular)

v
S

v O(1)

2κ<κ

2
2κ

2
2κ

v · · · v v v · · · v

G1 Gκ A ′ M1 Mκ
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