Monoids above the permutations

Michael Pinsker

marula@gmx.at

Hitotsubashi University Tokyo

Support through JSPS

 $X \dots$ base set of size κ (here: infinite). $\mathscr{O}^{(n)} = X^{X^n} = \{f : X^n \to X\} \dots n\text{-ary functions on } X.$ $\mathscr{O} = \bigcup_{n \ge 1} \mathscr{O}^{(n)} \dots$ finitary operations on X.

 $X \dots$ base set of size κ (here: infinite).

 $\mathscr{O}^{(n)} = X^{X^n} = \{f : X^n \to X\} \dots$ *n*-ary functions on *X*. $\mathscr{O} = \bigcup_{n \ge 1} \mathscr{O}^{(n)} \dots$ finitary operations on *X*.

 $\mathscr{C}\subseteq \mathscr{O} \text{ clone iff }$

 $X \dots$ base set of size κ (here: infinite).

 $\mathscr{O}^{(n)} = X^{X^n} = \{f : X^n \to X\} \dots$ *n*-ary functions on *X*. $\mathscr{O} = \bigcup_{n \ge 1} \mathscr{O}^{(n)} \dots$ finitary operations on *X*.

- $\mathscr{C}\subseteq \mathscr{O} \text{ clone iff }$
 - Contains the projections and
- Sclosed under composition.

 $X \dots$ base set of size κ (here: infinite).

 $\mathscr{O}^{(n)} = X^{X^n} = \{f : X^n \to X\} \dots$ *n*-ary functions on *X*. $\mathscr{O} = \bigcup_{n \ge 1} \mathscr{O}^{(n)} \dots$ finitary operations on *X*.

$\mathscr{C}\subseteq \mathscr{O} \text{ clone iff }$

- $\forall n \ge 1 \,\forall 1 \le k \le n \; (\mathscr{C} \text{ contains } \pi_k^n(x_1, \dots, x_n) = x_k)$

 $X \dots$ base set of size κ (here: infinite).

 $\mathscr{O}^{(n)} = X^{X^n} = \{f : X^n \to X\} \dots$ *n*-ary functions on *X*. $\mathscr{O} = \bigcup_{n \ge 1} \mathscr{O}^{(n)} \dots$ finitary operations on *X*.

$\mathscr{C}\subseteq \mathscr{O} \text{ clone iff }$

• $\forall n \ge 1 \,\forall 1 \le k \le n \; (\mathscr{C} \text{ contains } \pi_k^n(x_1, \dots, x_n) = x_k)$

Cl(X)... lattice of clones (with inclusion).

 $X \dots$ base set of size κ (here: infinite).

 $\mathscr{O}^{(n)} = X^{X^n} = \{f : X^n \to X\} \dots$ *n*-ary functions on *X*. $\mathscr{O} = \bigcup_{n \ge 1} \mathscr{O}^{(n)} \dots$ finitary operations on *X*.

$\mathscr{C}\subseteq \mathscr{O} \text{ clone iff }$

 $\forall n \ge 1 \,\forall 1 \le k \le n \; (\mathscr{C} \text{ contains } \pi_k^n(x_1, \dots, x_n) = x_k)$

•
$$\forall f \in \mathscr{C} \forall g_1, \dots, g_n \in \mathscr{C} (f(g_1, \dots, g_n) \in \mathscr{C})$$

Cl(X)... lattice of clones (with inclusion). **Problem.** Describe Cl(X).

 $X \dots$ base set of size κ (here: infinite).

 $\mathscr{O}^{(n)} = X^{X^n} = \{f : X^n \to X\} \dots$ *n*-ary functions on *X*. $\mathscr{O} = \bigcup_{n \ge 1} \mathscr{O}^{(n)} \dots$ finitary operations on *X*.

$\mathscr{C}\subseteq \mathscr{O} \text{ clone iff }$

•
$$\forall n \ge 1 \,\forall 1 \le k \le n \; (\mathscr{C} \text{ contains } \pi_k^n(x_1, \dots, x_n) = x_k)$$

•
$$\forall f \in \mathscr{C} \forall g_1, \dots, g_n \in \mathscr{C} (f(g_1, \dots, g_n) \in \mathscr{C})$$

Cl(X)... lattice of clones (with inclusion). **Problem.** Describe Cl(X).

Fact. X infinite $\rightarrow |Cl(X)| = 2^{2^{\kappa}}$.

Clones above $\mathcal{O}^{(1)}$

Thm. (Gavrilov) $\kappa = \aleph_0$. There exist exactly 2 precomplete clones $Pol(T_1), Pol(T_2)$ above $\mathcal{O}^{(1)}$.

Clones above $\mathscr{O}^{(1)}$

Thm. (Gavrilov) $\kappa = \aleph_0$. There exist exactly 2 precomplete clones $Pol(T_1), Pol(T_2)$ above $\mathcal{O}^{(1)}$.

Thm. (Goldstern, Shelah) On some larger *X*, the same is true.

Clones above $\mathcal{O}^{(1)}$

Thm. (Gavrilov) $\kappa = \aleph_0$. There exist exactly 2 precomplete clones $Pol(T_1), Pol(T_2)$ above $\mathcal{O}^{(1)}$.

Thm. (Goldstern, Shelah) On some larger *X*, the same is true. On most larger *X*, there exist $2^{2^{\kappa}}$ precomplete clones above $\mathscr{O}^{(1)}$.

Clones above $\mathscr{O}^{(1)}$

Thm. (Gavrilov) $\kappa = \aleph_0$. There exist exactly 2 precomplete clones $Pol(T_1), Pol(T_2)$ above $\mathcal{O}^{(1)}$.

Thm. (Goldstern, Shelah) On some larger *X*, the same is true. On most larger *X*, there exist $2^{2^{\kappa}}$ precomplete clones above $\mathscr{O}^{(1)}$.

Thm. (Goldstern, Shelah) $\kappa = \aleph_0$. There exist $2^{2^{\aleph_0}}$ clones above $\mathscr{O}^{(1)}$.

Clones above the permutations

 \mathscr{S} ... permutations of X.

Clones above the permutations

 \mathscr{S} ... permutations of X.

Thm. κ regular. The precomplete clones containing \mathscr{S} but not $\mathscr{O}^{(1)}$ are the polymorphism clones of the following monoids:

1.
$$\mathscr{A} = \{ f \in \mathscr{O}^{(1)} : f^{-1}[\{y\}] \text{ is small for almost all } y \in X \}$$

2.
$$\mathscr{B} = \{ f \in \mathscr{O}^{(1)} : f^{-1}[\{y\}] \text{ is small for all } y \in X \}$$

3. $\mathscr{E} = \{ f \in \mathscr{O}^{(1)} : f \text{ is almost surjective} \}$

4. $\mathscr{F} = \{ f \in \mathscr{O}^{(1)} : f \text{ is almost surjective or constant} \}$

5. $\mathscr{G}_{\lambda} = \{ f \in \mathscr{O}^{(1)} : \text{if } A \subseteq X \text{ has cardinality } \lambda \text{ then } |X \setminus f[X \setminus A]| \ge \lambda \}$ $(1 \le \lambda \le \omega)$

Clones above the permutations

 \mathscr{S} ... permutations of X.

Thm. κ regular. The precomplete clones containing \mathscr{S} but not $\mathscr{O}^{(1)}$ are the polymorphism clones of the following monoids:

1.
$$\mathscr{A} = \{ f \in \mathscr{O}^{(1)} : f^{-1}[\{y\}] \text{ is small for almost all } y \in X \}$$

2.
$$\mathscr{B} = \{ f \in \mathscr{O}^{(1)} : f^{-1}[\{y\}] \text{ is small for all } y \in X \}$$

3. $\mathscr{E} = \{ f \in \mathscr{O}^{(1)} : f \text{ is almost surjective} \}$

4. $\mathscr{F} = \{ f \in \mathscr{O}^{(1)} : f \text{ is almost surjective or constant} \}$

5. $\mathscr{G}_{\lambda} = \{ f \in \mathscr{O}^{(1)} : \text{if } A \subseteq X \text{ has cardinality } \lambda \text{ then } |X \setminus f[X \setminus A]| \ge \lambda \} \quad (1 \le \lambda \le \omega)$

Cor. If $\kappa = \aleph_{\alpha}$, the number of such clones is $\max(\aleph_0, |\alpha|)$.

Maximal clones

Set
$$|X| = \kappa = \aleph_{\alpha}$$
, $\lambda = \max(|\alpha|, \aleph_0)$.

 λ is the number of cardinals below κ .

Set
$$|X| = \kappa = \aleph_{\alpha}$$
, $\lambda = \max(|\alpha|, \aleph_0)$.

 λ is the number of cardinals below κ .

Prop. There are at most $2^{2^{\lambda}}$ monoids above \mathscr{S} (elements of $[\mathscr{S}, \mathscr{O}^{(1)}]$).

Set $|X| = \kappa = \aleph_{\alpha}$, $\lambda = \max(|\alpha|, \aleph_0)$.

 λ is the number of cardinals below κ .

Prop. There are at most $2^{2^{\lambda}}$ monoids above \mathscr{S} (elements of $[\mathscr{S}, \mathscr{O}^{(1)}]$).

Thm. There is an order embedding of the power set of 2^{λ} into $[\mathscr{S}, \mathscr{O}^{(1)}]$.

Set $|X| = \kappa = \aleph_{\alpha}$, $\lambda = \max(|\alpha|, \aleph_0)$.

 λ is the number of cardinals below κ .

Prop. There are at most $2^{2^{\lambda}}$ monoids above \mathscr{S} (elements of $[\mathscr{S}, \mathscr{O}^{(1)}]$).

Thm. There is an order embedding of the power set of 2^{λ} into $[\mathscr{S}, \mathscr{O}^{(1)}]$.

Cor. $|[\mathscr{S}, \mathscr{O}^{(1)}]| = 2^{2^{\lambda}}.$

Many monoids containing \mathscr{S}

Precomplete monoids

Thm. (Gavrilov) $|X| = \aleph_0$. The precomplete submonoids of $\mathscr{O}^{(1)}$ containing \mathscr{S} are $\mathscr{A}, \mathscr{G}_{\aleph_0}, \mathscr{G}_1, \mathscr{M}$ and \mathscr{N} , where

 $\mathcal{M} = \{ f \in \mathcal{O}^{(1)} : f \text{ surjective or not injective} \}$

and

 $\mathcal{N} = \{ f \in \mathcal{O}^{(1)} : f \text{ almost surjective or} \\ \text{not almost injective} \}.$

Maximal monoids above $\mathscr{S}(\kappa = \aleph_0)$

Precomplete monoids

Thm. κ regular: The precomplete submonoids of $\mathscr{O}^{(1)}$ which contain \mathscr{S} are exactly \mathscr{A} and \mathscr{G}_{λ} and \mathscr{M}_{λ} for $\lambda = 1$ and $\aleph_0 \leq \lambda \leq \kappa, \lambda$ a cardinal, where

$$\mathcal{M}_{\lambda} = \{ f \in \mathcal{O}^{(1)} : f \ \lambda \text{-surjective or} \\ \text{not } \lambda \text{-injective} \}.$$

Precomplete monoids

Thm. κ regular: The precomplete submonoids of $\mathscr{O}^{(1)}$ which contain \mathscr{S} are exactly \mathscr{A} and \mathscr{G}_{λ} and \mathscr{M}_{λ} for $\lambda = 1$ and $\aleph_0 \leq \lambda \leq \kappa, \lambda$ a cardinal, where

 $\mathcal{M}_{\lambda} = \{ f \in \mathcal{O}^{(1)} : f \ \lambda$ -surjective or not λ -injective $\}.$

 κ singular: Replace \mathscr{A} by \mathscr{A}' , where

$$\mathscr{A}' = \{ f \in \mathscr{O}^{(1)} : \exists \lambda < \kappa \\ (\{ x \in X : |f^{-1}[x]| > \lambda \} \text{ small }) \}.$$

Maximal monoids above \mathscr{S}

Question. \mathscr{G} precomplete monoid. $|[\mathscr{S}, \mathscr{G}]| = ?$

Question. \mathscr{G} precomplete monoid. $|[\mathscr{S}, \mathscr{G}]| = ?$

Thm. κ regular: $|[\mathscr{S}, \mathscr{G}]| = 2^{2^{\lambda}}$ for every precomplete monoid above \mathscr{S} .

Question. \mathscr{G} precomplete monoid. $|[\mathscr{S}, \mathscr{G}]| = ?$

Thm. κ regular: $|[\mathscr{S}, \mathscr{G}]| = 2^{2^{\lambda}}$ for every precomplete monoid above \mathscr{S} .

In fact, $|[\mathscr{S}, \mathscr{D}]| = 2^{2^{\lambda}}$, where \mathscr{D} is the intersection of the precomplete elements of $[\mathscr{S}, \mathscr{O}^{(1)}]$.

Question. \mathscr{G} precomplete monoid. $|[\mathscr{S}, \mathscr{G}]| = ?$

Thm. κ regular: $|[\mathscr{S}, \mathscr{G}]| = 2^{2^{\lambda}}$ for every precomplete monoid above \mathscr{S} .

In fact, $|[\mathscr{S}, \mathscr{D}]| = 2^{2^{\lambda}}$, where \mathscr{D} is the intersection of the precomplete elements of $[\mathscr{S}, \mathscr{O}^{(1)}]$.

 κ singular and $\lambda < \kappa$: Same.

 κ singular and $\lambda = \kappa$:

 κ singular and $\lambda = \kappa$:

 $|[\mathscr{S},\mathscr{G}]|=2^{2^{\kappa}}$ for every precomplete monoid above \mathscr{S} except $\mathscr{A}'.$

 κ singular and $\lambda = \kappa$:

 $|[\mathscr{S},\mathscr{G}]|=2^{2^{\kappa}}$ for every precomplete monoid above \mathscr{S} except $\mathscr{A}'.$

$$|[\mathscr{S},\mathscr{A}']| = 2^{\kappa^{<\kappa}}$$

 κ singular and $\lambda = \kappa$:

 $|[\mathscr{S},\mathscr{G}]|=2^{2^{\kappa}}$ for every precomplete monoid above \mathscr{S} except $\mathscr{A}'.$

$$|[\mathscr{S},\mathscr{A}']| = 2^{\kappa^{<\kappa}}.$$

Fact. If GCH holds, then $2^{(\kappa^{<\kappa})} = 2^{2^{\kappa}}$.

 κ singular and $\lambda = \kappa$:

 $|[\mathscr{S},\mathscr{G}]|=2^{2^{\kappa}}$ for every precomplete monoid above \mathscr{S} except $\mathscr{A}'.$

$$|[\mathscr{S},\mathscr{A}']| = 2^{\kappa^{<\kappa}}.$$

Fact. If GCH holds, then $2^{(\kappa^{<\kappa})} = 2^{2^{\kappa}}$.

Fact. It is consistent with ZFC that $2^{\kappa} < 2^{(\kappa^{<\kappa})} < 2^{2^{\kappa}}$.

 κ singular and $\lambda = \kappa$:

 $|[\mathscr{S},\mathscr{G}]|=2^{2^{\kappa}}$ for every precomplete monoid above \mathscr{S} except $\mathscr{A}'.$

$$|[\mathscr{S},\mathscr{A}']| = 2^{\kappa^{<\kappa}}.$$

Fact. If GCH holds, then $2^{(\kappa^{<\kappa})} = 2^{2^{\kappa}}$.

Fact. It is consistent with ZFC that $2^{\kappa} < 2^{(\kappa^{<\kappa})} < 2^{2^{\kappa}}$.

Cor. Whether or not $|[\mathscr{S}, \mathscr{A}']| = |[\mathscr{S}, \mathscr{M}_1]|$ is independent from ZFC.

