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The clone lattice

X . . . base set (here: infinite).

O(n) = XXn

= {f : Xn → X} . . . n-ary functions on X.

O =
⋃

n≥1 O(n) . . . finitary operations on X.
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= {f : Xn → X} . . . n-ary functions on X.

O =
⋃

n≥1 O(n) . . . finitary operations on X.

C ⊆ O clone iff
• C contains the projections and
• C closed under composition.
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X . . . base set (here: infinite).

O(n) = XXn

= {f : Xn → X} . . . n-ary functions on X.

O =
⋃

n≥1 O(n) . . . finitary operations on X.

C ⊆ O clone iff
• ∀n ≥ 1∀1 ≤ k ≤ n (C contains πn

k (x1, . . . , xn) = xk)

• ∀f ∈ C ∀g1, . . . , gn ∈ C (f(g1, . . . , gn) ∈ C )

Cl(X) . . . lattice of clones (with inclusion).

Problem. Describe Cl(X).

But... Cl(X) is too complicated.
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Monoidal intervals

Defn. Let G ⊆ O(1) monoid. f ∈ O(n) preserves G iff
f(g1, . . . , gn) ∈ G for all g1, . . . , gn ∈ G .
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Defn. Let G ⊆ O(1) monoid. f ∈ O(n) preserves G iff
f(g1, . . . , gn) ∈ G for all g1, . . . , gn ∈ G .

Defn. Pol(G ) = {f ∈ O : f preserves G }.

Facts.

• Pol(G ) is a clone containing G .

• Pol(G ) is the largest clone with unary part G .

• [G , Pol(G )] = {C ∈ Cl(X) : C (1) = G }.

IG = [G , Pol(G )] is called a monoidal interval.

The monoidal intervals are a partition of the clone lattice.

Lattices of order ideals – p. 3/8



A partition
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The problem

What can monoidal intervals look like?
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The problem

What can monoidal intervals look like? Are they all the
same? What cardinalities can they have?

X finite: Monoidal intervals can be finite, or countably
infinite, or size continuum.

Thm. (Goldstern, Shelah) X countably infinite: Many
monoidal intervals, including IO(1) , have size 22ℵ0 .

Question. What about other sizes? Weird sizes (e.g. ℵ1)?
Structure?

Defn. For P a partial order, the set of order ideals on P

form a lattice (meet= intersection, join=union). Denote it by
L(P).
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Order ideals

Thm. Let P be a partial order with 0 such that |P| ≤ 2|X|.
Then there exists a monoid G such that IG

∼= L(P).
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Order ideals

Thm. Let P be a partial order with 0 such that |P| ≤ 2|X|.
Then there exists a monoid G such that IG

∼= L(P).

Remark. G is a monoid of linear functions on a vector
space of dimension |X| on X.
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Thm. Let P be a partial order with 0 such that |P| ≤ 2|X|.
Then there exists a monoid G such that IG

∼= L(P).

Cor. 1 Let L be a chain which is an algebraic lattice with 0

and 1 and such that |L| ≤ 2|X|. Then 1 + L is isomorphic to
a monoidal interval.

Remark. A chain L is an algebraic lattice iff for all p, q ∈ L

with p < q there is a successor r ∈ L with q ≤ r ≤ p.
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Countably infinite X

Thm. Let P be a partial order with 0 such that |P| ≤ 2ℵ0.
Then there exists a monoidal interval isomorphic to L(P).
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Open problems

Question. Are these all monoidal intervals?

Note. L(P) is distributive.

Fact. IO(1) is NOT distributive.

Open. Is every complete algebraic lattice which is not
larger than the clone lattice a monoidal interval?

Open. Given λ such that 2|X| < λ < 22|X|
and λ is not of the

form 2ξ, does there exist a monoidal interval of size λ?
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