Lattices of order ideals as monoidal intervals

Michael Pinsker

marula@gmx.at

Hitotsubashi University Tokyo

$$X \dots$$
 base set (here: infinite).
 $\mathscr{O}^{(n)} = X^{X^n} = \{f : X^n \to X\} \dots n\text{-ary functions on } X.$
 $\mathscr{O} = \bigcup_{n \ge 1} \mathscr{O}^{(n)} \dots$ finitary operations on $X.$

$$X \dots$$
 base set (here: infinite).
 $\mathscr{O}^{(n)} = X^{X^n} = \{f : X^n \to X\} \dots n$ -ary functions on X .
 $\mathscr{O} = \bigcup_{n \ge 1} \mathscr{O}^{(n)} \dots$ finitary operations on X .

$$X \dots$$
 base set (here: infinite).
 $\mathscr{O}^{(n)} = X^{X^n} = \{f : X^n \to X\} \dots n$ -ary functions on X .
 $\mathscr{O} = \bigcup_{n \ge 1} \mathscr{O}^{(n)} \dots$ finitary operations on X .

- C contains the projections and
- Closed under composition.

$$X \dots$$
 base set (here: infinite).
 $\mathscr{O}^{(n)} = X^{X^n} = \{f : X^n \to X\} \dots n$ -ary functions on X .
 $\mathscr{O} = \bigcup_{n \ge 1} \mathscr{O}^{(n)} \dots$ finitary operations on X .

- $\forall n \ge 1 \,\forall 1 \le k \le n \; (\mathscr{C} \text{ contains } \pi_k^n(x_1, \dots, x_n) = x_k)$
- $\forall f \in \mathscr{C} \forall g_1, \dots, g_n \in \mathscr{C} (f(g_1, \dots, g_n) \in \mathscr{C})$

$$X \dots$$
 base set (here: infinite).
 $\mathscr{O}^{(n)} = X^{X^n} = \{f : X^n \to X\} \dots n$ -ary functions on X .
 $\mathscr{O} = \bigcup_{n \ge 1} \mathscr{O}^{(n)} \dots$ finitary operations on X .

• $\forall n \ge 1 \,\forall 1 \le k \le n \; (\mathscr{C} \text{ contains } \pi_k^n(x_1, \dots, x_n) = x_k)$

• $\forall f \in \mathscr{C} \forall g_1, \dots, g_n \in \mathscr{C} (f(g_1, \dots, g_n) \in \mathscr{C})$

Cl(X)... lattice of clones (with inclusion).

$$X \dots$$
 base set (here: infinite).
 $\mathscr{O}^{(n)} = X^{X^n} = \{f : X^n \to X\} \dots n$ -ary functions on X .
 $\mathscr{O} = \bigcup_{n \ge 1} \mathscr{O}^{(n)} \dots$ finitary operations on X .

• $\forall n \ge 1 \,\forall 1 \le k \le n \; (\mathscr{C} \text{ contains } \pi_k^n(x_1, \dots, x_n) = x_k)$

•
$$\forall f \in \mathscr{C} \forall g_1, \dots, g_n \in \mathscr{C} (f(g_1, \dots, g_n) \in \mathscr{C})$$

Cl(X)... lattice of clones (with inclusion). Problem. Describe Cl(X).

$$X \dots$$
 base set (here: infinite).
 $\mathscr{O}^{(n)} = X^{X^n} = \{f : X^n \to X\} \dots n$ -ary functions on X .
 $\mathscr{O} = \bigcup_{n \ge 1} \mathscr{O}^{(n)} \dots$ finitary operations on X .

- $\forall n \ge 1 \,\forall 1 \le k \le n \; (\mathscr{C} \text{ contains } \pi_k^n(x_1, \dots, x_n) = x_k)$
- $\forall f \in \mathscr{C} \forall g_1, \dots, g_n \in \mathscr{C} (f(g_1, \dots, g_n) \in \mathscr{C})$

Cl(X) ... lattice of clones (with inclusion). **Problem.** Describe Cl(X). **But...** Cl(X) is too complicated.

Monoidal intervals

Defn. Let $\mathscr{G} \subseteq \mathscr{O}^{(1)}$ monoid. $f \in \mathscr{O}^{(n)}$ preserves \mathscr{G} iff $f(g_1, \ldots, g_n) \in \mathscr{G}$ for all $g_1, \ldots, g_n \in \mathscr{G}$.

• $Pol(\mathscr{G})$ is a clone containing \mathscr{G} .

- $Pol(\mathscr{G})$ is a clone containing \mathscr{G} .
- $Pol(\mathscr{G})$ is the largest clone with unary part \mathscr{G} .

- $Pol(\mathscr{G})$ is a clone containing \mathscr{G} .
- $Pol(\mathscr{G})$ is the largest clone with unary part \mathscr{G} .

•
$$[\mathscr{G}, \operatorname{Pol}(\mathscr{G})] = \{\mathscr{C} \in Cl(X) : \mathscr{C}^{(1)} = \mathscr{G}\}.$$

- $Pol(\mathscr{G})$ is a clone containing \mathscr{G} .
- $Pol(\mathscr{G})$ is the largest clone with unary part \mathscr{G} .
- $[\mathscr{G}, \operatorname{Pol}(\mathscr{G})] = \{\mathscr{C} \in Cl(X) : \mathscr{C}^{(1)} = \mathscr{G}\}.$

 $\mathscr{I}_{\mathscr{G}} = [\mathscr{G}, \operatorname{Pol}(\mathscr{G})]$ is called a *monoidal interval*.

- $Pol(\mathscr{G})$ is a clone containing \mathscr{G} .
- $Pol(\mathscr{G})$ is the largest clone with unary part \mathscr{G} .

•
$$[\mathscr{G}, \operatorname{Pol}(\mathscr{G})] = \{\mathscr{C} \in Cl(X) : \mathscr{C}^{(1)} = \mathscr{G}\}.$$

 $\mathscr{I}_{\mathscr{G}} = [\mathscr{G}, \operatorname{Pol}(\mathscr{G})]$ is called a *monoidal interval*. The monoidal intervals are a partition of the clone lattice.

The problem

What can monoidal intervals look like?

The problem

What can monoidal intervals look like? Are they all the same?

X finite: Monoidal intervals can be finite, or countably infinite, or size continuum.

X finite: Monoidal intervals can be finite, or countably infinite, or size continuum.

Thm. (Goldstern, Shelah) *X* countably infinite: Many monoidal intervals, including $\mathscr{I}_{\mathscr{O}^{(1)}}$, have size $2^{2^{\aleph_0}}$.

X finite: Monoidal intervals can be finite, or countably infinite, or size continuum.

Thm. (Goldstern, Shelah) *X* countably infinite: Many monoidal intervals, including $\mathscr{I}_{\mathscr{O}^{(1)}}$, have size $2^{2^{\aleph_0}}$.

Question. What about other sizes?

X finite: Monoidal intervals can be finite, or countably infinite, or size continuum.

Thm. (Goldstern, Shelah) *X* countably infinite: Many monoidal intervals, including $\mathscr{I}_{\mathscr{O}^{(1)}}$, have size $2^{2^{\aleph_0}}$.

Question. What about other sizes? Weird sizes (e.g. \aleph_1)?

X finite: Monoidal intervals can be finite, or countably infinite, or size continuum.

Thm. (Goldstern, Shelah) *X* countably infinite: Many monoidal intervals, including $\mathscr{I}_{\mathscr{O}^{(1)}}$, have size $2^{2^{\aleph_0}}$.

Question. What about other sizes? Weird sizes (e.g. \aleph_1)? Structure?

X finite: Monoidal intervals can be finite, or countably infinite, or size continuum.

Thm. (Goldstern, Shelah) *X* countably infinite: Many monoidal intervals, including $\mathscr{I}_{\mathscr{O}^{(1)}}$, have size $2^{2^{\aleph_0}}$.

Question. What about other sizes? Weird sizes (e.g. \aleph_1)? Structure?

Defn. For \mathfrak{P} a partial order, the set of order ideals on \mathfrak{P} form a lattice (meet= intersection, join=union). Denote it by $\mathfrak{L}(\mathfrak{P})$.

Remark. \mathscr{G} is a monoid of linear functions on a vector space of dimension |X| on X.

Cor. 1 Let \mathfrak{L} be a chain which is an algebraic lattice with 0 and 1 and such that $|\mathfrak{L}| \leq 2^{|X|}$. Then $1 + \mathfrak{L}$ is isomorphic to a monoidal interval.

Cor. 1 Let \mathfrak{L} be a chain which is an algebraic lattice with 0 and 1 and such that $|\mathfrak{L}| \leq 2^{|X|}$. Then $1 + \mathfrak{L}$ is isomorphic to a monoidal interval.

Remark. A chain \mathfrak{L} is an algebraic lattice iff for all $p, q \in \mathfrak{L}$ with p < q there is a successor $r \in \mathfrak{L}$ with $q \leq r \leq p$.

Cor. 1 Let \mathfrak{L} be a chain which is an algebraic lattice with 0 and 1 and such that $|\mathfrak{L}| \leq 2^{|X|}$. Then $1 + \mathfrak{L}$ is isomorphic to a monoidal interval.

Cor. 2 All ordinals $\mu \leq 2^{|X|}$ are monoidal intervals. In particular, \aleph_1 is a monoidal interval.

Cor. 1 Let \mathfrak{L} be a chain which is an algebraic lattice with 0 and 1 and such that $|\mathfrak{L}| \leq 2^{|X|}$. Then $1 + \mathfrak{L}$ is isomorphic to a monoidal interval.

Cor. 2 All ordinals $\mu \leq 2^{|X|}$ are monoidal intervals. In particular, \aleph_1 is a monoidal interval.

Cor. 3 Let *Y* be a set with $|Y| \le 2^{|X|}$. Then $1 + \mathscr{P}(Y)$ is a monoidal interval.

Cor. 1 Let \mathfrak{L} be a chain which is an algebraic lattice with 0 and 1 and such that $|\mathfrak{L}| \leq 2^{|X|}$. Then $1 + \mathfrak{L}$ is isomorphic to a monoidal interval.

Cor. 2 All ordinals $\mu \leq 2^{|X|}$ are monoidal intervals. In particular, \aleph_1 is a monoidal interval.

Cor. 3 Let *Y* be a set with $|Y| \le 2^{|X|}$. Then $1 + \mathscr{P}(Y)$ is a monoidal interval.

Cor. 4 Let $\lambda \leq 2^{|X|}$. There is a monoidal interval of size λ .

Cor. 1 Let \mathfrak{L} be a chain which is an algebraic lattice with 0 and 1 and such that $|\mathfrak{L}| \leq 2^{|X|}$. Then $1 + \mathfrak{L}$ is isomorphic to a monoidal interval.

Cor. 2 All ordinals $\mu \leq 2^{|X|}$ are monoidal intervals. In particular, \aleph_1 is a monoidal interval.

Cor. 3 Let *Y* be a set with $|Y| \le 2^{|X|}$. Then $1 + \mathscr{P}(Y)$ is a monoidal interval.

Cor. 4 Let $\lambda \leq 2^{|X|}$. There is a monoidal interval of size λ .

Cor. 5 Let $\lambda \leq 2^{|X|}$. There is a monoidal interval of size 2^{λ} .

Cor. 1 Let \mathfrak{L} be a chain which is an algebraic lattice with 0 and 1 and such that $|\mathfrak{L}| \leq 2^{\aleph_0}$. Then $1 + \mathfrak{L}$ is isomorphic to a monoidal interval.

Cor. 1 Let \mathfrak{L} be a chain which is an algebraic lattice with 0 and 1 and such that $|\mathfrak{L}| \leq 2^{\aleph_0}$. Then $1 + \mathfrak{L}$ is isomorphic to a monoidal interval.

Cor. 2 All ordinals $\mu \leq 2^{\aleph_0}$ are monoidal intervals. In particular, \aleph_1 is a monoidal interval.

Cor. 1 Let \mathfrak{L} be a chain which is an algebraic lattice with 0 and 1 and such that $|\mathfrak{L}| \leq 2^{\aleph_0}$. Then $1 + \mathfrak{L}$ is isomorphic to a monoidal interval.

Cor. 2 All ordinals $\mu \leq 2^{\aleph_0}$ are monoidal intervals. In particular, \aleph_1 is a monoidal interval.

Cor. 3 Let $Y \subseteq \mathbb{R}$ be a set. Then $1 + \mathscr{P}(Y)$ is a monoidal interval.

Cor. 1 Let \mathfrak{L} be a chain which is an algebraic lattice with 0 and 1 and such that $|\mathfrak{L}| \leq 2^{\aleph_0}$. Then $1 + \mathfrak{L}$ is isomorphic to a monoidal interval.

Cor. 2 All ordinals $\mu \leq 2^{\aleph_0}$ are monoidal intervals. In particular, \aleph_1 is a monoidal interval.

Cor. 3 Let $Y \subseteq \mathbb{R}$ be a set. Then $1 + \mathscr{P}(Y)$ is a monoidal interval.

Cor. 4 Let $\lambda \leq 2^{\aleph_0}$. There is a monoidal interval of size λ .

Cor. 1 Let \mathfrak{L} be a chain which is an algebraic lattice with 0 and 1 and such that $|\mathfrak{L}| \leq 2^{\aleph_0}$. Then $1 + \mathfrak{L}$ is isomorphic to a monoidal interval.

Cor. 2 All ordinals $\mu \leq 2^{\aleph_0}$ are monoidal intervals. In particular, \aleph_1 is a monoidal interval.

Cor. 3 Let $Y \subseteq \mathbb{R}$ be a set. Then $1 + \mathscr{P}(Y)$ is a monoidal interval.

Cor. 4 Let $\lambda \leq 2^{\aleph_0}$. There is a monoidal interval of size λ .

Cor. 5 Let $\lambda \leq 2^{\aleph_0}$. There is a monoidal interval of size 2^{λ} .

Open problems

Question. Are these all monoidal intervals?

Open problems

Question. Are these all monoidal intervals? **Note.** $\mathfrak{L}(\mathfrak{P})$ is distributive.

Open problems

Question. Are these all monoidal intervals? Note. $\mathcal{L}(\mathfrak{P})$ is distributive. Fact. $\mathscr{I}_{\mathscr{O}^{(1)}}$ is NOT distributive. **Question.** Are these all monoidal intervals?

Note. $\mathfrak{L}(\mathfrak{P})$ is distributive.

Fact. $\mathscr{I}_{\mathscr{O}^{(1)}}$ is NOT distributive.

Open. Is every complete algebraic lattice which is not larger than the clone lattice a monoidal interval?

Question. Are these all monoidal intervals?

Note. $\mathfrak{L}(\mathfrak{P})$ is distributive.

Fact. $\mathscr{I}_{\mathscr{O}^{(1)}}$ is NOT distributive.

Open. Is every complete algebraic lattice which is not larger than the clone lattice a monoidal interval?

Open. Given λ such that $2^{|X|} < \lambda < 2^{2^{|X|}}$ and λ is not of the form 2^{ξ} , does there exist a monoidal interval of size λ ?