Algebraic lattices are complete sublattices of the clone lattice over an infinite set

M. Pinsker

Algebra Vienna University of Technology Wien, Austria

9 June, 2006 / Budapest

- How complicated is the clone lattice?
- The clone lattice on finite X is quite complicated
 - Monoidal intervals
- 5 The clone lattice on infinite X is very complicated
- 6 Remarks and outlook

X... base set. $O^{(n)} = X^{X^n} = \{f : X^n \to X\} ... n$ -ary functions on *X*. $O = \bigcup_{n \ge 1} O^{(n)} ...$ finitary operations on *X*.

X... base set. $O^{(n)} = X^{X^n} = \{f : X^n \to X\} ... n$ -ary functions on *X*. $O = \bigcup_{n \ge 1} O^{(n)} ...$ finitary operations on *X*.

Definition

 $\mathfrak{C}\subseteq \mathfrak{O} \text{ clone iff }$

X... base set. $O^{(n)} = X^{X^n} = \{f : X^n \to X\} ... n$ -ary functions on *X*. $O = \bigcup_{n \ge 1} O^{(n)} ...$ finitary operations on *X*.

Definition

- $\mathfrak{C}\subseteq \mathfrak{O} \text{ clone iff }$
 - C contains the projections and
 - C closed under composition.

X... base set. $O^{(n)} = X^{X^n} = \{f : X^n \to X\} ... n$ -ary functions on *X*. $O = \bigcup_{n \ge 1} O^{(n)} ...$ finitary operations on *X*.

Definition

- $\mathfrak{C}\subseteq \mathfrak{O} \text{ clone iff }$
 - C contains the projections and
 - C closed under composition.

 $CI(X) = \{ \mathfrak{C} \subseteq \mathfrak{O} : \mathfrak{C} \text{ clone} \} \dots \text{ lattice of clones (with inclusion).}$

X... base set. $O^{(n)} = X^{X^n} = \{f : X^n \to X\} ... n$ -ary functions on *X*. $O = \bigcup_{n \ge 1} O^{(n)} ...$ finitary operations on *X*.

Definition

- $\mathfrak{C}\subseteq \mathfrak{O} \text{ clone iff }$
 - C contains the projections and
 - C closed under composition.

 $CI(X) = \{ \mathfrak{C} \subseteq \mathfrak{O} : \mathfrak{C} \text{ clone} \} \dots \text{ lattice of clones (with inclusion).}$

Post's theorem

 $|X| = 2 \rightarrow CI(X)$ completely known ($|CI(X)| = \aleph_0$).

Problem

Describe the clone lattice for $|X| \ge 3$.

Problem

Describe the clone lattice for $|X| \ge 3$.

Solving this is believed impossible

Problem

Describe the clone lattice for $|X| \ge 3$.

Solving this is believed impossible

...because...

Problem

Describe the clone lattice for $|X| \ge 3$.

Solving this is believed impossible

...because...

• The clone lattice is large: $|Cl(X)| = 2^{\aleph_0} \text{ if } 3 \le |X| < \aleph_0$ $|Cl(X)| = 2^{2^{|X|}} \text{ if } |X| \ge \aleph_0$

Problem

Describe the clone lattice for $|X| \ge 3$.

Solving this is believed impossible

...because...

• The clone lattice is large:

$$|CI(X)| = 2^{\aleph_0} \text{ if } 3 \le |X| < \aleph_0$$

 $|CI(X)| = 2^{2^{|X|}} \text{ if } |X| \ge \aleph_0$

• we have (despite considerable effort) so far failed to do so.

 $|X| \ge 3 \rightarrow$ the subsemigroup lattice of the additive semigroup of the natural numbers embeds into CI(X).

 $|X| \ge 3 \rightarrow$ the subsemigroup lattice of the additive semigroup of the natural numbers embeds into CI(X).

Corollary

 $|X| \ge 3 \rightarrow Cl(X)$ does not satisfy any non-trivial identity.

 $|X| \ge 3 \rightarrow$ the subsemigroup lattice of the additive semigroup of the natural numbers embeds into CI(X).

Corollary

 $|X| \ge 3 \rightarrow Cl(X)$ does not satisfy any non-trivial identity.

Theorem (Bulatov 1993)

 $|X| \ge 4 \rightarrow$ every countable product of finite lattices embeds into CI(X).

 $|X| \ge 3 \rightarrow$ the subsemigroup lattice of the additive semigroup of the natural numbers embeds into CI(X).

Corollary

 $|X| \ge 3 \rightarrow Cl(X)$ does not satisfy any non-trivial identity.

Theorem (Bulatov 1993)

 $|X| \ge 4 \rightarrow$ every countable product of finite lattices embeds into CI(X).

Corollary

 $|X| \ge 4 \rightarrow Cl(X)$ does not satisfy any non-trivial quasi-identity.

For any monoid $\mathcal{G} \subseteq \mathcal{O}^{(1)}$,

$$\mathfrak{I}_{\mathfrak{G}} = \{\mathfrak{C} \in \boldsymbol{Cl}(\boldsymbol{X}) : \mathfrak{C} \cap \mathfrak{O}^{(1)} = \mathfrak{G}\}$$

is an interval of CI(X), called a *monoidal* interval.

For any monoid $\mathcal{G} \subseteq \mathcal{O}^{(1)}$,

$$\mathfrak{I}_{\mathfrak{G}} = \{\mathfrak{C} \in \boldsymbol{Cl}(\boldsymbol{X}) : \mathfrak{C} \cap \mathfrak{O}^{(1)} = \mathfrak{G}\}$$

is an interval of CI(X), called a *monoidal* interval.

The monoidal intervals are a partition of CI(X).

For any monoid $\mathcal{G} \subseteq \mathcal{O}^{(1)}$,

$$\mathfrak{I}_{\mathfrak{G}} = \{ \mathfrak{C} \in \mathcal{C}I(X) : \mathfrak{C} \cap \mathfrak{O}^{(1)} = \mathfrak{G} \}$$

is an interval of CI(X), called a *monoidal* interval.

The monoidal intervals are a partition of CI(X).

X finite: Monoidal intervals can be finite, or countably infinite, or size continuum.

For any monoid $\mathcal{G} \subseteq \mathcal{O}^{(1)}$,

$$\mathfrak{I}_{\mathfrak{G}} = \{\mathfrak{C} \in \mathcal{C}I(X) : \mathfrak{C} \cap \mathfrak{O}^{(1)} = \mathfrak{G}\}$$

is an interval of CI(X), called a *monoidal* interval.

The monoidal intervals are a partition of CI(X).

X **finite:** Monoidal intervals can be finite, or countably infinite, or size continuum.

Theorem (P. 2005)

X infinite, \mathcal{L} completely distributive algebraic with at most $2^{|X|}$ compact elements \rightarrow

 $1 + \mathcal{L}$ is a monoidal interval of CI(X).

The clone lattice on infinite X is very complicated

• *Cl*(*X*) is an *algebraic* lattice.

- *CI*(*X*) is an *algebraic* lattice.
- $\mathcal{C} \in Cl(X)$ compact iff \mathcal{C} is finitely generated.

- *Cl*(*X*) is an *algebraic* lattice.
- $\mathcal{C} \in Cl(X)$ compact iff \mathcal{C} is finitely generated.
- X finite $\rightarrow Cl(X)$ has $\aleph_0 = |0|$ compact clones.

- *CI*(*X*) is an *algebraic* lattice.
- $\mathcal{C} \in Cl(X)$ compact iff \mathcal{C} is finitely generated.
- X finite $\rightarrow Cl(X)$ has $\aleph_0 = |0|$ compact clones.
- X infinite $\rightarrow Cl(X)$ has $2^{|X|} = |0|$ compact clones.

- CI(X) is an *algebraic* lattice.
- $\mathcal{C} \in Cl(X)$ compact iff \mathcal{C} is finitely generated.
- X finite $\rightarrow Cl(X)$ has $\aleph_0 = |0|$ compact clones.
- X infinite $\rightarrow CI(X)$ has $2^{|X|} = |0|$ compact clones.

Theorem (P. 2006)

X infinite \rightarrow Every algebraic lattice with at most $2^{|X|}$ compact elements is a complete sublattice of CI(X).

Theorem (Bulatov)

 M_{ω} does *not* embed into the clone lattice over any finite set.

Theorem (Bulatov)

 M_{ω} does *not* embed into the clone lattice over any finite set.

...so my theorem does not hold on finite X.

Theorem (Bulatov)

 M_{ω} does *not* embed into the clone lattice over any finite set.

...so my theorem does not hold on finite X.

Theorem (Bulatov)

X finite $\rightarrow CI(X)$ satisfies a certain infinite quasi-identity.

Theorem (Bulatov)

 M_{ω} does *not* embed into the clone lattice over any finite set.

...so my theorem does not hold on finite X.

Theorem (Bulatov)

X finite $\rightarrow Cl(X)$ satisfies a certain infinite quasi-identity.

The latter theorem does not hold on infinite X!

Theorem (Bulatov)

 M_{ω} does *not* embed into the clone lattice over any finite set.

...so my theorem does not hold on finite X.

Theorem (Bulatov)

X finite $\rightarrow Cl(X)$ satisfies a certain infinite quasi-identity.

The latter theorem does not hold on infinite X!

Problem

X infinite. Is every algebraic lattice with at most $2^{|X|}$ compact elements an *interval* of CI(X)? Even a *monoidal interval*?

M. Pinsker (Vienna University of Technology)

Sublattices of the clone lattice