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Reducts of relational structures

Γ = (X ,R) . . . relational structure.

Problem
Determine the reducts of Γ, i.e. all relational structures which are
first-order definable from Γ.

Usually done up to first-order interdefinability, i.e. two structures Γ1, Γ2
are considered equivalent iff Γ1 has a first-order definition in Γ2 and
vice-versa.

Examples

P. J. Cameron: There are 5 reducts of (Q, <) up to
f.o.-interdefinability.
M. Junker and M. Ziegler: There are 116 reducts of (Q, <, a) up to
f.o.-interdefinability.
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First order definability and permutations

Definition
Γ ω-categorical ↔ its theory has (up to iso) one countable model.

Definition
Aut(Γ) := { automorphisms of Γ}.
Let G be a permutation group.
Inv(G) := {R : all g ∈ G are automorphisms of (X , R)}.

Fact
Inv Aut= hull operator on the relational structures.
Aut Inv= hull operator on the sets of permutations.

Fact
Let Γ be ω-categorical.
Then Inv Aut(Γ) = fo(Γ).
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Primitive positive definability and operations

Definitions

Let O(n) := X X n
= {f : X n → X} . . . set of n ary operations on X .

O :=
⋃

n≥1 O(n) . . . finitary operations on X .

Let f ∈ O(n) and R ⊆ X m.
f preserves R ↔ f (r1, . . . , rn) ∈ R for all r1, . . . , rn ∈ R.

Pol(Γ) := {f ∈ O : f preserves all relations of Γ}.
Inv(F) := {R : R is preserved by all f ∈ F} (for F ⊆ O)

Fact
Inv Pol= hull operator on the relational structures
Pol Inv= hull operator on the sets of operations

Observation
Let Γ be ω-categorical. Then Inv Pol(Γ) = pp(Γ).
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pp-definability and local clones

Definition
A set C ⊆ O is a clone ↔

C is closed under composition, i.e. f (g1, . . . , gn) ∈ C for all
f , g1, . . . , gn ∈ C, and
C contains the projections, i.e. for all 1 ≤ k ≤ n the operation
πn

k (x1, . . . , xn) = xk .

Definition
A clone C is locally closed or local ↔
C is closed in the product topology on X X (where X is discrete) ↔
C contains all operations that can (on finite sets) be approximated by
operations from C

Fact
The local clones are exactly the Inv Pol-closed subsets of O.
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Reducts up to pp-interdefinability

Problem
Given a structure Γ, determine its reducts up to primitive positive
interdefinability.

First step
Try with the simplest structure, Γ := (N,=).

Observations
Via Pol− Inv, those reducts correspond to local clones.

Aut(Γ) = Sω, so those clones contain all permutations.
Conversely, if a clone contains Sω, then it induces a reduct of Γ.

Conclusion
Inv (or Pol) is an antiisomorphism between the lattice of local clones
above Sω and the reducts of (N,=)!
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The local clones above Sω

Theorem

t
Sω

tSω ∪ Const

t t

t
M

t
t
G

t
tO(1)

tt
t...
t O
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Connection to CSP and outlook

Constraint Satisfaction Problem
Fixed: A structure Γ (“template”).
Input: A finite structure ∆.
Question: Does there exist a homomorphism ∆ → Γ?

Fact
Complexity of CSP (polynomial time-) invariant under pp-definitions.

Consequence
For ω-categorical Γ, the Galois connection Inv-Pol can be used.

Future work
Determine (up to pp interdefinability) the reducts of other ω-categorical
structures.
Example: Random graph.
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