The reducts of $(\mathbb{N}, =)$ up to primitive positive interdefinability

Michael Pinsker

Joint work with Manuel Bodirsky and Hubie Chen

Institute of Discrete Mathematics and Geometry Vienna University of Technology Wien, Austria

June 14, 2007 / OAL Nashville

- First order definability and permutations
- Primitive positive definability and operations
 - Primitive positive definability and local clones
 - 5) The local clones above S_ω
- 6 Connection to CSP and outlook

 $\Gamma = (X, \mathcal{R}) \dots$ relational structure.

Problem

Determine the reducts of Γ , i.e. all relational structures which are first-order definable from Γ .

 $\Gamma = (X, \mathcal{R}) \dots$ relational structure.

Problem

Determine the reducts of Γ , i.e. all relational structures which are first-order definable from Γ .

Usually done up to first-order interdefinability, i.e. two structures Γ_1, Γ_2 are considered equivalent iff Γ_1 has a first-order definition in Γ_2 and vice-versa.

 $\Gamma = (X, \mathcal{R}) \dots$ relational structure.

Problem

Determine the reducts of Γ , i.e. all relational structures which are first-order definable from Γ .

Usually done up to first-order interdefinability, i.e. two structures Γ_1, Γ_2 are considered equivalent iff Γ_1 has a first-order definition in Γ_2 and vice-versa.

Examples

 $\Gamma = (X, \mathcal{R}) \dots$ relational structure.

Problem

Determine the reducts of Γ , i.e. all relational structures which are first-order definable from Γ .

Usually done up to first-order interdefinability, i.e. two structures Γ_1, Γ_2 are considered equivalent iff Γ_1 has a first-order definition in Γ_2 and vice-versa.

Examples

 P. J. Cameron: There are 5 reducts of (Q, <) up to f.o.-interdefinability. $\Gamma = (X, \mathcal{R}) \dots$ relational structure.

Problem

Determine the reducts of $\Gamma,$ i.e. all relational structures which are first-order definable from $\Gamma.$

Usually done up to first-order interdefinability, i.e. two structures Γ_1, Γ_2 are considered equivalent iff Γ_1 has a first-order definition in Γ_2 and vice-versa.

Examples

- P. J. Cameron: There are 5 reducts of (Q, <) up to f.o.-interdefinability.
- M. Junker and M. Ziegler: There are 116 reducts of (Q, <, *a*) up to f.o.-interdefinability.

Definition

 $\Gamma \ \omega$ -categorical \leftrightarrow its theory has (up to iso) one countable model.

Definition

 $\Gamma \ \omega$ -categorical \leftrightarrow its theory has (up to iso) one countable model.

Definition

Aut(Γ) := { automorphisms of Γ }. Let \mathcal{G} be a permutation group. Inv(\mathcal{G}) := {R : all $g \in \mathcal{G}$ are automorphisms of (X, R)}.

Definition

 $\Gamma \ \omega$ -categorical \leftrightarrow its theory has (up to iso) one countable model.

Definition

Aut(Γ) := { automorphisms of Γ }. Let \mathcal{G} be a permutation group. Inv(\mathcal{G}) := {R : all $g \in \mathcal{G}$ are automorphisms of (X, R)}.

Fact

- Inv Aut= hull operator on the relational structures.
- Aut Inv= hull operator on the sets of permutations.

Definition

 $\Gamma \ \omega$ -categorical \leftrightarrow its theory has (up to iso) one countable model.

Definition

Aut(Γ) := { automorphisms of Γ }. Let \mathcal{G} be a permutation group. Inv(\mathcal{G}) := {R : all $g \in \mathcal{G}$ are automorphisms of (X, R)}.

Fact

- Inv Aut= hull operator on the relational structures.
- Aut Inv= hull operator on the sets of permutations.

Fact

Let Γ be ω -categorical. Then Inv Aut(Γ) = $fo(\Gamma)$.

Definitions

Definitions

Let $\mathcal{O}^{(n)} := X^{X^n} = \{f : X^n \to X\} \dots$ set of *n* ary operations on *X*. $\mathcal{O} := \bigcup_{n \ge 1} \mathcal{O}^{(n)} \dots$ finitary operations on *X*.

Definitions

Let $\mathcal{O}^{(n)} := X^{X^n} = \{f : X^n \to X\} \dots$ set of *n* ary operations on *X*. $\mathcal{O} := \bigcup_{n \ge 1} \mathcal{O}^{(n)} \dots$ finitary operations on *X*.

Let $f \in \mathbb{O}^{(n)}$ and $R \subseteq X^m$. *f* preserves $R \leftrightarrow f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$.

Definitions

Let $\mathcal{O}^{(n)} := X^{X^n} = \{f : X^n \to X\} \dots$ set of *n* ary operations on *X*. $\mathcal{O} := \bigcup_{n \ge 1} \mathcal{O}^{(n)} \dots$ finitary operations on *X*. Let $f \in \mathcal{O}^{(n)}$ and $R \subseteq X^m$. *f* preserves $R \leftrightarrow f(r_1, \dots, r_n) \in R$ for all $r_1, \dots, r_n \in R$. Pol $(\Gamma) := \{f \in \mathcal{O} : f \text{ preserves all relations of } \Gamma\}$. Inv $(\mathcal{F}) := \{R : R \text{ is preserved by all } f \in \mathcal{F}\}$ (for $\mathcal{F} \subseteq \mathcal{O}$)

Definitions

Let $\mathcal{O}^{(n)} := X^{X^n} = \{f : X^n \to X\} \dots$ set of *n* ary operations on *X*. $\mathcal{O} := \bigcup_{n \ge 1} \mathcal{O}^{(n)} \dots$ finitary operations on *X*.

Let $f \in \mathcal{O}^{(n)}$ and $R \subseteq X^m$.

f preserves $R \leftrightarrow f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$.

Pol(Γ) := { $f \in \mathcal{O} : f$ preserves all relations of Γ }. Inv(\mathfrak{F}) := {R : R is preserved by all $f \in \mathfrak{F}$ } (for $\mathfrak{F} \subseteq \mathfrak{O}$)

Fact

- Inv Pol= hull operator on the relational structures
- Pol Inv= hull operator on the sets of operations

Definitions

Let $\mathcal{O}^{(n)} := X^{X^n} = \{f : X^n \to X\} \dots$ set of *n* ary operations on *X*. $\mathcal{O} := \bigcup_{n \ge 1} \mathcal{O}^{(n)} \dots$ finitary operations on *X*.

Let $f \in \mathbb{O}^{(n)}$ and $R \subseteq X^m$.

f preserves $R \leftrightarrow f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$.

Pol(Γ) := { $f \in \mathcal{O} : f$ preserves all relations of Γ }. Inv(\mathfrak{F}) := {R : R is preserved by all $f \in \mathfrak{F}$ } (for $\mathfrak{F} \subseteq \mathfrak{O}$)

Fact

- Inv Pol= hull operator on the relational structures
- Pol Inv= hull operator on the sets of operations

Observation

Let Γ be ω -categorical. Then Inv Pol(Γ) = $pp(\Gamma)$.

M. Pinsker (TU Wien)

pp-definability and local clones

Definition

A set $\mathcal{C} \subseteq \mathcal{O}$ is a *clone* \leftrightarrow

- C is closed under composition, i.e. $f(g_1, \ldots, g_n) \in \mathbb{C}$ for all $f, g_1, \ldots, g_n \in \mathbb{C}$, and
- C contains the projections, i.e. for all $1 \le k \le n$ the operation $\pi_k^n(x_1, \ldots, x_n) = x_k$.

pp-definability and local clones

Definition

A set $\mathcal{C} \subseteq \mathcal{O}$ is a *clone* \leftrightarrow

- C is closed under composition, i.e. $f(g_1, \ldots, g_n) \in \mathbb{C}$ for all $f, g_1, \ldots, g_n \in \mathbb{C}$, and
- C contains the projections, i.e. for all $1 \le k \le n$ the operation $\pi_k^n(x_1, \ldots, x_n) = x_k$.

Definition

A clone C is *locally closed* or *local* \leftrightarrow

C is closed in the product topology on X^X (where X is discrete) \leftrightarrow C contains all operations that can (on finite sets) be approximated by operations from C

pp-definability and local clones

Definition

A set $\mathcal{C} \subseteq \mathcal{O}$ is a *clone* \leftrightarrow

- C is closed under composition, i.e. $f(g_1, \ldots, g_n) \in \mathbb{C}$ for all $f, g_1, \ldots, g_n \in \mathbb{C}$, and
- C contains the projections, i.e. for all $1 \le k \le n$ the operation $\pi_k^n(x_1, \ldots, x_n) = x_k$.

Definition

A clone C is *locally closed* or *local* \leftrightarrow

C is closed in the product topology on X^X (where X is discrete) \leftrightarrow C contains all operations that can (on finite sets) be approximated by operations from C

Fact

The local clones are exactly the Inv Pol-closed subsets of O.

M. Pinsker (TU Wien)

Problem

Given a structure Γ , determine its reducts *up to primitive positive interdefinability*.

Problem

Given a structure Γ , determine its reducts *up to primitive positive interdefinability*.

First step

Try with the simplest structure, $\Gamma := (\mathbb{N}, =)$.

Problem

Given a structure Γ , determine its reducts *up to primitive positive interdefinability*.

First step

Try with the simplest structure, $\Gamma := (\mathbb{N}, =)$.

Observations

Via Pol – Inv, those reducts correspond to local clones.

Problem

Given a structure Γ , determine its reducts *up to primitive positive interdefinability*.

First step

Try with the simplest structure, $\Gamma := (\mathbb{N}, =)$.

Observations

Via Pol – Inv, those reducts correspond to local clones. Aut(Γ) = S_{ω} , so those clones contain all permutations.

Problem

Given a structure Γ , determine its reducts *up to primitive positive interdefinability*.

First step

Try with the simplest structure, $\Gamma := (\mathbb{N}, =)$.

Observations

Via Pol – Inv, those reducts correspond to local clones. Aut(Γ) = S_{ω} , so those clones contain all permutations. Conversely, if a clone contains S_{ω} , then it induces a reduct of Γ .

Problem

Given a structure Γ , determine its reducts *up to primitive positive interdefinability*.

First step

Try with the simplest structure, $\Gamma := (\mathbb{N}, =)$.

Observations

Via Pol – Inv, those reducts correspond to local clones. Aut(Γ) = S_{ω} , so those clones contain all permutations. Conversely, if a clone contains S_{ω} , then it induces a reduct of Γ .

Conclusion

Inv (or Pol) is an antiisomorphism between the lattice of local clones above S_{ω} and the reducts of $(\mathbb{N}, =)!$

The local clones above S_{ω}

Theorem

The local clones above S_{ω}

Theorem

June 14, 2007 / OAL Nashville 8 / 9

Constraint Satisfaction Problem

Fixed: A structure Γ ("template"). Input: A finite structure Δ . Question: Does there exist a homomorphism $\Delta \rightarrow \Gamma$?

Constraint Satisfaction Problem

Fixed: A structure Γ ("template").

Input: A finite structure Δ .

Question: Does there exist a homomorphism $\Delta \to \Gamma$?

Fact

Complexity of CSP (polynomial time-) invariant under pp-definitions.

Constraint Satisfaction Problem

Fixed: A structure Γ ("template").

Input: A finite structure Δ .

Question: Does there exist a homomorphism $\Delta \to \Gamma$?

Fact

Complexity of CSP (polynomial time-) invariant under pp-definitions.

Consequence

For ω -categorical Γ , the Galois connection Inv-Pol can be used.

Constraint Satisfaction Problem

Fixed: A structure Γ ("template").

Input: A finite structure Δ .

Question: Does there exist a homomorphism $\Delta \to \Gamma$?

Fact

Complexity of CSP (polynomial time-) invariant under pp-definitions.

Consequence

For ω -categorical Γ , the Galois connection Inv-Pol can be used.

Future work

Determine (up to pp interdefinability) the reducts of other ω -categorical structures.

Example: Random graph.

M. Pinsker (TU Wien)

The reducts of $(\mathbb{N}, =)$