Clones from ideals (Part I)

Michael Pinsker

Joint work with: Mathias Beiglböck, Martin Goldstern, Lutz Heindorf

Institute of Discrete Mathematics and Geometry Vienna University of Technology Wien, Austria

June 2007 / Tampere

Outline

- 2 History: Clones from prime ideals
- 3 A maximality test for ideal clones
 - The mutual position of ideal clones
- 5 The regularization of an ideal. Answer to a problem of Czédli and Heindorf

6 Many maximal clones without the Axiom of Choice

Definition

 $\mathfrak{C}\subseteq\mathfrak{O}\text{ clone iff }$

Definition

 $\mathfrak{C}\subseteq\mathfrak{O}\text{ clone iff }$

- C contains the projections and
- C closed under composition.

Definition

 $\mathfrak{C}\subseteq\mathfrak{O}\text{ clone iff }$

- C contains the projections and
- C closed under composition.

 $Cl(X) = \{ \mathfrak{C} \subseteq \mathfrak{O} : \mathfrak{C} \text{ clone} \} \dots \text{ lattice of clones (with inclusion).}$

Classes of clones

• Term operations of an algebra

- Term operations of an algebra
- Endomorphisms of an algebra

- Term operations of an algebra
- Endomorphisms of an algebra
- Continuous operations of a topological space

- Term operations of an algebra
- Endomorphisms of an algebra
- Continuous operations of a topological space
- Operations preserving a set of relations

- Term operations of an algebra
- Endomorphisms of an algebra
- Continuous operations of a topological space
- Operations preserving a set of relations
- Operations preserving an ideal

Classes of clones

- Term operations of an algebra
- Endomorphisms of an algebra
- Continuous operations of a topological space
- Operations preserving a set of relations
- Operations preserving an ideal

Definition

I... ideal of subsets of *X* ("small sets") $\mathcal{C}_I := \{f \in \mathcal{O} : \forall A \in I(f[A^n] \in I)\}$ "ideal preserving operations"

Classes of clones

- Term operations of an algebra
- Endomorphisms of an algebra
- Continuous operations of a topological space
- Operations preserving a set of relations
- Operations preserving an ideal

Definition

I... ideal of subsets of *X* ("small sets") $C_I := \{f \in O : \forall A \in I(f[A^n] \in I)\}$ "ideal preserving operations"

Fact

 \mathcal{C}_I clone for all ideals *I*.

Dual atoms in CI(X) are called *maximal* or *precomplete*.

Dual atoms in Cl(X) are called *maximal* or *precomplete*.

Theorem (Rosenberg 1976)

There exist $2^{2^{|X|}}$ maximal clones on infinite *X*.

Dual atoms in CI(X) are called *maximal* or *precomplete*.

Theorem (Rosenberg 1976)

There exist $2^{2^{|X|}}$ maximal clones on infinite *X*.

Theorem (Goldstern, Shelah 2002)

I prime non-principal $\rightarrow C_I$ maximal.

Dual atoms in CI(X) are called *maximal* or *precomplete*.

Theorem (Rosenberg 1976)

There exist $2^{2^{|X|}}$ maximal clones on infinite *X*.

Theorem (Goldstern, Shelah 2002)

I prime non-principal $\rightarrow C_I$ maximal.

Corollary

There exist $2^{2^{|X|}}$ maximal clones on infinite *X*.

For which ideals *I* is \mathcal{C}_I is maximal?

For which ideals I is \mathcal{C}_I is maximal?

Remark

Support of *I*: supp(*I*) := $\bigcup \{A \subseteq X : A \in I\}$.

If we know the position of \mathcal{C}_l in Cl(supp(l)), then we know its position in Cl(X).

We assume: supp(I) = X and I has at least one but not all infinite sets.

For which ideals I is \mathcal{C}_I is maximal?

Remark

Support of *I*: supp(*I*) := $\bigcup \{A \subseteq X : A \in I\}$.

If we know the position of C_l in Cl(supp(l)), then we know its position in Cl(X).

We assume: supp(I) = X and *I* has at least one but not all infinite sets.

Theorem (Czédli, Heindorf)

 \mathcal{C}_I maximal \leftrightarrow for all $A \notin I$ there is $f \in \mathcal{C}_I$ such that $f[A^n] = X$.

For which ideals I is \mathcal{C}_I is maximal?

Remark

Support of *I*: supp(*I*) := $\bigcup \{A \subseteq X : A \in I\}$.

If we know the position of C_l in Cl(supp(l)), then we know its position in Cl(X).

We assume: supp(I) = X and I has at least one but not all infinite sets.

Theorem (Czédli, Heindorf)

 \mathcal{C}_I maximal \leftrightarrow for all $A \notin I$ there is $f \in \mathcal{C}_I$ such that $f[A^n] = X$.

Corollary

I countably generated $\rightarrow C_I$ maximal.

The mutual position of ideal clones

Question

When do we have $\mathcal{C}_I \subseteq \mathcal{C}_J$?

The mutual position of ideal clones

Question

When do we have $\mathcal{C}_I \subseteq \mathcal{C}_J$?

Definition

 $I^{d} := \{A \subseteq X : \forall B \in I (A \cap B \text{ is finite})\}.$ $\hat{I} := (I^{d})^{d}.$ Alternatively: $\hat{I} := \{A \subseteq X : \forall B \subseteq A \exists C \subseteq B (C \in I)\}.$ "Regularization of *I*".

The mutual position of ideal clones

Question

When do we have $\mathcal{C}_I \subseteq \mathcal{C}_J$?

Definition

$$I^{d} := \{A \subseteq X : \forall B \in I (A \cap B \text{ is finite})\}.$$

$$\hat{I} := (I^{d})^{d}.$$

Alternatively: $\hat{I} := \{A \subseteq X : \forall B \subseteq A \exists C \subseteq B (C \in I)\}.$
"Regularization of *I*".

Theorem

$$\begin{split} &I \subseteq \hat{I}. \\ &\mathcal{C}_I \subseteq \mathcal{C}_{\hat{I}}. \\ &I = J \leftrightarrow \mathcal{C}_I = \mathcal{C}_J. \\ &\mathcal{C}_I \subseteq \mathcal{C}_J \rightarrow I \subseteq J \subseteq \hat{I}. \end{split}$$
 The implication cannot be reversed.

Problem (Czédli, Heindorf)

Can every ideal clone be extended to a maximal ideal clone?

Problem (Czédli, Heindorf)

Can every ideal clone be extended to a maximal ideal clone?

Theorem

Assume $X \notin \hat{I}$. Then \mathcal{C}_{i} is the unique maximal clone above \mathcal{C}_{I} .

Problem (Czédli, Heindorf)

Can every ideal clone be extended to a maximal ideal clone?

Theorem

Assume $X \notin \hat{I}$. Then $\mathcal{C}_{\hat{I}}$ is the unique maximal clone above \mathcal{C}_{I} .

Theorem (Answer to the problem of Czédli and Heindorf)

- Every ideal clone can be extended to a maximal ideal clone.
- Every maximal clone extending an ideal clone is an ideal clone.

Let $X = 2^{<\omega} \dots$ set of finite 0 - 1-sequences.

Let $X = 2^{<\omega} \dots$ set of finite 0 - 1-sequences.

For every $f \in 2^{\omega}$ let $B_f \subseteq X$ the set of its finite initial segments.

Let $X = 2^{<\omega} \dots$ set of finite 0 - 1-sequences.

For every $f \in 2^{\omega}$ let $B_f \subseteq X$ the set of its finite initial segments.

For every $A \subseteq 2^{\omega}$, set $X_A := \{B_f : f \in A\}$.

Let $X = 2^{<\omega} \dots$ set of finite 0 - 1-sequences.

For every $f \in 2^{\omega}$ let $B_f \subseteq X$ the set of its finite initial segments.

For every $A \subseteq 2^{\omega}$, set $X_A := \{B_f : f \in A\}$.

If $f \notin A$, then $B_f \in (X_A)^d$, so $(X_A)^d$ contains an infinite set.

Let $X = 2^{<\omega} \dots$ set of finite 0 - 1-sequences.

For every $f \in 2^{\omega}$ let $B_f \subseteq X$ the set of its finite initial segments.

For every $A \subseteq 2^{\omega}$, set $X_A := \{B_f : f \in A\}$.

If $f \notin A$, then $B_f \in (X_A)^d$, so $(X_A)^d$ contains an infinite set.

If $f \in A$, then $B_f \notin (X_A)^d$, so $(X_A)^d$ does not contain all sets.

Let $X = 2^{<\omega} \dots$ set of finite 0 - 1-sequences.

For every $f \in 2^{\omega}$ let $B_f \subseteq X$ the set of its finite initial segments.

For every $A \subseteq 2^{\omega}$, set $X_A := \{B_f : f \in A\}$.

If $f \notin A$, then $B_f \in (X_A)^d$, so $(X_A)^d$ contains an infinite set.

If $f \in A$, then $B_f \notin (X_A)^d$, so $(X_A)^d$ does not contain all sets.

Thus $(X_A)^d$ is a proper ideal with full support.

Let $X = 2^{<\omega} \dots$ set of finite 0 - 1-sequences.

For every $f \in 2^{\omega}$ let $B_f \subseteq X$ the set of its finite initial segments.

For every $A \subseteq 2^{\omega}$, set $X_A := \{B_f : f \in A\}$.

If $f \notin A$, then $B_f \in (X_A)^d$, so $(X_A)^d$ contains an infinite set.

If $f \in A$, then $B_f \notin (X_A)^d$, so $(X_A)^d$ does not contain all sets.

Thus $(X_A)^d$ is a proper ideal with full support.

The ideals are distinct, i.e. if $A_1 \neq A_2$, then $(X_{A_1})^d \neq (X_{A_2})^d$:

For $f \in A_1 \setminus A_2$ we have $B_f \in (X_{A_2})^d \setminus (X_{A_1})^d$.

Let $X = 2^{<\omega} \dots$ set of finite 0 - 1-sequences.

For every $f \in 2^{\omega}$ let $B_f \subseteq X$ the set of its finite initial segments.

For every $A \subseteq 2^{\omega}$, set $X_A := \{B_f : f \in A\}$.

If $f \notin A$, then $B_f \in (X_A)^d$, so $(X_A)^d$ contains an infinite set.

If $f \in A$, then $B_f \notin (X_A)^d$, so $(X_A)^d$ does not contain all sets.

Thus $(X_A)^d$ is a proper ideal with full support.

The ideals are distinct, i.e. if $A_1 \neq A_2$, then $(X_{A_1})^d \neq (X_{A_2})^d$:

For $f \in A_1 \setminus A_2$ we have $B_f \in (X_{A_2})^d \setminus (X_{A_1})^d$.

Therefore the corresponding clones are distinct and maximal.