How complicated is the local clone lattice?

Michael Pinsker

LMNO Université de Caen Caen, France

May 2008 / Mahdia

X... base set. $O^{(n)} = X^{X^n} = \{f : X^n \to X\} ... n$ -ary functions on *X*. $O = \bigcup_{n \ge 1} O^{(n)} ...$ finitary operations on *X*.

X... base set. $O^{(n)} = X^{X^n} = \{f : X^n \to X\} ... n$ -ary functions on *X*. $O = \bigcup_{n \ge 1} O^{(n)} ...$ finitary operations on *X*.

Definition

 $\mathfrak{C}\subseteq \mathfrak{O} \text{ clone iff }$

$X \dots$ base set. $\mathbb{O}^{(n)} = X^{X^n} = \{f : X^n \to X\} \dots$ *n*-ary functions on *X*. $\mathbb{O} = \bigcup_{n \ge 1} \mathbb{O}^{(n)} \dots$ finitary operations on *X*.

Definition

- $\mathfrak{C}\subseteq\mathfrak{O}\text{ clone iff }$
 - C contains the projections and
 - C closed under composition.

$X \dots$ base set. $\mathbb{O}^{(n)} = X^{X^n} = \{f : X^n \to X\} \dots$ *n*-ary functions on *X*. $\mathbb{O} = \bigcup_{n \ge 1} \mathbb{O}^{(n)} \dots$ finitary operations on *X*.

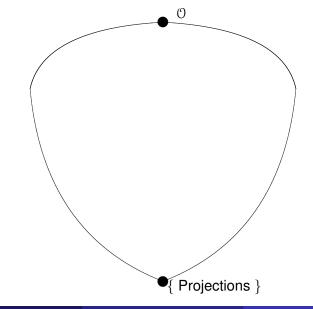
Definition

- $\mathfrak{C}\subseteq\mathfrak{O}\text{ clone iff }$
 - C contains the projections and
 - C closed under composition.

Definition

 $Cl(X) = ({Clones on X}, \subseteq) \dots$ complete algebraic lattice of clones.

The clone lattice from the view of the uninitiated



Michael Pinsker (Caen)

Equip *X* with the discrete topology. $O^{(n)} = X^{X^n}$ has the product topology. $O = \bigcup_n O^{(n)}$ sum space of the $O^{(n)}$.

Equip X with the discrete topology. $O^{(n)} = X^{X^n}$ has the product topology. $O = \bigcup_n O^{(n)}$ sum space of the $O^{(n)}$.

Definition

A clone \mathbb{C} is *locally closed* or *local* \leftrightarrow \mathbb{C} is closed in this topology.

Equip X with the discrete topology. $O^{(n)} = X^{X^n}$ has the product topology. $O = \bigcup_n O^{(n)}$ sum space of the $O^{(n)}$.

Definition

A clone \mathbb{C} is *locally closed* or *local* \leftrightarrow \mathbb{C} is closed in this topology.

Fact

 $\mathfrak{C} \textit{ local} \leftrightarrow$

- *WHENEVER g* ∈ 0
- AND for all finite A ⊆ X there exists f ∈ C which agrees with g on A
- *THEN g* ∈ 𝔅.

Let $f \in \mathbb{O}$ be an operation, and $R \subseteq X^m$ be a relation. *f* preserves $R \leftrightarrow f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$.

Let $f \in \mathbb{O}$ be an operation, and $R \subseteq X^m$ be a relation. *f* preserves $R \leftrightarrow f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$.

Let $\mathfrak{F} \subseteq \mathfrak{O}$. Inv $(\mathfrak{F}) := \{ \mathbf{R} : \mathbf{R} \text{ is preserved by all } f \in \mathfrak{F} \}.$

Let $f \in \mathbb{O}$ be an operation, and $R \subseteq X^m$ be a relation. *f* preserves $R \leftrightarrow f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$.

Let $\mathfrak{F} \subseteq \mathfrak{O}$. Inv $(\mathfrak{F}) := \{ \mathbf{R} : \mathbf{R} \text{ is preserved by all } f \in \mathfrak{F} \}.$

Let \mathfrak{R} be a set of relations. Pol $(\mathfrak{R}) := \{f : f \text{ preserves all } R \in \mathfrak{R}\}.$

Let $f \in \mathbb{O}$ be an operation, and $R \subseteq X^m$ be a relation. *f* preserves $R \leftrightarrow f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$.

Let $\mathfrak{F} \subseteq \mathfrak{O}$. Inv $(\mathfrak{F}) := \{ \mathbf{R} : \mathbf{R} \text{ is preserved by all } f \in \mathfrak{F} \}.$

Let \mathfrak{R} be a set of relations. Pol $(\mathfrak{R}) := \{f : f \text{ preserves all } R \in \mathfrak{R}\}.$

Fact

The local clones are exactly the Pol Inv-closed subsets of 0.

Let $f \in \mathbb{O}$ be an operation, and $R \subseteq X^m$ be a relation. *f* preserves $R \leftrightarrow f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$.

Let $\mathfrak{F} \subseteq \mathfrak{O}$. Inv $(\mathfrak{F}) := \{ \mathbf{R} : \mathbf{R} \text{ is preserved by all } f \in \mathfrak{F} \}.$

Let \mathfrak{R} be a set of relations. Pol $(\mathfrak{R}) := \{f : f \text{ preserves all } R \in \mathfrak{R}\}.$

Fact

The local clones are exactly the Pol Inv-closed subsets of O.

Fact

The local closure of $\mathfrak{F} \subseteq \mathfrak{O}$ is the topological closure of the term closure of \mathfrak{F} .

Let $f \in \mathbb{O}$ be an operation, and $R \subseteq X^m$ be a relation. *f* preserves $R \leftrightarrow f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$.

Let $\mathfrak{F} \subseteq \mathfrak{O}$. Inv $(\mathfrak{F}) := \{ \mathbf{R} : \mathbf{R} \text{ is preserved by all } f \in \mathfrak{F} \}.$

Let \mathfrak{R} be a set of relations. Pol $(\mathfrak{R}) := \{f : f \text{ preserves all } R \in \mathfrak{R}\}.$

Fact

The local clones are exactly the Pol Inv-closed subsets of O.

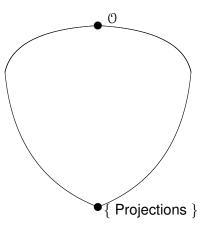
Fact

The local closure of $\mathfrak{F} \subseteq \mathfrak{O}$ is the topological closure of the term closure of \mathfrak{F} .

Fact

 $Cl_{loc}(X) = (\{Local \ clones \ on \ X\}, \subseteq) \dots$ complete lattice of local clones.

The LOCAL clone lattice from the view of the uninitiated



Reasons for studying local clones

Reasons for studying local clones

• Long train rides.

- Long train rides.
- More natural generalization of the clone lattice on finite sets than the full clone lattice.

- Long train rides.
- More natural generalization of the clone lattice on finite sets than the full clone lattice. (???)

- Long train rides.
- More natural generalization of the clone lattice on finite sets than the full clone lattice. (???)
- Constraint Satisfaction Problem (CSP): Infinite domains make sense;
 For certain relational structures Γ one has pp(Γ) = Inv Pol(Γ)

- Long train rides.
- More natural generalization of the clone lattice on finite sets than the full clone lattice. (???)
- Constraint Satisfaction Problem (CSP): Infinite domains make sense;
 For certain relational structures Γ one has pp(Γ) = Inv Pol(Γ)
- Model theory: For certain Γ, the reducts up to pp-definability correspond to the local clones containing Aut(Γ).

Examples of local clones:

Examples of local clones:

• The clone of all idempotent operations (f(x, ..., x) = x).

Examples of local clones:

- The clone of all idempotent operations (f(x, ..., x) = x).
- The "clone" of all operations which take at most 5 values.

Examples of local clones:

- The clone of all idempotent operations (f(x, ..., x) = x).
- The "clone" of all operations which take at most 5 values.
- The "clone" of all unary operations.

Examples of local clones:

- The clone of all idempotent operations (f(x, ..., x) = x).
- The "clone" of all operations which take at most 5 values.
- The "clone" of all unary operations.

Examples of non-local clones:

Examples of local clones:

- The clone of all idempotent operations (f(x, ..., x) = x).
- The "clone" of all operations which take at most 5 values.
- The "clone" of all unary operations.

Examples of non-local clones:

• The "clone" of all bijective operations.

Examples of local clones:

- The clone of all idempotent operations (f(x, ..., x) = x).
- The "clone" of all operations which take at most 5 values.
- The "clone" of all unary operations.

Examples of non-local clones:

- The "clone" of all bijective operations.
- The "clone" of all operations which grow not faster than G(x).

Examples of local clones:

- The clone of all idempotent operations (f(x, ..., x) = x).
- The "clone" of all operations which take at most 5 values.
- The "clone" of all unary operations.

Examples of non-local clones:

- The "clone" of all bijective operations.
- The "clone" of all operations which grow not faster than G(x).

Example for the local closure:

Examples of local clones:

- The clone of all idempotent operations (f(x, ..., x) = x).
- The "clone" of all operations which take at most 5 values.
- The "clone" of all unary operations.

Examples of non-local clones:

- The "clone" of all bijective operations.
- The "clone" of all operations which grow not faster than G(x).

Example for the local closure:

 α, β ∈ 0⁽¹⁾ permutations, α one two-cycle, β one infinite cycle. Then {α, β} generates all injective unary operations.

Examples of local clones:

- The clone of all idempotent operations (f(x, ..., x) = x).
- The "clone" of all operations which take at most 5 values.
- The "clone" of all unary operations.

Examples of non-local clones:

- The "clone" of all bijective operations.
- The "clone" of all operations which grow not faster than G(x).

Example for the local closure:

 α, β ∈ 0⁽¹⁾ permutations, α one two-cycle, β one infinite cycle. Then {α, β} generates all injective unary operations.

Observe:

 $CI_{loc}(X)$ is NOT a sublattice of CI(X)!

Sublattices of $CI_{loc}(X)$

Proposition

 $Cl_{loc}(X)$ is NOT algebraic. It has no compact elements except {Projections}. It is not upper continuous.

Sublattices of $CI_{loc}(X)$

Proposition

 $Cl_{loc}(X)$ is NOT algebraic. It has no compact elements except {Projections}. It is not upper continuous.

Proposition

 $Cl_{loc}(X)$ contains all clone lattices over finite Y as intervals.

Sublattices of $Cl_{loc}(X)$

Proposition

 $Cl_{loc}(X)$ is NOT algebraic. It has no compact elements except {Projections}. It is not upper continuous.

Proposition

 $Cl_{loc}(X)$ contains all clone lattices over finite Y as intervals.

Corollary

 $Cl_{loc}(X)$ does not satisfy any non-trivial lattice (quasi-)identities.

Sublattices of $CI_{loc}(X)$

Proposition

 $Cl_{loc}(X)$ is NOT algebraic. It has no compact elements except {Projections}. It is not upper continuous.

Proposition

 $Cl_{loc}(X)$ contains all clone lattices over finite Y as intervals.

Corollary

 $Cl_{loc}(X)$ does not satisfy any non-trivial lattice (quasi-)identities.

Theorem

Let \mathcal{L} be any algebraic lattice with ω compact elements. Then \mathcal{L} embeds completely into $Cl_{loc}(X)$.

Clones of partial operations

Definition

A *partial operation* is a function *f* with FINITE domain $\subseteq X^n$ and range $\subseteq X$.

A *partial clone* is a set of partial operations containing all partial projections and closed under composition.

Clones of partial operations

Definition

A partial operation is a function fwith FINITE domain $\subseteq X^n$ and range $\subseteq X$.

A *partial clone* is a set of partial operations containing all partial projections and closed under composition.

Fact

The set of partial clones $Cl_{part}(X)$ forms a complete algebraic lattice with ω compacts.

Definition

A *partial operation* is a function f with FINITE domain $\subseteq X^n$ and range $\subseteq X$.

A *partial clone* is a set of partial operations containing all partial projections and closed under composition.

Fact

The set of partial clones $Cl_{part}(X)$ forms a complete algebraic lattice with ω compacts.

Theorem

The mapping $Cl_{loc}(X) \rightarrow Cl_{part}(X)$ $C \mapsto \{Restrictions of all f \in C \text{ to finite sets}\}$ preserves arbitrary joins.

Corollary

 $Cl_{loc}(X)$ order-embeds into the power set of ω . $|Cl_{loc}(X)| = 2^{\aleph_0}$.

Corollary

 $\operatorname{Cl}_{loc}(X)$ order-embeds into the power set of ω . $|\operatorname{Cl}_{loc}(X)| = 2^{\aleph_0}$.

Summary: Inclusions

 $\operatorname{Sub}(\operatorname{Cl}(Y)) \subsetneq \operatorname{Sub}(\operatorname{Alg}(\omega)) \subseteq \operatorname{Sub}(\operatorname{Cl}_{\operatorname{\mathit{loc}}}(X)) \subseteq \operatorname{Jsub}(\operatorname{Alg}(\omega)).$

Corollary

 $\operatorname{Cl}_{loc}(X)$ order-embeds into the power set of ω . $|\operatorname{Cl}_{loc}(X)| = 2^{\aleph_0}$.

Summary: Inclusions

 $\operatorname{Sub}(\operatorname{Cl}(Y)) \subsetneq \operatorname{Sub}(\operatorname{Alg}(\omega)) \subseteq \operatorname{Sub}(\operatorname{Cl}_{loc}(X)) \subseteq \operatorname{Jsub}(\operatorname{Alg}(\omega)).$

Theorem

 $\mathcal{M}_{2^{\aleph_0}}$ embeds into $Cl_{loc}(X)$.

Corollary

 $\operatorname{Cl}_{loc}(X)$ order-embeds into the power set of ω . $|\operatorname{Cl}_{loc}(X)| = 2^{\aleph_0}$.

Summary: Inclusions

 $\operatorname{Sub}(\operatorname{Cl}(Y)) \subsetneq \operatorname{Sub}(\operatorname{Alg}(\omega)) \subseteq \operatorname{Sub}(\operatorname{Cl}_{loc}(X)) \subseteq \operatorname{Jsub}(\operatorname{Alg}(\omega)).$

Theorem

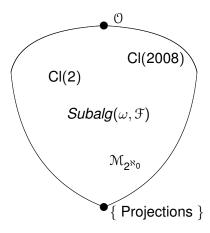
 $\mathcal{M}_{2^{\aleph_0}}$ embeds into $Cl_{loc}(X)$.

Corollary

 $\mathsf{Sub}(\mathsf{Alg}(\omega)) \subsetneq \mathsf{Sub}(\mathsf{Cl}_{\mathit{loc}}(X)) \subseteq \mathsf{Jsub}(\mathsf{Alg}(\omega)).$

Michael Pinsker (Caen)

The local clone lattice from the view of the attentive listener



Problems

THE problem

Let \mathcal{L} have a \bigvee -preserving embedding into an algebraic lattice with ω compacts.

Does \mathcal{L} embed into $Cl_{loc}(X)$?

Does it embed completely?

THE problem

Let \mathcal{L} have a \bigvee -preserving embedding into an algebraic lattice with ω compacts. Does \mathcal{L} embed into $Cl_{loc}(X)$? Does it embed completely?

Attention lattice theorists

Let \mathcal{L} have an order-preserving embedding into the power set of ω . Does \mathcal{L} have a \lor -preserving embedding into an algebraic lattice with ω compacts?