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The random graph and homogeneous structures

Denote by G = (V ; E) the random graph, i.e., the unique graph which
is

countably infinite
homogeneous
universal.

A countably infinite randomly chosen graph is almost surely
isomorphic to G.

G is the Fraïssé limit of the class of finite graphs.
G is the Fraïssé limit of the class of its finite induced substructures.

General statement: Countable homogeneous structures are exactly
the Fraïssé limits of Fraïssé classes of finite structures.

Examples: Homogeneous Kn-free graph, dense linear order.
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is

countably infinite
homogeneous
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Why is it random?

A countably infinite randomly chosen graph is almost surely
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is

countably infinite
homogeneous
universal.

A countably infinite randomly chosen graph is almost surely
isomorphic to G.

G is the Fraïssé limit of the class of finite graphs.
G is the Fraïssé limit of the class of its finite induced substructures.

Is this exceptional?

General statement: Countable homogeneous structures are exactly
the Fraïssé limits of Fraïssé classes of finite structures.
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The automorphism group Aut(G) of G

G has a large automorphism group Aut(G).

Aut(G) is transitive.

There are 3 orbits of pairs with respect to the action of Aut(G).

For every n ≥ 1, the number of orbits of n-tuples is finite.

Definition
Such permutation groups are called oligomorphic.

All homogeneous structures in a finite language
have oligomorphic automorphism groups.
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The automorphism group Aut(G) of G

G has a large automorphism group Aut(G).

Aut(G) is transitive.
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There are 3 orbits of pairs with respect to the action
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There are 3 orbits of pairs with respect to the action of Aut(G).

For every n ≥ 1, the number of orbits of n-tuples is finite.
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Such permutation groups are called oligomorphic.
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Closed permutation groups

Write S∞ for the group of all permutations on V .

Aut(G) is a subgroup of S∞.

Equip V with the discrete topology, V V with the product topology.

Definition
G ≤ S∞ is closed↔ G is a closed subset of S∞.

All automorphism groups of relational structures are closed.

Every closed group is the automorphism group of some structure.

Theorem

Let Γ be homogeneous.
Let ∆ be any structure.
Then ∆ has a first-order definition in Γ iff Aut(∆) contains Aut(Γ).
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Closed permutation groups

Write S∞ for the group of all permutations on V .

Aut(G) is a subgroup of S∞.

Equip V with the discrete topology, V V with the product topology.

Definition
G ≤ S∞ is closed↔ G is a closed subset of S∞.

All automorphism groups of relational structures are closed.

Every closed group is the automorphism group of some structure.

What can we say about structures with comparable automorphism
groups?

Theorem

Let Γ be homogeneous.
Let ∆ be any structure.
Then ∆ has a first-order definition in Γ iff Aut(∆) contains Aut(Γ).
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Closed supergroups of Aut(G)

For homogeneous structures Γ, the groups containing Aut(Γ)
correspond precisely
to the structures with a first-order definition in Γ.
(“Reducts” of Γ)

Theorem (Thomas ’91 / Bodirsky & P ’09)
There are exactly 5 closed groups containing Aut(G).

Other examples
There are 5 groups containing Aut((Q, <)) (Cameron ’76).
There are 2 groups containing the homogeneous Kn-free graph
(Thomas ’91 / P ’09).

Conjecture (Thomas ’91)
The number of groups containing the automorphisms of a
homogeneous structure is always finite.
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(“Reducts” of Γ)

Theorem (Thomas ’91 / Bodirsky & P ’09)
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Closed supergroups of Aut(G)

For homogeneous structures Γ, the groups containing Aut(Γ)
correspond precisely
to the structures with a first-order definition in Γ.
(“Reducts” of Γ)

Theorem (Thomas ’91 / Bodirsky & P ’09)
There are exactly 5 closed groups containing Aut(G).

Other examples
There are 5 groups containing Aut((Q, <)) (Cameron ’76).
There are 2 groups containing the homogeneous Kn-free graph
(Thomas ’91 / P ’09).

Is the number of groups containing the automorphisms of a
homogeneous structure always finite?

Conjecture (Thomas ’91)
The number of groups containing the automorphisms of a
homogeneous structure is always finite.
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Non-permutations on G

Why did you reprove a 20-years old theorem?

Just like permutation
groups, one can consider
closed transformation monoids ⊇ Aut(G).

Such monoids are endomorphism monoids of reducts of G.

Similarly, closed clones ⊇ Aut(G) are
the polymorphism clones of reducts of G.

Definability
Groups: First-order interdefinability.
Monoids: Existential positive interdefinability.
Clones: Primitive positive interdefinability.
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Closed monoids

Theorem (Bodirsky & P ’09)
Let M be any closed transformation monoid containing Aut(G).
Then:

M contains a constant operation, or
M contains eE , or
M contains eN , or
M is the closure of the largest group it contains.

Corollary
Let Γ be a reduct of the random graph.
Then Γ is a reduct of (V ; =), or its endomorphisms are generated by
its automorphisms.
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Model-theoretic corollaries

Definition
An L-structure Γ is model-complete iff
every L-formula is, modulo the theory of Γ,
equivalent to a universal formula.

Γ is model-complete iff
all embeddings between models of its theory are elementary,
i.e., they preserve all first-order formulas.

Model-completeness depends heavily on the language.
There are (easy) examples of two interdefinable structures of which
only one is model-complete.

Theorem (Bodirsky & P ’09)
All reducts of the random graph are model-complete.
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Ramsey’s theorem

Let n, h, p ≥ 1.
n→ (h)p

means:

For all partitions of the p-element subsets of {1, . . . , n}
into good and bad
there exists an h-element subset S of {1, . . . , n}
such that the p-element subsets of S are all good or all bad.

Theorem (Ramsey’s theorem)
For all p, h there exists n such that n→ (h)p.
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Ramsey classes

Let N, H, P be graphs.
N → (H)P

means:

For all partitions of the copies of P in N into good and bad
there exists a copy of H in N
such that the copies of P in H are all good or all bad.

Definition
A class C of structures of the same signature is called a Ramsey class
iff
for all H, P ∈ C there is N in C such that N → (H)P .
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A variant of Thomas’ conjecture

Theorem (Nešetřil-Rödl)
The set of finite ordered graphs is a Ramsey class.

Conjecture
Any homogeneous structure whose set of finite induced
substructures (+ order) is a Ramsey class has only finitely many
reducts.
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Enjoy your coffee break!
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Where can we find your paper?
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Manuel Bodirsky and Michael Pinsker,

All reducts of the random graph are model-complete,

available from arXiv.
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