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ﬂ The random graph and homogeneous structures
e Groups containing Aut(G)

@ Monoids containing Aut(G)

e Model-theoretic corollaries

e Ramsey theoretic tools
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The random graph and homogeneous structures

Denote by G = (V; E) the random graph, i.e., the unique graph which
is
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Denote by G = (V; E) the random graph, i.e., the unique graph which
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The random graph and homogeneous structures

Denote by G = (V; E) the random graph, i.e., the unique graph which
is

@ countably infinite
@ homogeneous
@ universal.
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The random graph and homogeneous structures

Denote by G = (V; E) the random graph, i.e., the unique graph which
is

@ countably infinite
@ homogeneous
@ universal.

Why is it random?
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The random graph and homogeneous structures

Denote by G = (V; E) the random graph, i.e., the unique graph which
is

@ countably infinite

@ homogeneous

@ universal.

A countably infinite randomly chosen graph is almost surely
isomorphic to G.
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The random graph and homogeneous structures

Denote by G = (V; E) the random graph, i.e., the unique graph which
is

@ countably infinite

@ homogeneous

@ universal.

A countably infinite randomly chosen graph is almost surely
isomorphic to G.

G is the Fraissé limit of the class of finite graphs.
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The random graph and homogeneous structures

Denote by G = (V; E) the random graph, i.e., the unique graph which
is

@ countably infinite
@ homogeneous
@ universal.

A countably infinite randomly chosen graph is almost surely
isomorphic to G.

G is the Fraissé limit of the class of finite graphs.
G is the Fraissé limit of the class of its finite induced substructures.
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The random graph and homogeneous structures

Denote by G = (V; E) the random graph, i.e., the unique graph which
is

@ countably infinite
@ homogeneous
@ universal.

A countably infinite randomly chosen graph is almost surely
isomorphic to G.

G is the Fraissé limit of the class of finite graphs.
G is the Fraissé limit of the class of its finite induced substructures.

Is this exceptional?
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The random graph and homogeneous structures

Denote by G = (V; E) the random graph, i.e., the unique graph which
is

@ countably infinite

@ homogeneous

@ universal.

A countably infinite randomly chosen graph is almost surely
isomorphic to G.

G is the Fraissé limit of the class of finite graphs.
G is the Fraissé limit of the class of its finite induced substructures.

General statement: Countable homogeneous structures are exactly
the Fraissé limits of Fraissé classes of finite structures.
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The random graph and homogeneous structures

Denote by G = (V; E) the random graph, i.e., the unique graph which
is

@ countably infinite
@ homogeneous
@ universal.

A countably infinite randomly chosen graph is almost surely
isomorphic to G.

G is the Fraissé limit of the class of finite graphs.
G is the Fraissé limit of the class of its finite induced substructures.

General statement: Countable homogeneous structures are exactly
the Fraissé limits of Fraissé classes of finite structures.

Examples: Homogeneous K,-free graph, dense linear order.
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The automorphism group Aut(G) of G
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The automorphism group Aut(G) of G

G has a large automorphism group Aut(G).
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The automorphism group Aut(G) of G

G has a large automorphism group Aut(G).

Why large?
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The automorphism group Aut(G) of G

G has a large automorphism group Aut(G).

Aut(G) is transitive.
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The automorphism group Aut(G) of G

G has a large automorphism group Aut(G).

Aut(G) is transitive.

Is it 2-transitive?
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The automorphism group Aut(G) of G

G has a large automorphism group Aut(G).

Aut(G) is transitive.

There are 3 orbits of pairs with respect to the action of Aut(G).
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The automorphism group Aut(G) of G

G has a large automorphism group Aut(G).

Aut(G) is transitive.
There are 3 orbits of pairs with respect to the action of Aut(G).

How many classes of n-tuples are there?
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The automorphism group Aut(G) of G

G has a large automorphism group Aut(G).

Aut(G) is transitive.
There are 3 orbits of pairs with respect to the action of Aut(G).

For every n > 1, the number of orbits of n-tuples is finite.
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The automorphism group Aut(G) of G

G has a large automorphism group Aut(G).

Aut(G) is transitive.
There are 3 orbits of pairs with respect to the action of Aut(G).

For every n > 1, the number of orbits of n-tuples is finite.

Definition
Such permutation groups are called oligomorphic.
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The automorphism group Aut(G) of G

G has a large automorphism group Aut(G).

Aut(G) is transitive.
There are 3 orbits of pairs with respect to the action of Aut(G).

For every n > 1, the number of orbits of n-tuples is finite.

Definition
Such permutation groups are called oligomorphic.

Do all homogeneous structures have oligomorphic automorphism
groups?
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The automorphism group Aut(G) of G

G has a large automorphism group Aut(G).

Aut(G) is transitive.
There are 3 orbits of pairs with respect to the action of Aut(G).

For every n > 1, the number of orbits of n-tuples is finite.

Definition
Such permutation groups are called oligomorphic.

All homogeneous structures in a finite language
have oligomorphic automorphism groups.
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Closed permutation groups

Write S for the group of all permutations on V.
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Closed permutation groups

Write S for the group of all permutations on V.

Aut(G) is a subgroup of S..
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Closed permutation groups

Write S for the group of all permutations on V.
Aut(G) is a subgroup of S..

Equip V with the discrete topology, V" with the product topology.
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Closed permutation groups

Write S for the group of all permutations on V.
Aut(G) is a subgroup of S..

Equip V with the discrete topology, V" with the product topology.

Definition

G < S, is closed < §G is a closed subset of S...
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Closed permutation groups

Write S, for the group of all permutations on V.

Aut(G) is a subgroup of S..

Equip V with the discrete topology, V" with the product topology.
Definition

G < S, is closed < G is a closed subset of S...

Is Aut(G) is closed?
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Closed permutation groups

Write S for the group of all permutations on V.
Aut(G) is a subgroup of S..

Equip V with the discrete topology, V" with the product topology.

Definition

G < S, is closed < §G is a closed subset of S...

All automorphism groups of relational structures are closed.
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Closed permutation groups

Write S, for the group of all permutations on V.

Aut(G) is a subgroup of S..

Equip V with the discrete topology, V" with the product topology.
Definition

G < S, is closed < G is a closed subset of S...

All automorphism groups of relational structures are closed.

Is every closed group the automorphism group of a structure?
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Closed permutation groups

Write S for the group of all permutations on V.

Aut(G) is a subgroup of S..

Equip V with the discrete topology, V" with the product topology.
Definition

G < S is closed — § is a closed subset of S..

All automorphism groups of relational structures are closed.

Every closed group is the automorphism group of some structure.
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Closed permutation groups

Write S, for the group of all permutations on V.
Aut(G) is a subgroup of S..
Equip V with the discrete topology, V" with the product topology.

Definition
G < S, is closed < § is a closed subset of S...

All automorphism groups of relational structures are closed.

Every closed group is the automorphism group of some structure.

What can we say about structures with comparable automorphism
groups?
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Closed permutation groups

Write S for the group of all permutations on V.

Aut(G) is a subgroup of S..

Equip V with the discrete topology, V" with the product topology.
Definition

G < S is closed — § is a closed subset of S..

All automorphism groups of relational structures are closed.

Every closed group is the automorphism group of some structure.
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Closed permutation groups

Write S for the group of all permutations on V.

Aut(G) is a subgroup of S..

Equip V with the discrete topology, V" with the product topology.
Definition

G < S is closed — § is a closed subset of S..

All automorphism groups of relational structures are closed.

Every closed group is the automorphism group of some structure.

LetT be homogeneous.
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Closed permutation groups

Write S for the group of all permutations on V.

Aut(G) is a subgroup of S..

Equip V with the discrete topology, V" with the product topology.
Definition

G < S is closed — § is a closed subset of S..

All automorphism groups of relational structures are closed.

Every closed group is the automorphism group of some structure.

LetT be homogeneous.
Let A be any structure.
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Closed permutation groups

Write S, for the group of all permutations on V.

Aut(G) is a subgroup of S..

Equip V with the discrete topology, V" with the product topology.
Definition

G < S is closed — § is a closed subset of S..

All automorphism groups of relational structures are closed.

Every closed group is the automorphism group of some structure.

LetT be homogeneous.
Let A be any structure.
Then A has a first-order definition in T iff Aut(A) contains Aut(I").
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Closed supergroups of Aut(G)
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Closed supergroups of Aut(G)

For homogeneous structures T,
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Closed supergroups of Aut(G)

For homogeneous structures I, the groups containing Aut(I")
correspond precisely
to the structures with a first-order definition in .
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Closed supergroups of Aut(G)

For homogeneous structures I, the groups containing Aut(I")

correspond precisely
to the structures with a first-order definition in I'.

(“Reducts” of I

NSAC 2009 / Novi Sad 6/13

M. Pinsker (Caen) Mappings on the random graph



Closed supergroups of Aut(G)

For homogeneous structures I, the groups containing Aut(I")
correspond precisely

to the structures with a first-order definition in .

(“Reducts” of I

Tell us all the groups containing Aut(G)!
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Closed supergroups of Aut(G)

For homogeneous structures I, the groups containing Aut(I")
correspond precisely

to the structures with a first-order definition in .

(“Reducts” of I

Theorem (Thomas ’91 / Bodirsky & P ’09)
There are exactly 5 closed groups containing Aut(G).
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Closed supergroups of Aut(G)

For homogeneous structures I, the groups containing Aut(I")
correspond precisely

to the structures with a first-order definition in .

(“Reducts” of I

Theorem (Thomas ’91 / Bodirsky & P '09)
There are exactly 5 closed groups containing Aut(G).

We want more examples!

M. Pinsker (Caen) Mappings on the random graph NSAC 2009 / Novi Sad 6/13



Closed supergroups of Aut(G)

For homogeneous structures I, the groups containing Aut(I")
correspond precisely

to the structures with a first-order definition in .

(“Reducts” of I

Theorem (Thomas ’91 / Bodirsky & P ’09)
There are exactly 5 closed groups containing Aut(G).

Other examples

There are 5 groups containing Aut((Q, <)) (Cameron ’76).
There are 2 groups containing the homogeneous Kj-free graph
(Thomas 91 / P '09).
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Closed supergroups of Aut(G)

For homogeneous structures I, the groups containing Aut(I")
correspond precisely

to the structures with a first-order definition in .

(“Reducts” of I

Theorem (Thomas ’91 / Bodirsky & P ’09)
There are exactly 5 closed groups containing Aut(G).

Other examples

There are 5 groups containing Aut((Q, <)) (Cameron '76).

There are 2 groups containing the homogeneous Kj-free graph
(Thomas ‘91 / P ’09).

Is the number of groups containing the automorphisms of a
homogeneous structure always finite?
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Closed supergroups of Aut(G)

For homogeneous structures I, the groups containing Aut(I")
correspond precisely

to the structures with a first-order definition in .

(“Reducts” of I

Theorem (Thomas ’91 / Bodirsky & P ’09)
There are exactly 5 closed groups containing Aut(G).

Other examples

There are 5 groups containing Aut((Q, <)) (Cameron ’76).
There are 2 groups containing the homogeneous Kj-free graph
(Thomas 91 / P '09).

Conjecture (Thomas ’91)

The number of groups containing the automorphisms of a
homogeneous structure is always finite.
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Non-permutations on G

Why did you reprove a 20-years old theorem?
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Non-permutations on G

Just like permutation groups, one can consider
closed transformation monoids O Aut(G).
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Non-permutations on G

Just like permutation groups, one can consider
closed transformation monoids O Aut(G).

Why?
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Non-permutations on G

Just like permutation groups, one can consider
closed transformation monoids O Aut(G).

Such monoids are endomorphism monoids of reducts of G.
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Non-permutations on G

Just like permutation groups, one can consider
closed transformation monoids O Aut(G).

Such monoids are endomorphism monoids of reducts of G.

Similarly, closed clones O Aut(G) are
the polymorphism clones of reducts of G.

M. Pinsker (Caen) Mappings on the random graph NSAC 2009 / Novi Sad



Non-permutations on G

Just like permutation groups, one can consider
closed transformation monoids O Aut(G).

Such monoids are endomorphism monoids of reducts of G.

Similarly, closed clones D Aut(G) are
the polymorphism clones of reducts of G.

Definability

Groups: First-order interdefinability.
Monoids: Existential positive interdefinability.
Clones: Primitive positive interdefinability.
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Closed monoids
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Closed monoids

Theorem (Bodirsky & P '09)

Let M be any closed transformation monoid containing Aut(G).
Then:
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Closed monoids

Theorem (Bodirsky & P ’09)

Let M be any closed transformation monoid containing Aut(G).
Then: What?
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Closed monoids

Theorem (Bodirsky & P '09)

Let M be any closed transformation monoid containing Aut(G).
Then:

@ M contains a constant operation, or
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Theorem (Bodirsky & P ’09)

Let M be any closed transformation monoid containing Aut(G).
Then:

@ M contains a constant operation, or
@ M contains eg, or

M. Pinsker (Caen) Mappings on the random graph

NSAC 2009 / Novi Sad 8/18



Closed monoids

Theorem (Bodirsky & P ’09)

Let M be any closed transformation monoid containing Aut(G).
Then:

@ M contains a constant operation, or
@ M contains eg, or

@ M contains ey, or
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Closed monoids

Theorem (Bodirsky & P ’09)

Let M be any closed transformation monoid containing Aut(G).
Then:

@ M contains a constant operation, or
@ M contains eg, or

@ M contains ey, or

@ M is the closure of the largest group it contains.
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Closed monoids

Theorem (Bodirsky & P ’09)

Let M be any closed transformation monoid containing Aut(G).
Then:

@ M contains a constant operation, or
@ M contains eg, or

@ M contains ey, or

@ M is the closure of the largest group it contains.

Let I be a reduct of the random graph.

Then I is a reduct of (V; =), or its endomorphisms are generated by

its automorphisms.
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Model-theoretic corollaries
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Model-theoretic corollaries

Definition

An L-structure I is model-complete iff
every L-formula is, modulo the theory of T,
equivalent to a universal formula.
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Model-theoretic corollaries

Definition

An L-structure I is model-complete iff
every L-formula is, modulo the theory of T,
equivalent to a universal formula.

What does this have to do with mappings on G?
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Model-theoretic corollaries

Definition

An L-structure I is model-complete iff
every L-formula is, modulo the theory of I',
equivalent to a universal formula.

I" is model-complete iff
all embeddings between models of its theory are elementary,
i.e., they preserve all first-order formulas.
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Model-theoretic corollaries

Definition

An L-structure I is model-complete iff
every L-formula is, modulo the theory of I',
equivalent to a universal formula.

I" is model-complete iff
all embeddings between models of its theory are elementary,
i.e., they preserve all first-order formulas.

Model-completeness depends heavily on the language.

There are (easy) examples of two interdefinable structures of which
only one is model-complete.

M. Pinsker (Caen) Mappings on the random graph NSAC 2009 / Novi Sad 9/13



Model-theoretic corollaries

Definition

An L-structure I is model-complete iff
every L-formula is, modulo the theory of T,
equivalent to a universal formula.

I" is model-complete iff
all embeddings between models of its theory are elementary,
i.e., they preserve all first-order formulas.

Model-completeness depends heavily on the language.

There are (easy) examples of two interdefinable structures of which
only one is model-complete.

Theorem (Bodirsky & P °09)
All reducts of the random graph are model-complete.
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Ramsey’s theorem
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Ramsey’s theorem

Letn, h,p>1.
n— (h)P

means:
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Ramsey’s theorem

Letn, h,p>1.
n— (h)P
means:

For all partitions of the p-element subsets of {1,...,n}
into good and bad
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Ramsey’s theorem

Letn, h,p>1.

n— (h)P
means:
For all partitions of the p-element subsets of {1,...,n}
into good and bad
there exists an h-element subset S of {1,...,n}

M. Pinsker (Caen) Mappings on the random graph NSAC 2009 / Novi Sad 10/13



Ramsey’s theorem

Letn, h,p>1.
n— (h)P
means:
For all partitions of the p-element subsets of {1,...,n}
into good and bad
there exists an h-element subset S of {1,...,n}

such that the p-element subsets of S are all good or all bad.
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Ramsey’s theorem

Letn,h,p > 1.
n— (h)P
means:
For all partitions of the p-element subsets of {1,...,n}
into good and bad
there exists an h-element subset S of {1,...,n}

such that the p-element subsets of S are all good or all bad.

Given h, p, can we choose n large enough such that n — (h)P holds?
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Ramsey’s theorem

Letn, h,p>1.
n— (h)P
means:
For all partitions of the p-element subsets of {1,...,n}
into good and bad
there exists an h-element subset S of {1,...,n}

such that the p-element subsets of S are all good or all bad.

Theorem (Ramsey’s theorem)
For all p, h there exists n such that n — (h)P.
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Ramsey classes
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Ramsey classes

Let N, H, P be graphs.
N — (H)P

means:

For all partitions of the copies of P in N into good and bad
there exists a copy of Hin N
such that the copies of P in H are all good or all bad.
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Ramsey classes

Let N, H, P be graphs.
N — (H)P

means:

For all partitions of the copies of P in N into good and bad
there exists a copy of Hin N
such that the copies of P in H are all good or all bad.

Definition

A class € of structures of the same signature is called a Ramsey class
iff
for all H, P € € there is N in @ such that N — (H)P.
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A variant of Thomas’ conjecture

Theorem (NeSetril-Radl)
The set of finite ordered graphs is a Ramsey class.
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A variant of Thomas’ conjecture

Theorem (NeSetril-Rodl)
The set of finite ordered graphs is a Ramsey class.

Any homogeneous structure whose set of finite induced
substructures (+ order) is a Ramsey class has only finitely many
reducts.

M. Pinsker (Caen) Mappings on the random graph NSAC 2009 / Novi Sad 12/13



Enjoy your coffee break!
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Where can we find your paper?
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Manuel Bodirsky and Michael Pinsker,
All reducts of the random graph are model-complete,

available from arXiv.
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