Clones on infinite sets

Michael Pinsker

Laboratoire de Mathématiques Nicolas Oresme CNRS UMR 6139 Université de Caen

January 19, 2009

- 1 The Clone Lattice: Definition and Basic Properties
- 2 Set Theory \rightarrow Clones
- 3 Clones → Model Theory & Complexity Theory

M. Pinsker (Caen)

Fix a set X (here: infinite).

Consider an algebra $\mathfrak{A} = (X, \mathfrak{F}_{\mathfrak{A}})$ with domain *X*.

Fix a set X (here: infinite).

Consider an algebra $\mathfrak{A} = (X, \mathfrak{F}_{\mathfrak{A}})$ with domain *X*.

Fact

Many algebraic properties of \mathfrak{A} depend only on the term operations of \mathfrak{A} .

E.g. Subalgebras, Congruences, Automorphisms.

Fix a set X (here: infinite).

Consider an algebra $\mathfrak{A} = (X, \mathfrak{F}_{\mathfrak{A}})$ with domain *X*.

Fact

Many algebraic properties of \mathfrak{A} depend only on the term operations of \mathfrak{A} .

E.g. Subalgebras, Congruences, Automorphisms.

Definition

Terms of \mathfrak{A} : All operations on *X* which can be built by composing operations from $\mathfrak{F}_{\mathfrak{A}}$ and the projections. We write $\langle \mathfrak{F}_{\mathfrak{A}} \rangle$.

Fix a set X (here: infinite).

Consider an algebra $\mathfrak{A} = (X, \mathfrak{F}_{\mathfrak{A}})$ with domain *X*.

Fact

Many algebraic properties of \mathfrak{A} depend only on the term operations of \mathfrak{A} .

E.g. Subalgebras, Congruences, Automorphisms.

Definition

Terms of \mathfrak{A} : All operations on *X* which can be built by composing operations from $\mathfrak{F}_{\mathfrak{A}}$ and the projections. We write $\langle \mathfrak{F}_{\mathfrak{A}} \rangle$.

Definition

For algebras $\mathfrak{A}, \mathfrak{B}$ on X, we write $\mathfrak{A} \preceq \mathfrak{B}$ iff $\langle \mathfrak{F}_{\mathfrak{A}} \rangle \subseteq \langle \mathfrak{F}_{\mathfrak{B}} \rangle$.

We write $\mathfrak{A} \sim \mathfrak{B}$ iff $\langle \mathfrak{F}_{\mathfrak{A}} \rangle = \langle \mathfrak{F}_{\mathfrak{B}} \rangle$.

The order \leq on the set of algebras on *X*, factored by \sim , is a complete lattice Cl(X).

Clones

Fact

The order \leq on the set of algebras on *X*, factored by \sim , is a complete lattice Cl(X).

Definition

The elements of CI(X) (=classes of term equivalent algebras) are called *clones*.

The order \leq on the set of algebras on *X*, factored by \sim , is a complete lattice Cl(X).

Definition

The elements of CI(X) (=classes of term equivalent algebras) are called *clones*.

Equivalent definition

For all
$$n \ge 1$$
, set $\mathbb{O}^{(n)} := X^{X^n} = \{f : X^n \to X\}.$

Write $\mathcal{O} = \bigcup_n \mathcal{O}^{(n)}$.

A clone is a subset C of O which

- Contains all projections and
- Is closed under composition.

Examples of clones

 \bullet The full clone $\ensuremath{\mathbb{O}}.$

Examples of clones

- The full clone O.
- The set \mathcal{P} of all projections.

- The full clone O.
- The set \mathcal{P} of all projections.
- For a partial order ≤, the set of all monotone functions.

- The full clone O.
- The set \mathcal{P} of all projections.
- For a partial order ≤, the set of all monotone functions.
- For a relation ρ ⊆ X^I, the set of all *f* which preserve this relation.
 Every clone is of this form.

- The full clone O.
- The set \mathcal{P} of all projections.
- For a partial order ≤, the set of all monotone functions.
- For a relation ρ ⊆ X^I, the set of all *f* which preserve this relation.
 Every clone is of this form.
- The set of *idempotent* operations (all *f* that satisfy f(x, ..., x) = x).

- The full clone O.
- The set \mathcal{P} of all projections.
- For a partial order ≤, the set of all monotone functions.
- For a relation ρ ⊆ X^I, the set of all *f* which preserve this relation.
 Every clone is of this form.
- The set of *idempotent* operations (all *f* that satisfy f(x, ..., x) = x).
- For a topological space X = (X, T), the set of all continuous operations which map some product Xⁿ into X.

If \mathcal{C}_i , $i \in I$ are clones, then so is their intersection.

Thus $\bigwedge_{i \in I} \mathfrak{C}_i = \bigcap_{i \in I} \mathfrak{C}_i$.

If \mathcal{C}_i , $i \in I$ are clones, then so is their intersection.

Thus $\bigwedge_{i \in I} \mathfrak{C}_i = \bigcap_{i \in I} \mathfrak{C}_i$.

Fact

$$\bigvee_{i\in I} \mathfrak{C}_i = \langle \bigcup_{i\in I} \mathfrak{C}_i \rangle.$$

If C_i , $i \in I$ are clones, then so is their intersection.

Thus $\bigwedge_{i\in I} \mathfrak{C}_i = \bigcap_{i\in I} \mathfrak{C}_i$.

Fact

$$\bigvee_{i\in I} \mathfrak{C}_i = \langle \bigcup_{i\in I} \mathfrak{C}_i \rangle.$$

Problem

What does CI(X) look like?

Picture of the clone lattice

M. Pinsker (Caen)

Fact

The size of the clone lattice is $2^{2^{|X|}}$.

Fact

The size of the clone lattice is $2^{2^{|X|}}$.

Proof

For every $A \subseteq X$, take the characteristic function $f_A \in O^{(1)}$. Every set of such functions generates a different clone.

Fact

The size of the clone lattice is $2^{2^{|X|}}$.

Proof

For every $A \subseteq X$, take the characteristic function $f_A \in \mathcal{O}^{(1)}$. Every set of such functions generates a different clone.

Fact

Cl(X) is *algebraic*: It is the lattice of ideals of a \lor -semilattice \mathfrak{S} .

Fact

The size of the clone lattice is $2^{2^{|X|}}$.

Proof

For every $A \subseteq X$, take the characteristic function $f_A \in \mathcal{O}^{(1)}$. Every set of such functions generates a different clone.

Fact

Cl(X) is *algebraic*: It is the lattice of ideals of a \lor -semilattice \mathfrak{S} . \mathfrak{S} consists of the finitely generated ("compact") clones.

Fact

The size of the clone lattice is $2^{2^{|X|}}$.

Proof

For every $A \subseteq X$, take the characteristic function $f_A \in \mathcal{O}^{(1)}$. Every set of such functions generates a different clone.

Fact

Cl(X) is *algebraic*: It is the lattice of ideals of a \lor -semilattice \mathfrak{S} . \mathfrak{S} consists of the finitely generated ("compact") clones. \mathfrak{S} has size $2^{|X|}$.

Fact

The size of the clone lattice is $2^{2^{|X|}}$.

Proof

For every $A \subseteq X$, take the characteristic function $f_A \in \mathcal{O}^{(1)}$. Every set of such functions generates a different clone.

Fact

Cl(X) is *algebraic*: It is the lattice of ideals of a \lor -semilattice \mathfrak{S} . \mathfrak{S} consists of the finitely generated ("compact") clones. \mathfrak{S} has size $2^{|X|}$.

Theorem (2006)

Cl(X) contains all algebraic lattices with $2^{|X|}$ compact elements as complete sublattices.

Picture of the clone lattice

Set Theory \rightarrow Clones

Fact

The size of the clone lattice is $2^{2^{|X|}}$.

Fact

The size of the clone lattice is $2^{2^{|X|}}$.

Proof 2

Let U be an ultrafilter on X.

 $\mathfrak{C}_U := \{ f \in \mathfrak{O} : \forall A \notin U \ (f[A^n] \notin U) \} \text{ is a clone.}$

Fact

The size of the clone lattice is $2^{2^{|X|}}$.

Proof 2

Let U be an ultrafilter on X.

 $\mathfrak{C}_U := \{ f \in \mathfrak{O} : \forall A \notin U \ (f[A^n] \notin U) \} \text{ is a clone.}$

Proof 3

For
$$f \in \mathbb{O}$$
, set $Fix(f) := \{x \in X : f(x, \dots, x) = x\}$.
 $\mathcal{D}_U := \{f \in \mathbb{O} : Fix(f) \in U\}$ is a clone.

Fact

The size of the clone lattice is $2^{2^{|X|}}$.

Proof 2

Let U be an ultrafilter on X.

 $\mathcal{C}_U := \{ f \in \mathcal{O} : \forall A \notin U \ (f[A^n] \notin U) \} \text{ is a clone.}$

Proof 3

For
$$f \in \mathbb{O}$$
, set $Fix(f) := \{x \in X : f(x, ..., x) = x\}$.

 $\mathcal{D}_U := \{ f \in \mathcal{O} : Fix(f) \in U \}$ is a clone.

Theorem

(Rosenberg 76; Marchenkov 81; Goldstern & Shelah 02)

The clone lattice has $2^{2^{|X|}}$ dual atoms.

M. Pinsker (Caen)

Problem (Gavrilov 59)

Is every clone $\neq 0$ contained in a dual atom of the clone lattice?
Problem (Gavrilov 59)

Is every clone $\neq 0$ contained in a dual atom of the clone lattice?

Remark

For finite X: Yes. (Trivial application of Zorn's lemma.)

Problem (Gavrilov 59)

Is every clone $\neq 0$ contained in a dual atom of the clone lattice?

Remark

For finite X: Yes. (Trivial application of Zorn's lemma.)

Theorem (Goldstern & Shelah 05,07)

If |X| is regular and $2^{|X|} = |X|^+$, then the answer is no.

Problem (Gavrilov 59)

Is every clone $\neq 0$ contained in a dual atom of the clone lattice?

Remark

For finite X: Yes. (Trivial application of Zorn's lemma.)

Theorem (Goldstern & Shelah 05,07)

If |X| is regular and $2^{|X|} = |X|^+$, then the answer is no.

Method

So-called creatures which measure the growth of functions.

Dual atoms containing $O^{(1)}$

Dual atoms containing $O^{(1)}$

Theorem (Gavrilov 65)

On countable *X*, there exist exactly two dual atoms T_1 , T_2 which contain $O^{(1)}$.

Theorem (Gavrilov 65)

On countable *X*, there exist exactly two dual atoms T_1 , T_2 which contain $O^{(1)}$.

Theorem (Goldstern & Shelah 02)

The same is true if |X| is a weakly compact cardinal.

Theorem (Gavrilov 65)

On countable *X*, there exist exactly two dual atoms T_1 , T_2 which contain $O^{(1)}$.

Theorem (Goldstern & Shelah 02)

The same is true if |X| is a weakly compact cardinal.

Theorem (Goldstern & Shelah 02)

If |X| satisfies a certain negative partition property (which holds in particular for all successors of regulars $\geq \aleph_2$), then there exist $2^{2^{|X|}}$ dual atoms containing $\mathbb{O}^{(1)}$.

Theorem (Gavrilov 65)

On countable *X*, there exist exactly two dual atoms T_1 , T_2 which contain $O^{(1)}$.

Theorem (Goldstern & Shelah 02)

The same is true if |X| is a weakly compact cardinal.

Theorem (Goldstern & Shelah 02)

If |X| satisfies a certain negative partition property (which holds in particular for all successors of regulars $\geq \aleph_2$), then there exist $2^{2^{|X|}}$ dual atoms containing $\mathbb{O}^{(1)}$.

Intuition

Unary operations: Pigeonhole principle. Higher arity operations: "Real" partition properties.

Theorem (2004)

 T_1 has a nice (finite) generating system and is well-understood.

Theorem (2004)

 T_1 has a nice (finite) generating system and is well-understood.

We do not really understand T_2 .

Theorem (2004)

 T_1 has a nice (finite) generating system and is well-understood.

We do not really understand T_2 .

Observation

If X is equipped with the discrete topology, then $O^{(n)} = X^{X^n}$ is the Baire space. The sum space O is again homeomorphic to the Baire space.

Theorem (2004)

 T_1 has a nice (finite) generating system and is well-understood.

We do not really understand T_2 .

Observation

If X is equipped with the discrete topology, then $O^{(n)} = X^{X^n}$ is the Baire space. The sum space O is again homeomorphic to the Baire space.

Theorem (2004)

 T_1 is a Borel set in \mathcal{O} .

Theorem (2004)

 T_1 has a nice (finite) generating system and is well-understood.

We do not really understand T_2 .

Observation

If X is equipped with the discrete topology, then $O^{(n)} = X^{X^n}$ is the Baire space. The sum space O is again homeomorphic to the Baire space.

Theorem (2004)

 T_1 is a Borel set in \mathbb{O} .

Theorem (Goldstern 04)

 T_2 is a complete co-analytic set.

In particular, it is not countably generated over $O^{(1)}$.

Fix a transformation monoid $\mathcal{M} \subseteq \mathcal{O}^{(1)}$. Consider the set of all clones \mathcal{C} with $\mathcal{C} \cap \mathcal{O}^{(1)} = \mathcal{M}$. This set is in interval of the clone lattice. Fix a transformation monoid $\mathcal{M} \subseteq \mathcal{O}^{(1)}$.

Consider the set of all clones \mathcal{C} with $\mathcal{C} \cap \mathcal{O}^{(1)} = \mathcal{M}$.

This set is in interval of the clone lattice.

Definition

Such intervals are called monoidal.

Fix a transformation monoid $\mathcal{M} \subseteq \mathcal{O}^{(1)}$.

Consider the set of all clones \mathcal{C} with $\mathcal{C} \cap \mathcal{O}^{(1)} = \mathcal{M}$.

This set is in interval of the clone lattice.

Definition

Such intervals are called monoidal.

Fact

The monoidal intervals are a natural partition of the clone lattice.

Fix a transformation monoid $\mathcal{M} \subseteq \mathcal{O}^{(1)}$.

Consider the set of all clones \mathcal{C} with $\mathcal{C} \cap \mathcal{O}^{(1)} = \mathcal{M}$.

This set is in interval of the clone lattice.

Definition

Such intervals are called monoidal.

Fact

The monoidal intervals are a natural partition of the clone lattice.

Problem

What do they look like? What cardinalities can they have?

Monoidal intervals

If \mathcal{L} is a dually algebraic distributive lattice with $\leq 2^{|X|}$ compact elements, then it is isomorphic to a monoidal interval.

If \mathcal{L} is a dually algebraic distributive lattice with $\leq 2^{|X|}$ compact elements, then it is isomorphic to a monoidal interval.

If \mathcal{L} is a dually algebraic distributive lattice with $\leq 2^{|X|}$ compact elements, then it is isomorphic to a monoidal interval.

What about $2^{|X|} < \lambda < 2^{2^{|X|}}$, with λ not the cardinality of a power set?

If \mathcal{L} is a dually algebraic distributive lattice with $\leq 2^{|X|}$ compact elements, then it is isomorphic to a monoidal interval.

Corollary For all $\lambda \leq 2^{|X|}$, there are monoidal intervals of cardinality • λ and • 2^{λ} .

What about $2^{|X|} < \lambda < 2^{2^{|X|}}$, with λ not the cardinality of a power set?

Theorem (Abraham, Goldstern, P. 07)

It is consistent with ZFC that there exists no algebraic lattice of cardinality λ (with $\leq 2^{|X|}$ compact elements).

It is also consistent that there exists a monoidal interval of size λ .

 $Clones \rightarrow Model \ theory$

Problem

Determine the reducts of Γ ,

i.e. all structures first-order definable from Γ .

Problem

Determine the reducts of Γ ,

i.e. all structures first-order definable from Γ .

Traditionally: $\Gamma_1 \sim \Gamma_2$ iff Γ_1 has a first-order definition in Γ_2 and vice-versa.

Problem

Determine the reducts of Γ ,

i.e. all structures first-order definable from Γ .

Traditionally: $\Gamma_1 \sim \Gamma_2$ iff Γ_1 has a first-order definition in Γ_2 and vice-versa.

Examples

• Cameron '76: 5 reducts of $(\mathbb{Q}, <)$.

Problem

Determine the reducts of Γ ,

i.e. all structures first-order definable from Γ .

Traditionally: $\Gamma_1 \sim \Gamma_2$ iff Γ_1 has a first-order definition in Γ_2 and vice-versa.

Examples

- Cameron '76: 5 reducts of $(\mathbb{Q}, <)$.
- Junker & Ziegler '08: 116 reducts of $(\mathbb{Q}, <, a)$.

Problem

Determine the reducts of Γ ,

i.e. all structures first-order definable from Γ .

Traditionally: $\Gamma_1 \sim \Gamma_2$ iff Γ_1 has a first-order definition in Γ_2 and vice-versa.

Examples

- Cameron '76: 5 reducts of $(\mathbb{Q}, <)$.
- Junker & Ziegler '08: 116 reducts of $(\mathbb{Q}, <, a)$.
- Thomas '91: 5 reducts of the random graph.

Definition

Aut(Γ) := { automorphisms of Γ }. Let \mathfrak{G} be a set of permutations. Inv(\mathfrak{G}) := {R : R invariant under all $g \in \mathfrak{G}$ }.

Definition

Aut(Γ) := { automorphisms of Γ }. Let \mathcal{G} be a set of permutations. Inv(\mathcal{G}) := {R : R invariant under all $g \in \mathcal{G}$ }.

Fact

- Inv Aut= closure operator on the relational structures.
- Aut Inv= closure operator on the sets of permutations.

Definition

Aut(Γ) := { automorphisms of Γ }. Let \mathcal{G} be a set of permutations. Inv(\mathcal{G}) := {R : R invariant under all $g \in \mathcal{G}$ }.

Fact

- Inv Aut= closure operator on the relational structures.
- Aut Inv= closure operator on the sets of permutations.

Theorem (Ryll-Nardzewski)

Let Γ be ω -categorical. Then Inv Aut(Γ) = $fo(\Gamma)$.

Definition

Aut(Γ) := { automorphisms of Γ }. Let \mathcal{G} be a set of permutations. Inv(\mathcal{G}) := {R : R invariant under all $g \in \mathcal{G}$ }.

Fact

- Inv Aut= closure operator on the relational structures.
- Aut Inv= closure operator on the sets of permutations.

Theorem (Ryll-Nardzewski)

Let Γ be ω -categorical. Then Inv Aut(Γ) = $fo(\Gamma)$.

Corollary

The reducts of Γ correspond to the closed groups containing Aut(Γ).

Problem

Given a structure Γ , determine its reducts *up to primitive positive interdefinability*.

Formulas of the form $\exists x_1, ..., x_n \phi_1 \land ... \land \phi_m$, with ϕ_i atomic, are called *primitive positive*.

Problem

Given a structure Γ , determine its reducts *up to primitive positive interdefinability*.

Formulas of the form $\exists x_1, \ldots, x_n \phi_1 \land \ldots \land \phi_m$, with ϕ_i atomic, are called *primitive positive*.

Definition

Pol(Γ) := { $f \in \mathcal{O} : f$ preserves all relations of Γ }.

For $\mathfrak{F} \subseteq \mathfrak{O}$, set $Inv(\mathfrak{F}) := \{ R : R \text{ is invariant under all } f \in \mathfrak{F} \}.$

Problem

Given a structure Γ , determine its reducts *up to primitive positive interdefinability*.

Formulas of the form $\exists x_1, \ldots, x_n \phi_1 \land \ldots \land \phi_m$, with ϕ_i atomic, are called *primitive positive*.

Definition

 $\mathsf{Pol}(\Gamma) := \{ f \in \mathbb{O} : f \text{ preserves all relations of } \Gamma \}.$

For $\mathfrak{F} \subseteq \mathfrak{O}$, set $Inv(\mathfrak{F}) := \{ R : R \text{ is invariant under all } f \in \mathfrak{F} \}.$

Fact

- Inv Pol= closure operator on the relational structures.
- Pol Inv= closure operator on the sets of operations.
Primitive positive definability and operations

Fact

The Pol Inv-closed sets of operations are precisely the closed clones.

Primitive positive definability and operations

Fact

The Pol Inv-closed sets of operations are precisely the closed clones.

Theorem (Bodirsky & Nešetřil '06)

Let Γ be ω -categorical. Then Inv Pol(Γ) = $pp(\Gamma)$.

Primitive positive definability and operations

Fact

The Pol Inv-closed sets of operations are precisely the closed clones.

Theorem (Bodirsky & Nešetřil '06)

Let Γ be ω -categorical. Then Inv Pol(Γ) = $pp(\Gamma)$.

Corollary

The reducts of Γ , up to pp-interdefinability, correspond to the closed clones containing Aut(Γ).

First step

Reducts of the simplest structure, $\Gamma := (X, =)$.

First step

Reducts of the simplest structure, $\Gamma := (X, =)$.

Observation

The reducts of (X, =) correspond to the closed clones containing all permutations.

First step

Reducts of the simplest structure, $\Gamma := (X, =)$.

Observation

The reducts of (X, =) correspond to the closed clones containing all permutations.

Theorem (Bodirsky, Chen, P. 2008)

There are uncountably many reducts of (X, =) up to pp-interdefinability.

The reducts of equality

Problem

Determine the reducts of other nice ω -categorical structures, such as

- The random graph
- The unbounded dense linear order.

Constraint Satisfaction Problem CSP(Γ)

Fixed: A structure Γ ("template"). Input: A finite structure Δ . Question: Does there exist a homomorphism $\Delta \rightarrow \Gamma$?

Constraint Satisfaction Problem CSP(Γ)

Fixed: A structure Γ ("template").

Input: A finite structure Δ .

Question: Does there exist a homomorphism $\Delta \rightarrow \Gamma$?

Fact

Complexity of $CSP(\Gamma)$ (polynomial time-) invariant under pp-definitions.

Constraint Satisfaction Problem CSP(Γ)

Fixed: A structure Γ ("template").

Input: A finite structure Δ .

Question: Does there exist a homomorphism $\Delta \to \Gamma ?$

Fact

Complexity of $CSP(\Gamma)$ (polynomial time-) invariant under pp-definitions.

Consequence

For ω -categorical Γ , the Galois connection Inv-Pol can be used. This is called the "algebraic approach" to CSP.

