Clones on Ramsey structures and Schaefer's theorem for graphs

An opera in a prologue, three acts, and an epilogue

Michael Pinsker

ÉLM Université Denis-Diderot Paris 7 Algebra TU Wien Finstein Institute of Mathematics Jerusalem

LIX, École Polytechnique, October 2010

Synopsis

- Prologue: The graph satisfiability problem (Bodirsky, Pinsker)
- Act I: Reducts of homogeneous structures (Cameron, Thomas)
- Act II: The Ramsey property (Nešetřil, Rödl)
- Act III: Topological dynamics (Kechris, Pestov, Todorcevic, Tsankov)
- Epilogue: Schaefer's theorem for graphs

Prologue

The graph satisfiability problem

Let Ψ be a finite set of propositional formulas.

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)

INPUT:

- A set W of propositional variables, and
- statements ϕ_1, \dots, ϕ_n about the variables in W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 < i < n} \phi_i$ satisfiable?

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)

INPUT:

- A set W of propositional variables, and
- statements ϕ_1, \ldots, ϕ_n about the variables in W, where each ϕ_i is taken from Ψ.

QUESTION: Is $\bigwedge_{1 < i < n} \phi_i$ satisfiable?

Computational complexity depends on Ψ . Always in NP.

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)

INPUT:

- A set W of propositional variables, and
- statements ϕ_1, \dots, ϕ_n about the variables in W, where each ϕ_i is taken from Ψ.

QUESTION: Is $\bigwedge_{1 < i < n} \phi_i$ satisfiable?

Computational complexity depends on Ψ . Always in NP.

Theorem (Schaefer '78)

Boolean-SAT(Ψ) is either in P or NP-complete, for all Ψ .

Let E be a binary relation symbol. (Imagine: edge relation of an undirected graph.) Let Ψ be a finite set of quantifier-free $\{E\}$ -formulas.

LIX

Let E be a binary relation symbol.

(Imagine: edge relation of an undirected graph.)

Let Ψ be a finite set of quantifier-free $\{E\}$ -formulas.

Computational problem: Graph-SAT(Ψ)

INPUT:

- A set W of variables (vertices), and
- statements ϕ_1, \ldots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 < i < n} \phi_i$ satisfiable in a graph?

Let E be a binary relation symbol.

(Imagine: edge relation of an undirected graph.)

Let Ψ be a finite set of quantifier-free $\{E\}$ -formulas.

Computational problem: Graph-SAT(Ψ)

INPUT:

- A set W of variables (vertices), and
- statements ϕ_1, \ldots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 < i < n} \phi_i$ satisfiable in a graph?

Computational complexity depends on Ψ . Always in NP.

Let E be a binary relation symbol.

(Imagine: edge relation of an undirected graph.)

Let Ψ be a finite set of quantifier-free $\{E\}$ -formulas.

Computational problem: Graph-SAT(Ψ)

INPUT:

- A set W of variables (vertices), and
- statements ϕ_1, \ldots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 < i < n} \phi_i$ satisfiable in a graph?

Computational complexity depends on Ψ . Always in NP.

Question

Is Graph-SAT(Ψ) either in P or NP-complete, for all Ψ ?

Example 1 Let Ψ_1 only contain

$$\psi_{1}(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)).$$

Example 1 Let Ψ_1 only contain

$$\psi_{1}(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)).$$

Graph-SAT(Ψ_1) is NP-complete.

Example 1 Let Ψ_1 only contain

$$\psi_{1}(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)).$$

Graph-SAT(Ψ_1) is NP-complete.

Example 2 Let Ψ_2 only contain

$$\psi_{2}(x,y,z) := (E(x,y) \land \neg E(y,z) \land \neg E(x,z))$$

$$\lor (\neg E(x,y) \land E(y,z) \land \neg E(x,z))$$

$$\lor (\neg E(x,y) \land \neg E(y,z) \land E(x,z))$$

$$\lor (E(x,y) \land E(y,z) \land E(x,z)).$$

Example 1 Let Ψ_1 only contain

$$\psi_{1}(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)).$$

Graph-SAT(Ψ_1) is NP-complete.

Example 2 Let Ψ_2 only contain

$$\psi_{2}(x,y,z) := (E(x,y) \land \neg E(y,z) \land \neg E(x,z))$$

$$\lor (\neg E(x,y) \land E(y,z) \land \neg E(x,z))$$

$$\lor (\neg E(x,y) \land \neg E(y,z) \land E(x,z))$$

$$\lor (E(x,y) \land E(y,z) \land E(x,z)).$$

Graph-SAT(Ψ_2) is in P.

Let G = (V; E) denote the random graph, i.e., the unique countably infinite graph which

Let G = (V; E) denote the random graph, i.e., the unique countably infinite graph which

is (ultra-)homogeneous

Let G = (V; E) denote the random graph, i.e., the unique countably infinite graph which

- is (ultra-)homogeneous
- contains all finite (even countable) graphs.

Let G = (V; E) denote the random graph, i.e., the unique countably infinite graph which

- is (ultra-)homogeneous
- contains all finite (even countable) graphs.

For a graph formula $\psi(x_1, \dots, x_n)$, define a relation

$$R_{\psi} := \{(a_1, \ldots, a_n) \in V^n : \psi(a_1, \ldots, a_n)\}.$$

Let G = (V; E) denote the random graph, i.e., the unique countably infinite graph which

- is (ultra-)homogeneous
- contains all finite (even countable) graphs.

For a graph formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1, \ldots, a_n) \in V^n : \psi(a_1, \ldots, a_n)\}.$$

For a set Ψ of graph formulas, define a structure

$$\Gamma_{\Psi} := (V; (R_{\psi} : \psi \in \Psi)).$$

Let G = (V; E) denote the random graph, i.e., the unique countably infinite graph which

- is (ultra-)homogeneous
- contains all finite (even countable) graphs.

For a graph formula $\psi(x_1, \dots, x_n)$, define a relation

$$R_{\psi} := \{(a_1, \ldots, a_n) \in V^n : \psi(a_1, \ldots, a_n)\}.$$

For a set Ψ of graph formulas, define a structure

$$\Gamma_{\Psi} := (V; (R_{\psi} : \psi \in \Psi)).$$

 Γ_{Ψ} is a *reduct of* the random graph, i.e., a structure with a first-order definition in G.

An instance

- $W = \{w_1, \dots, w_m\}$
- \bullet ϕ_1, \ldots, ϕ_n

of Graph-SAT(Ψ) has a positive solution \leftrightarrow

An instance

- $W = \{w_1, \dots, w_m\}$
- \bullet ϕ_1, \ldots, ϕ_n

of Graph-SAT(Ψ) has a positive solution \leftrightarrow

the sentence $\exists w_1, \ldots, w_m . \bigwedge_i \phi_i$ holds in Γ_{Ψ} .

An instance

- $W = \{w_1, \dots, w_m\}$
- \bullet ϕ_1, \ldots, ϕ_n

of Graph-SAT(Ψ) has a positive solution \leftrightarrow

the sentence $\exists w_1, \ldots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

The decision problem

whether or not a given primitive positive sentence holds in Γ_{Ψ} is called the *Constraint Satisfaction Problem* of Γ_{Ψ} (or CSP(Γ_{Ψ})).

An instance

- $W = \{w_1, \dots, w_m\}$
- \bullet ϕ_1, \ldots, ϕ_n

of Graph-SAT(Ψ) has a positive solution \leftrightarrow

the sentence $\exists w_1, \ldots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

The decision problem

whether or not a given primitive positive sentence holds in Γ_{Ψ} is called the *Constraint Satisfaction Problem* of Γ_{Ψ} (or CSP(Γ_{Ψ})).

So Graph-SAT(Ψ) and CSP(Γ_{Ψ}) are one and the same problem.

An instance

- $W = \{w_1, \dots, w_m\}$
- \bullet ϕ_1, \ldots, ϕ_n

of Graph-SAT(Ψ) has a positive solution \leftrightarrow

the sentence $\exists w_1, \ldots, w_m . \bigwedge_i \phi_i$ holds in Γ_{Ψ} .

The decision problem whether or not a given primitive positive sentence holds in Γ_{Ψ} is called the *Constraint Satisfaction Problem* of Γ_{Ψ} (or CSP(Γ_{Ψ})).

So Graph-SAT(Ψ) and CSP(Γ_{Ψ}) are one and the same problem.

Let's study the reducts of the random graph!

Act I

Reducts of homogeneous structures

Let Γ be a countable relational structure in a finite language

Let Γ be a countable relational structure in a finite language which is *homogeneous*, i.e.,

For all $A, B \subseteq \Gamma$ finite, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(\Gamma)$ extending *i*.

Let Γ be a countable relational structure in a finite language which is *homogeneous*, i.e.,

For all $A, B \subseteq \Gamma$ finite, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(\Gamma)$ extending *i*.

Γ is the Fraïssé limit of its age, i.e., its class of finite induced substructures.

Let Γ be a countable relational structure in a finite language which is *homogeneous*, i.e.,

For all $A, B \subseteq \Gamma$ finite, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(\Gamma)$ extending *i*.

Γ is the Fraïssé limit of its age, i.e., its class of finite induced substructures.

Definition

A reduct of Γ is a structure with a first-order (f.o.) definition in Γ .

Let Γ be a countable relational structure in a finite language which is *homogeneous*, i.e.,

For all $A, B \subseteq \Gamma$ finite, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(\Gamma)$ extending *i*.

Γ is the Fraïssé limit of its age, i.e., its class of finite induced substructures.

Definition

A reduct of Γ is a structure with a first-order (f.o.) definition in Γ .

Problem

Classify the reducts of Γ .

Consider two reducts Δ , Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

Consider two reducts Δ , Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are first-order interdefinable.

Consider two reducts Δ , Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are first-order interdefinable.

" Δ is a reduct of Δ " is a *quasiorder* on relational structures over the same domain.

Consider two reducts Δ, Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are first-order interdefinable.

" Δ is a reduct of Δ' " is a *quasiorder* on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a complete lattice.

Consider two reducts Δ , Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are first-order interdefinable.

" Δ is a reduct of Δ " is a *quasiorder* on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a *complete lattice*.

Finer classifications of the reducts of Γ , e.g. up to

Consider two reducts Δ, Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are first-order interdefinable.

" Δ is a reduct of Δ' " is a *quasiorder* on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a complete lattice.

Finer classifications of the reducts of Γ , e.g. up to

Existential interdefinability

Consider two reducts Δ , Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are first-order interdefinable.

" Δ is a reduct of Δ " is a *quasiorder* on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a *complete lattice*.

Finer classifications of the reducts of Γ , e.g. up to

- Existential interdefinability
- Existential positive interdefinability

Consider two reducts Δ, Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are first-order interdefinable.

" Δ is a reduct of Δ' " is a *quasiorder* on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a complete lattice.

Finer classifications of the reducts of Γ , e.g. up to

- Existential interdefinability
- Existential positive interdefinability
- Primitive positive interdefinability

Denote by $(\mathbb{Q}; <)$ be the dense linear order, and set

betw
$$(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$$

$$\operatorname{cycl}(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y \text{ or } y < z < x\}$$

$$\operatorname{sep}(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \dots\}$$

Denote by $(\mathbb{Q}; <)$ be the dense linear order, and set

betw
$$(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$$

$$\operatorname{cycl}(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y \text{ or } y < z < x\}$$

$$\operatorname{sep}(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \dots\}$$

Theorem (Cameron '76)

Denote by $(\mathbb{Q}; <)$ be the dense linear order, and set

betw
$$(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$$

$$\operatorname{cycl}(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y \text{ or } y < z < x\}$$

$$\operatorname{sep}(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \dots\}$$

Theorem (Cameron '76)

Let Γ be a reduct of $(\mathbb{Q}; <)$. Then:

1 Γ is first-order interdefinable with $(\mathbb{Q}; <)$, or

Denote by $(\mathbb{Q}; <)$ be the dense linear order, and set

betw
$$(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$$

$$\operatorname{cycl}(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y \text{ or } y < z < x\}$$

$$\operatorname{sep}(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \dots\}$$

Theorem (Cameron '76)

- **1** Γ is first-order interdefinable with $(\mathbb{Q}; <)$, or
- \circ Γ is first-order interdefinable with (\mathbb{Q} ; betw), or

Denote by $(\mathbb{Q}; <)$ be the dense linear order, and set

betw
$$(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$$

$$\operatorname{cycl}(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y \text{ or } y < z < x\}$$

$$\operatorname{sep}(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \dots\}$$

Theorem (Cameron '76)

- **1** Γ is first-order interdefinable with $(\mathbb{Q}; <)$, or
- **3** Γ is first-order interdefinable with (\mathbb{Q} ; cycl), or

Denote by $(\mathbb{Q}; <)$ be the dense linear order, and set

betw
$$(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$$

$$\operatorname{cycl}(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y \text{ or } y < z < x\}$$

$$\operatorname{sep}(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \dots\}$$

Theorem (Cameron '76)

- **1** Γ is first-order interdefinable with $(\mathbb{Q}; <)$, or
- \circ Γ is first-order interdefinable with (\mathbb{Q} ; betw), or
- Γ is first-order interdefinable with (ℚ; cycl), or
- \bullet Γ is first-order interdefinable with (\mathbb{Q} ; sep), or

Denote by $(\mathbb{Q}; <)$ be the dense linear order, and set

betw
$$(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$$

$$\operatorname{cycl}(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y \text{ or } y < z < x\}$$

$$\operatorname{sep}(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \dots\}$$

Theorem (Cameron '76)

- **1** Γ is first-order interdefinable with $(\mathbb{Q}; <)$, or
- Γ is first-order interdefinable with (Q; betw), or
- \odot Γ is first-order interdefinable with (\mathbb{Q} ; cycl), or
- \bullet Γ is first-order interdefinable with (\mathbb{Q} ; sep), or
- **⑤** Γ is first-order interdefinable with $(\mathbb{Q}; =)$.

Let G = (V, E) be the random graph, and set for all $k \ge 2$

 $R^{(k)} := \{(x_1, \dots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$

Let G = (V; E) be the random graph, and set for all $k \ge 2$

$$R^{(k)} := \{(x_1, \dots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$$

Theorem (Thomas '91)

Let G = (V; E) be the random graph, and set for all $k \ge 2$

$$R^{(k)} := \{(x_1, \dots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$$

Theorem (Thomas '91)

Let Γ be a reduct of G. Then:

 \bigcirc Γ is first-order interdefinable with (V; E), or

Let G = (V; E) be the random graph, and set for all $k \ge 2$

 $R^{(k)} := \{(x_1, \dots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$

Theorem (Thomas '91)

- \bullet Γ is first-order interdefinable with (V; E), or

Let G = (V; E) be the random graph, and set for all $k \ge 2$

 $R^{(k)} := \{(x_1, \dots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$

Theorem (Thomas '91)

- \bullet Γ is first-order interdefinable with (V; E), or
- ② Γ is first-order interdefinable with $(V; R^{(3)})$, or
- **3** Γ is first-order interdefinable with $(V; R^{(4)})$, or

Let G = (V; E) be the random graph, and set for all $k \ge 2$

 $R^{(k)} := \{(x_1, \dots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$

Theorem (Thomas '91)

- \bigcirc Γ is first-order interdefinable with (V; E), or
- **②** Γ is first-order interdefinable with $(V; R^{(3)})$, or
- **③** Γ is first-order interdefinable with $(V; R^{(4)})$, or
- **1** Γ is first-order interdefinable with $(V; R^{(5)})$, or

Let G = (V; E) be the random graph, and set for all $k \ge 2$

 $R^{(k)} := \{(x_1, \dots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$

Theorem (Thomas '91)

- \bullet Γ is first-order interdefinable with (V; E), or
- **②** Γ is first-order interdefinable with $(V; R^{(3)})$, or
- **3** Γ is first-order interdefinable with $(V; R^{(4)})$, or
- **4** Γ is first-order interdefinable with $(V; R^{(5)})$, or
- Γ is first-order interdefinable with (V; =).

Theorem (Thomas '91)

The homogeneous K_n -free graph has 2 reducts, up to f.o.-interdefinability.

Theorem (Thomas '91)

The homogeneous K_n -free graph has 2 reducts, up to f.o.-interdefinability.

Theorem (Thomas '96)

The homogeneous k-graph has $2^k + 1$ reducts, up to f.o.-interdefinability.

Theorem (Thomas '91)

The homogeneous K_n -free graph has 2 reducts, up to f.o.-interdefinability.

Theorem (Thomas '96)

The homogeneous k-graph has $2^k + 1$ reducts, up to f.o.-interdefinability.

Theorem (Junker, Ziegler '08)

 $(\mathbb{Q}; <, 0)$ has 116 reducts, up to f.o.-interdefinability.

Thomas' conjecture

Conjecture (Thomas '91)

Let Γ be homogeneous in a finite language.

Then Γ has finitely many reducts up to f.o.-interdefinability.

Act II

The Ramsey property

A formula is existential iff it is of the form $\exists x_1, \dots, x_n \cdot \psi$, where ψ is quantifier-free.

A formula is existential iff it is of the form $\exists x_1, \dots, x_n, \psi$, where ψ is quantifier-free.

A formula is existential positive iff it is existential and does not contain negations.

A formula is existential iff it is of the form $\exists x_1, \dots, x_n, \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

A formula is *existential* iff it is of the form $\exists x_1, \dots, x_n. \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. '08)

For the structure $\Gamma := (X; =)$, there exist:

A formula is *existential* iff it is of the form $\exists x_1, \dots, x_n. \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. '08)

For the structure $\Gamma := (X; =)$, there exist:

• 1 reduct up to first order / existential interdefinability

A formula is *existential* iff it is of the form $\exists x_1, \dots, x_n. \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. '08)

For the structure $\Gamma := (X; =)$, there exist:

- 1 reduct up to first order / existential interdefinability
- ℵ₀ reducts up to existential positive interdefinability

A formula is *existential* iff it is of the form $\exists x_1, \dots, x_n. \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. '08)

For the structure $\Gamma := (X; =)$, there exist:

- 1 reduct up to first order / existential interdefinability
- ℵ₀ reducts up to existential positive interdefinability
- 2^{ℵ₀} reducts up to primitive positive interdefinability

Theorem

• The mapping $\Delta \mapsto \operatorname{Aut}(\Delta)$ is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of $Aut(\Gamma)$.

Theorem

- The mapping $\Delta \mapsto \operatorname{Aut}(\Delta)$ is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of $Aut(\Gamma)$.
- The mapping $\Delta \mapsto \operatorname{End}(\Delta)$ is a one-to-one correspondence between the existential positive closed reducts of Γ and the closed supermonoids of $Aut(\Gamma)$.

Theorem

- The mapping $\Delta \mapsto \operatorname{Aut}(\Delta)$ is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of $Aut(\Gamma)$.
- The mapping $\Delta \mapsto \operatorname{End}(\Delta)$ is a one-to-one correspondence between the existential positive closed reducts of Γ and the closed supermonoids of $Aut(\Gamma)$.
- The mapping $\Delta \mapsto \mathsf{Pol}(\Delta)$ is a one-to-one correspondence between the primitive positive closed reducts of Γ and the closed superclones of $Aut(\Gamma)$.

Theorem

- The mapping $\Delta \mapsto \operatorname{Aut}(\Delta)$ is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of $Aut(\Gamma)$.
- The mapping $\Delta \mapsto \operatorname{End}(\Delta)$ is a one-to-one correspondence between the existential positive closed reducts of Γ and the closed supermonoids of $Aut(\Gamma)$.
- The mapping $\Delta \mapsto \mathsf{Pol}(\Delta)$ is a one-to-one correspondence between the primitive positive closed reducts of Γ and the closed superclones of $Aut(\Gamma)$.

 $Pol(\Delta)$... Polymorphisms of Δ , i.e., all homomorphisms from finite powers of Δ to Δ

Theorem

- The mapping $\Delta \mapsto \operatorname{Aut}(\Delta)$ is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of $Aut(\Gamma)$.
- The mapping $\Delta \mapsto \operatorname{End}(\Delta)$ is a one-to-one correspondence between the existential positive closed reducts of Γ and the closed supermonoids of $Aut(\Gamma)$.
- The mapping $\Delta \mapsto \mathsf{Pol}(\Delta)$ is a one-to-one correspondence between the primitive positive closed reducts of Γ and the closed superclones of $Aut(\Gamma)$.

 $Pol(\Delta)$... Polymorphisms of Δ , i.e., all homomorphisms from finite powers of Δ to Δ

Clone... set of finitary operations which contains all projections and which is closed under composition

Let G := (V; E) be the random graph.

Let G := (V; E) be the random graph.

Let \bar{G} be the graph that arises by switching edges and non-edges.

Let G := (V; E) be the random graph.

Let \bar{G} be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

Let G := (V; E) be the random graph.

Let G be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.

Let G := (V; E) be the random graph.

Let G be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.

Let $sw_c: V \to V$ be an isomorphism between G and G_c .

Let G := (V; E) be the random graph.

Let \bar{G} be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.

Let $sw_c: V \to V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

Let G := (V; E) be the random graph.

Let G be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.

Let $sw_c: V \to V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

The closed groups containing Aut(G) are the following:

• Aut(G)

Let G := (V; E) be the random graph.

Let G be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.

Let $sw_c: V \to V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

- Aut(G)

Let G := (V; E) be the random graph.

Let G be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.

Let sw_c: $V \rightarrow V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

- Aut(G)
- \bigcirc $\langle \{ sw_c \} \cup Aut(G) \rangle$

Let G := (V; E) be the random graph.

Let G be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.

Let sw_c: $V \rightarrow V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

- Aut(G)
- \bigcirc $\langle \{ sw_c \} \cup Aut(G) \rangle$
- $\{-, \mathsf{sw}_c\} \cup \mathsf{Aut}(G)\}$

Let G := (V; E) be the random graph.

Let \bar{G} be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.

Let sw_c: $V \rightarrow V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

- Aut(G)
- \bigcirc $\langle \{ sw_c \} \cup Aut(G) \rangle$
- $\{-, \mathsf{sw}_c\} \cup \mathsf{Aut}(G)\}$
- **1** The full symmetric group S_V .

How to find all reducts up to ...-interdefinability?

Climb up the lattice!

Definition. $f: V \rightarrow V$ is canonical iff

Definition. $f: V \to V$ is *canonical* iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type,

Definition. $f: V \to V$ is canonical iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type, then so do (f(x), f(y)) and (f(u), f(v)).

Definition. $f: V \to V$ is canonical iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type, then so do (f(x), f(y)) and (f(u), f(v)).

Examples.

Definition. $f: V \to V$ is *canonical* iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type, then so do (f(x), f(y)) and (f(u), f(v)).

Examples.

The identity is canonical.

Definition. $f: V \to V$ is *canonical* iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type, then so do (f(x), f(y)) and (f(u), f(v)).

Examples.

The identity is canonical.

- is canonical on V.

```
Definition. f: V \to V is canonical iff for all x, y, u, v \in V, if (x, y) and (u, v) have the same type, then so do (f(x), f(y)) and (f(u), f(v)).
```

Examples.

The identity is canonical.

- is canonical on V.

 sw_c is canonical on any $F\subseteq V\setminus\{c\}$.

```
Definition. f: V \to V is canonical iff
for all x, y, u, v \in V,
if (x, y) and (u, v) have the same type,
then so do (f(x), f(y)) and (f(u), f(y)).
```

Examples.

The identity is canonical.

is canonical on V.

 sw_c is canonical on any $F \subseteq V \setminus \{c\}$.

 $f: V \to V$ is canonical on $F \subseteq V$ iff its restriction to F is canonical.

Finding canonical behaviour

The class of finite graphs has the following Ramsey property:

The class of finite graphs has the following Ramsey property:

For all graphs H there exists a graph S such that

The class of finite graphs has the following Ramsey property:

For all graphs *H* there exists a graph *S* such that if the edges of *S* are colored with 2 colors,

The class of finite graphs has the following Ramsey property:

For all graphs H there exists a graph S such that if the edges of S are colored with 2 colors, then there is a copy of H in S on which the coloring is constant.

The class of finite graphs has the following Ramsey property:

For all graphs H there exists a graph S such that if the edges of S are colored with 2 colors, then there is a copy of H in S on which the coloring is constant.

Given $f: V \to V$, color an edge according to the type of its image (3 possibilities).

Same for non-edges.

The class of finite graphs has the following Ramsey property:

For all graphs H there exists a graph S such that if the edges of S are colored with 2 colors, then there is a copy of H in S on which the coloring is constant.

Given $f: V \to V$, color an edge according to the type of its image (3) possibilities). Same for non-edges.

Conclusion: Every finite graph has a copy in G on which f is canonical.

Being canonical means:

Being canonical means:

Turning everything into edges (e_E) , or

Being canonical means:

Turning everything into edges (e_E), or turning everything into non-edges (e_N) , or

Being canonical means:

Turning everything into edges (e_E) , or turning everything into non-edges (e_N) , or behaving like -, or

Being canonical means:

Turning everything into edges (e_E), or turning everything into non-edges (e_N) , or behaving like -, or being constant, or

Being canonical means:

Turning everything into edges (e_E), or turning everything into non-edges (e_N) , or behaving like -, or being constant, or behaving like the identity.

Being canonical means:

Turning everything into edges (e_E), or turning everything into non-edges (e_N) , or behaving like -, or being constant, or behaving like the identity.

Let $f \cdot V \rightarrow V$ If $f \notin Aut(G)$, then there are $c, d \in V$ witnessing this.

Being canonical means:

Turning everything into edges (e_F) , or turning everything into non-edges (e_N) , or behaving like -, or being constant, or behaving like the identity.

Let $f \cdot V \rightarrow V$ If $f \notin Aut(G)$, then there are $c, d \in V$ witnessing this.

The structure (V; E, c, d) has similar Ramsey properties as (V; E).

The minimal monoids on the random graph

Theorem (Thomas '96)

Let $f: V \to V$, $f \notin Aut(G)$.

Then *f* generates one of the following:

- A constant operation
- e_F
- e_N
- SW_C

The minimal monoids on the random graph

Theorem (Thomas '96)

Let $f: V \to V$, $f \notin Aut(G)$.

Then *f* generates one of the following:

- A constant operation
- e_F
- e_N
- SW_C

We thus know the *minimal closed monoids* containing Aut(G).

The minimal clones on the random graph

Theorem (Bodirsky, P. '09)

Let $f: V^n \to V$, $f \notin Aut(G)$.

Then f generates one of the following:

- One of the five minimal unary functions of Thomas' theorem;
- One of 9 canonical binary injections.

The minimal clones on the random graph

Theorem (Bodirsky, P. '09)

Let $f: V^n \to V$, $f \notin Aut(G)$.

Then *f* generates one of the following:

- One of the five minimal unary functions of Thomas' theorem;
- One of 9 canonical binary injections.

We thus know the *minimal closed clones* containing Aut(*G*).

Let *S*, *H*, *P* be structures in the same language.

$$S \rightarrow (H)^P$$

means:

Let S, H, P be structures in the same language.

$$S \rightarrow (H)^P$$

means:

For all partitions of the copies of P in S into good and bad there exists a copy of H in S such that the copies of P in H are all good or all bad.

Let S, H, P be structures in the same language.

$$S \rightarrow (H)^P$$

means:

For all partitions of the copies of *P* in *S* into *good* and *bad* there exists a copy of *H* in *S* such that the copies of *P* in *H* are all good or all bad.

Definition

A class $\ensuremath{\mathfrak{C}}$ of structures of the same signature is called a Ramsey class iff

for all $H, P \in \mathcal{C}$ there is S in \mathcal{C} such that $S \to (H)^P$.

Let Γ be Ramsey (i.e., its age is a Ramsey class).

Let Γ be Ramsey (i.e., its age is a Ramsey class).

Definition

```
f: \Gamma \to \Gamma is canonical iff for all tuples (x_1, \ldots, x_n), (y_1, \ldots, y_n) of the same type (f(x_1), \ldots, f(x_n)) and (f(y_1), \ldots, f(y_n)) have the same type too.
```

Let Γ be Ramsey (i.e., its age is a Ramsey class).

Definition

 $f: \Gamma \to \Gamma$ is canonical iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type $(f(x_1),\ldots,f(x_n))$ and $(f(y_1),\ldots,f(y_n))$ have the same type too.

Observation. Let H be a finite structure in the age of Γ . Then there is a copy of H in Γ on which f is canonical.

Let Γ be Ramsey (i.e., its age is a Ramsey class).

Definition

 $f: \Gamma \to \Gamma$ is canonical iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type $(f(x_1),\ldots,f(x_n))$ and $(f(y_1),\ldots,f(y_n))$ have the same type too.

Observation. Let H be a finite structure in the age of Γ . Then there is a copy of H in Γ on which f is canonical.

Thus: Any $f: V \to V$ generates a canonical function,

Let Γ be Ramsey (i.e., its age is a Ramsey class).

Definition

 $f: \Gamma \to \Gamma$ is canonical iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type $(f(x_1),\ldots,f(x_n))$ and $(f(y_1),\ldots,f(y_n))$ have the same type too.

Observation. Let H be a finite structure in the age of Γ . Then there is a copy of H in Γ on which f is canonical.

Thus: Any $f: V \to V$ generates a canonical function, but it could be the identity.

Let Γ be Ramsey (i.e., its age is a Ramsey class).

Definition

```
f: \Gamma \to \Gamma is canonical iff
for all tuples (x_1, \ldots, x_n), (y_1, \ldots, y_n) of the same type
(f(x_1),\ldots,f(x_n)) and (f(y_1),\ldots,f(y_n)) have the same type too.
```

Observation. Let H be a finite structure in the age of Γ . Then there is a copy of H in Γ on which f is canonical.

Thus: Any $f: V \to V$ generates a canonical function, but it could be the identity.

We would like to fix c_1, \ldots, c_n witnessing $f \notin Aut(\Gamma)$, and have canonical behavior on $(\Gamma, c_1, \ldots, c_n)$.

Act III

Topological dynamics

Problem

If Γ is Ramsey, is $(\Gamma, c_1, \dots, c_n)$ still Ramsey?

Problem

If Γ is Ramsey, is $(\Gamma, c_1, \dots, c_n)$ still Ramsey?

Theorem (Kechris, Pestov, Todorcevic '05)

An ordered homogeneous structure Δ is Ramsey iff its automorphism group is extremely amenable, i.e., it has a fixed point whenever it acts on a compact topological space.

Problem

If Γ is Ramsey, is $(\Gamma, c_1, \dots, c_n)$ still Ramsey?

Theorem (Kechris, Pestov, Todorcevic '05)

An ordered homogeneous structure Δ is Ramsey iff its automorphism group is extremely amenable, i.e., it has a fixed point whenever it acts on a compact topological space.

Easy observation (Tsankov '10)

Every open subgroup of an extremely amenable group is extremely amenable.

Problem

If Γ is Ramsey, is $(\Gamma, c_1, \dots, c_n)$ still Ramsey?

Theorem (Kechris, Pestov, Todorcevic '05)

An ordered homogeneous structure Δ is Ramsey iff its automorphism group is extremely amenable, i.e., it has a fixed point whenever it acts on a compact topological space.

Easy observation (Tsankov '10)

Every open subgroup of an extremely amenable group is extremely amenable.

Corollary

If Γ is ordered Ramsey, then so is $(\Gamma, c_1, \dots, c_n)$.

Minimal monoids above Ramsey structures

Thus:

If Γ is ordered Ramsey, $f:\Gamma\to\Gamma$, and $c_1,\ldots,c_n\in\Gamma$, then f generates a function canonical for $(\Gamma, c_1, \dots, c_n)$ which behaves like f on $\{c_1, \ldots, c_n\}$.

Minimal monoids above Ramsey structures

Thus:

If Γ is ordered Ramsey, $f:\Gamma\to\Gamma$, and $c_1,\ldots,c_n\in\Gamma$, then f generates a function canonical for $(\Gamma, c_1, \dots, c_n)$ which behaves like f on $\{c_1, \ldots, c_n\}$.

Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a finite language reduct of an ordered Ramsey structure. Then:

Thus:

If Γ is ordered Ramsey, $f:\Gamma\to\Gamma$, and $c_1,\ldots,c_n\in\Gamma$, then f generates a function canonical for $(\Gamma, c_1, \dots, c_n)$ which behaves like f on $\{c_1, \ldots, c_n\}$.

Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a finite language reduct of an ordered Ramsey structure. Then:

There are finitely many minimal closed supermonoids of Aut(Γ).

Thus:

If Γ is ordered Ramsey, $f:\Gamma\to\Gamma$, and $c_1,\ldots,c_n\in\Gamma$, then f generates a function canonical for $(\Gamma, c_1, \dots, c_n)$ which behaves like f on $\{c_1, \ldots, c_n\}$.

Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a finite language reduct of an ordered Ramsey structure. Then:

- There are finitely many minimal closed supermonoids of Aut(Γ).
- Every closed supermonoid of Aut(Γ) contains a minimal closed supermonoid of $Aut(\Gamma)$.

Going to products of Γ , we get:

Going to products of Γ , we get:

Theorem (Bodirsky, P., Tsankov '10)

Let Γ is a reduct of an ordered Ramsey structure. Then:

Going to products of Γ , we get:

Theorem (Bodirsky, P., Tsankov '10)

Let Γ is a reduct of an ordered Ramsey structure.

Then:

 There are finitely many minimal closed clones containing Aut(Γ). (Arity bound: $|S_2(\Gamma)|$.)

Going to products of Γ , we get:

Theorem (Bodirsky, P., Tsankov '10)

Let $\boldsymbol{\Gamma}$ is a reduct of an ordered Ramsey structure.

Then:

- There are finitely many minimal closed clones containing $Aut(\Gamma)$. (Arity bound: $|S_2(\Gamma)|$.)
- Every closed clone above Aut(Γ) contains a minimal one.

Epilogue

Schaefer's theorem for graphs

The Graph Satisfiability Problem

The Graph Satisfiability Problem

Let Ψ be a finite set of graph formulas.

Computational problem: Graph-SAT(Ψ)

INPUT:

- A set W of variables (vertices), and
- statements ϕ_1, \ldots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 < i < n} \phi_i$ satisfiable in a graph?

The Graph Satisfiability Problem

Let Ψ be a finite set of graph formulas.

Computational problem: Graph-SAT(Ψ)

INPUT:

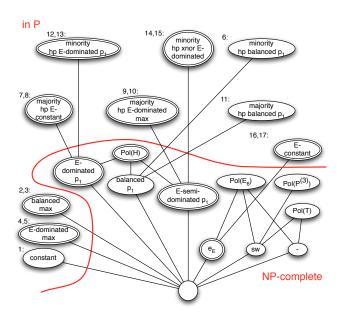
- A set W of variables (vertices), and
- statements ϕ_1, \ldots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 < i < n} \phi_i$ satisfiable in a graph?

Theorem (Bodirsky, P. '10)

Graph-SAT(Ψ) is either in P or NP-complete, for all Ψ .

Classification



Problem (cf. minimal monoids / clones)

If Γ is ordered Ramsey, does Aut(Γ) have only finitely many minimal closed supergroups?

Problem (cf. minimal monoids / clones)

If Γ is ordered Ramsey, does Aut(Γ) have only finitely many minimal closed supergroups?

Problem (cf. Thomas' conjecture)

If Γ is ordered Ramsey, does it only have finitely many reducts up to f.o.-interdefinability?

Problem (cf. minimal monoids / clones)

If Γ is ordered Ramsey, does Aut(Γ) have only finitely many minimal closed supergroups?

Problem (cf. Thomas' conjecture)

If Γ is ordered Ramsey, does it only have finitely many reducts up to f.o.-interdefinability?

Problem (model theory)

If Δ is a reduct of a "nice" structure, is Δ f.o.-equivalent to a structure in a finite language?

Problem (cf. minimal monoids / clones)

If Γ is ordered Ramsey, does Aut(Γ) have only finitely many minimal closed supergroups?

Problem (cf. Thomas' conjecture)

If Γ is ordered Ramsey, does it only have finitely many reducts up to f.o.-interdefinability?

Problem (model theory)

If Δ is a reduct of a "nice" structure, is Δ f.o.-equivalent to a structure in a finite language?

Problem (universal algebra)

Can a clone containing the automorphism group of an ordered Ramsey structure Γ have infinitely many minimal superclones?

Problem (Junker, Ziegler)

If Γ is not ω -categorical, does it always have infinitely many reducts?

Problem (Junker, Ziegler)

If Γ is not ω -categorical, does it always have infinitely many reducts?

Problem (combinatorics)

Prove: If Γ is ordered Ramsey, then so is $(\Gamma, c_1, \dots, c_n)$.

Problem (Junker, Ziegler)

If Γ is not ω -categorical, does it always have infinitely many reducts?

Problem (combinatorics)

Prove: If Γ is ordered Ramsey, then so is $(\Gamma, c_1, \dots, c_n)$.

Application

Determine the reducts of the random ordered graph.

Problem (Junker, Ziegler)

If Γ is not ω -categorical, does it always have infinitely many reducts?

Problem (combinatorics)

Prove: If Γ is ordered Ramsey, then so is $(\Gamma, c_1, \dots, c_n)$.

Application

Determine the reducts of the random ordered graph.

Application

Determine the reducts of the countable atomless Boolean algebra.

Problem (Junker, Ziegler)

If Γ is not ω -categorical, does it always have infinitely many reducts?

Problem (combinatorics)

Prove: If Γ is ordered Ramsey, then so is $(\Gamma, c_1, \dots, c_n)$.

Application

Determine the reducts of the random ordered graph.

Application

Determine the reducts of the countable atomless Boolean algebra.

Application

Determine the reducts of the random partial order.

