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Reducts of homogeneous structures

Let Γ be a countable relational structure in a finite language

which is homogeneous, i.e.,
For all A,B ⊆ Γ finite, for all isomorphisms i : A→ B
there exists α ∈ Aut(Γ) extending i .

Γ is the Fraïssé limit of its age, i.e., its class of finite induced
substructures.

Definition
A reduct of Γ is a structure with a first-order (f.o.) definition in Γ.

Problem
Classify the reducts of Γ.
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Possible classifications

Consider two reducts ∆,∆′ of Γ equivalent iff ∆ is also a reduct of ∆′

and vice-versa.

We say that ∆ and ∆′ are first-order interdefinable.

“∆ is a reduct of ∆′” is a quasiorder on relational structures over the
same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a
complete lattice.

Finer classifications of reducts, e.g. up to

Existential interdefinability
Existential positive interdefinability
Primitive positive interdefinability
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Example: The Random graph

Denote by G = (V ; E) the random graph, i.e.,
the unique countably infinite graph which is

homogeneous
ℵ0-universal.

Set R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (S. Thomas 1991)
Let Γ be a reduct of G. Then:

1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).
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Further examples

Example (Cameron 1976)
(Q;<) has 5 reducts, up to f.o.-interdefinability.

Example (Junker, Ziegler 2008)
(Q;<,0) has 116 reducts, up to f.o.-interdefinability.

Example (Thomas 1991)
The homogeneous Kn-free graph has 2 reducts, up to
f.o.-interdefinability.

Example (Thomas 1996)

The homogeneous k -graph has 2k + 1 reducts, up to
f.o.-interdefinability.
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Thomas’ conjecture

Conjecture (Thomas 1991)
Γ has always finitely many reducts up to f.o. interdefinability.
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Finer classifications

A formula is existential iff
it is of the form ∃x1, . . . , xn.ψ, where ψ is quantifier-free.

A formula is existential positive iff
it is existential and does not contain negations.

A formula is primitive positive iff
it is of the form ∃x1, . . . , xn.ψ1 ∧ . . . ∧ ψm, where the ψi are atomic.

Theorem (Bodirsky, Chen, P. 2008)
For the structure Γ := (X ; =), there exist:

1 reduct up to first order / existential interdefinability
ℵ0 reducts up to existential positive interdefinability
2ℵ0 reducts up to primitive positive interdefinability
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Groups, Monoids, Clones

Theorem

The mapping ∆ 7→ Aut(∆) is a one-to-one correspondence
between the first-order closed reducts of Γ and the closed
supergroups of Aut(Γ).
The mapping ∆ 7→ End(∆) is a one-to-one correspondence
between the existential positive closed reducts of Γ and the closed
supermonoids of Aut(Γ).
The mapping ∆ 7→ Pol(∆) is a one-to-one correspondence
between the primitive positive closed reducts of Γ and the closed
superclones of Aut(Γ).

Pol(∆) . . . Polymorphisms of ∆, i.e.,
all homomorphisms from finite powers of ∆ to ∆

Clone. . . set of finitary operations which contains all projections and
which is closed under composition
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The mapping ∆ 7→ Pol(∆) is a one-to-one correspondence
between the primitive positive closed reducts of Γ and the closed
superclones of Aut(Γ).

Pol(∆) . . . Polymorphisms of ∆, i.e.,
all homomorphisms from finite powers of ∆ to ∆

Clone. . . set of finitary operations which contains all projections and
which is closed under composition
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The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.

Let Ḡ be the graph that arises by switching edges and non-edges.
Let − : V → V be an isomorphism between G and Ḡ.
For c ∈ V , let Gc be the graph that arises by switching all edges and
non-edges from c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas 1991)
The closed groups containing Aut(G) are the following:

Aut(G)

〈{−} ∪ Aut(G)〉
〈{swc} ∪ Aut(G)〉
〈{−, swc} ∪ Aut(G)〉
The full symmetric group SV .
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Proving Thomas’ theorem

Step 1.
Let α ∈ SV \ Aut(G). Then α and Aut(G) generate − or swc

“− and swc are the minimal permutations over Aut(G).”

Step 2.
Let α ∈ SV \ 〈{−} ∪ Aut(G)〉. Then α,− and Aut(G) generate swc .

Step 3.
Let α ∈ SV \ 〈{swc} ∪ Aut(G)〉. Then α, swc and Aut(G) generate −.

Step 4.
Let α ∈ SV \ 〈{−, swc} ∪ Aut(G)〉. Then α,−, swc and Aut(G) generate
SV .
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Canonical functions on the Random graph

Definition. f : V → V is canonical iff

for all x , y ,u, v ∈ V ,
if (x , y) and (u, v) have the same type,
then so do (f (x), f (y)) and (f ((u), f (v)).

Examples.
The identity is canonical.
− is canonical on V .
swc is canonical on any F ⊆ V \ {c}.

f : V → V is canonical on F ⊆ V iff its restriction to F is canonical.
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Finding canonical behaviour

The class of finite graphs has the following Ramsey property:

For all graphs H
there exists a graph S such that
if the edges of S are colored with 2 colors,
then there is a copy of H in S
on which the coloring is constant.

Given f : V → V , color an edge according to the type of its image (3
possibilities).
Same for non-edges.

Conclusion: Every finite graph has a copy in G on which f is
canonical.
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Patterns in functions on the Random graph

Being canonical means:

Turning everything into edges (eE ), or
turning everything into non-edges (eN), or
behaving like −, or
being constant, or
behaving like the identity.

Let f : V → V .
If f /∈ Aut(G), then there are c,d ∈ V witnessing this.

The structure (V ; E , c,d) has similar Ramsey properties as (V ; E):

The subsets of elements of the same type contain the Random graph
or have just one element.
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An improved version of Thomas’ theorem

Theorem (Thomas 1996)
Let f : V → V , f /∈ Aut(G).
Then f generates one of the following:

A constant operation
eE

eN

−
swc

We thus know the minimal closed monoids containing Aut(G).
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Ramsey classes

Let N,H,P be graphs.
N → (H)P

means:

For all partitions of the copies of P in N into good and bad
there exists a copy of H in N
such that the copies of P in H are all good or all bad.

Definition
A class C of structures of the same signature is called a Ramsey class
iff
for all H,P ∈ C there is N in C such that N → (H)P .
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Canonical functions on Ramsey structures

Let Γ be Ramsey (i.e., its age is a Ramsey class).

Let n be the maximum of the arities of its relations.

Definition
f : Γ→ Γ is canonical iff
for all n-tuples (x1, . . . , xn), (y1, . . . , yn) of the same type
(f (x1), . . . , f (xn)) and (f (y1), . . . , f (yn)) have the same type too.

Observation. Let H be a finite structure in the age of Γ.
Then there is a copy of H in Γ on which f is canonical.

Thus: Any f : V → V generates a canonical function,
but it could be the identity.

We would like to fix c1, . . . , cn witnessing f /∈ Aut(Γ),
and have canonical behavior on (Γ, c1, . . . , cn).
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Adding constants to Ramsey classes

Problem
If Γ is Ramsey, is (Γ, c1, . . . , cn) still Ramsey?

Theorem (Kechris, Pestov, Todorcevic 2005)
An ordered homogeneous structure ∆ is Ramsey iff
its automorphism group is extremely amenable, i.e.,
it has a fixed point whenever it acts on a compact topological space.

Theorem (Tsankov 2010)
Every open subgroup of an extremely amenable group is extremely
amenable.

Corollary
If Γ is ordered Ramsey, then so is (Γ, c1, . . . , cn).
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Minimal reducts of Ramsey structures

Thus:

If Γ is ordered Ramsey, f : Γ→ Γ, and c1, . . . , cn ∈ Γ,
then f generates a function canonical for (Γ, c1, . . . , cn)

which behaves like f on {c1, . . . , cn}.

Theorem
Let Γ be ordered Ramsey. Then:

There are finitely many minimal closed supergroups of Aut(Γ).
Every closed supergroup of Aut(Γ) contains a minimal closed
supergroup of Aut(Γ).

Same is true for closed monoids.

There are infinitely many closed supermonoids of Aut(Γ).
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Primitive positive definitions

How about the minimal closed clones containing Aut(G)?
= Reducts closed under primitive positive definitions

Theorem (Bodirsky, Chen, P. 2008)
There are 2 minimal closed clones containing
the automorphism group of (X ,=).

Theorem (Bodirsky, P. 2009)
There are 14 minimal closed clones containing
the automorphism group of the random graph.

Since arities of canonical functions are unbounded,
there might be infinitely many minimal clones.
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Open problems

Problem
If Γ is Ramsey, does it only have finitely many reducts up to
f.o.-interdefinability?

Problem
Is there a Ramsey Γ with an infinite number of minimal closed clones?

Problem
Determine the reducts of the countable atomless Boolean algebra.

Problem
Determine the reducts of the random partial order.

Problem (Junker, Ziegler)
If Γ is not ω-categorical, does it always have infinitely many reducts?
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Thank you
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