Reducts of homogeneous structures with the Ramsey property

Michael Pinsker

ÉLM Université Denis-Diderot Paris 7

Algebra TU Wien

Einstein Institute of Mathematics Jerusalem

April 23, 2010

Outline

- Homogeneous structures and their reducts
- ② Groups, monoids, clones
- Functions on structures with the Ramsey property
- Minimal reducts

Let Γ be a countable relational structure in a finite language

Let Γ be a countable relational structure in a finite language which is *homogeneous*, i.e.,

For all $A, B \subseteq \Gamma$ finite, for all isomorphisms $i : A \to B$ there exists $\alpha \in \operatorname{Aut}(\Gamma)$ extending i.

Let Γ be a countable relational structure in a finite language which is *homogeneous*, i.e.,

For all $A, B \subseteq \Gamma$ finite, for all isomorphisms $i : A \to B$ there exists $\alpha \in \operatorname{Aut}(\Gamma)$ extending i.

Γ is the Fraïssé limit of its *age*, i.e., its class of finite induced substructures.

Let Γ be a countable relational structure in a finite language which is *homogeneous*, i.e.,

For all $A, B \subseteq \Gamma$ finite, for all isomorphisms $i : A \to B$ there exists $\alpha \in \operatorname{Aut}(\Gamma)$ extending i.

Γ is the Fraïssé limit of its *age*, i.e., its class of finite induced substructures.

Definition

A *reduct* of Γ is a structure with a first-order (f.o.) definition in Γ .

Let Γ be a countable relational structure in a finite language which is *homogeneous*, i.e.,

For all $A, B \subseteq \Gamma$ finite, for all isomorphisms $i : A \to B$ there exists $\alpha \in \operatorname{Aut}(\Gamma)$ extending i.

Γ is the Fraïssé limit of its *age*, i.e., its class of finite induced substructures.

Definition

A *reduct* of Γ is a structure with a first-order (f.o.) definition in Γ .

Problem

Classify the reducts of Γ .

Consider two reducts Δ, Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

Consider two reducts Δ , Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are first-order interdefinable.

Consider two reducts Δ , Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are first-order interdefinable.

" Δ is a reduct of Δ " is a *quasiorder* on relational structures over the same domain.

Consider two reducts Δ , Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are first-order interdefinable.

" Δ is a reduct of Δ " is a *quasiorder* on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a *complete lattice*.

Consider two reducts Δ , Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are first-order interdefinable.

" Δ is a reduct of Δ " is a *quasiorder* on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a *complete lattice*.

Finer classifications of reducts, e.g. up to

Consider two reducts Δ , Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are *first-order interdefinable*.

" Δ is a reduct of Δ " is a *quasiorder* on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a *complete lattice*.

Finer classifications of reducts, e.g. up to

Existential interdefinability

Consider two reducts Δ , Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are *first-order interdefinable*.

" Δ is a reduct of Δ " is a *quasiorder* on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a *complete lattice*.

Finer classifications of reducts, e.g. up to

- Existential interdefinability
- Existential positive interdefinability

Consider two reducts Δ , Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are *first-order interdefinable*.

" Δ is a reduct of Δ " is a *quasiorder* on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a *complete lattice*.

Finer classifications of reducts, e.g. up to

- Existential interdefinability
- Existential positive interdefinability
- Primitive positive interdefinability

Denote by G = (V; E) the random graph, i.e., the unique countably infinite graph which is

Denote by G = (V; E) the random graph, i.e., the unique countably infinite graph which is

homogeneous

Denote by G = (V; E) the random graph, i.e., the unique countably infinite graph which is

- homogeneous
- ℵ₀-universal.

Denote by G = (V; E) the random graph, i.e., the unique countably infinite graph which is

- homogeneous
- ℵ₀-universal.

Set $R^{(k)} := \{(x_1, \dots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$

Denote by G = (V; E) the random graph, i.e., the unique countably infinite graph which is

- homogeneous
- ℵ₀-universal.

Set $R^{(k)} := \{(x_1, \dots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$

Theorem (S. Thomas 1991)

Denote by G = (V; E) the random graph, i.e., the unique countably infinite graph which is

- homogeneous
- ℵ₀-universal.

Set $R^{(k)} := \{(x_1, \dots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$

Theorem (S. Thomas 1991)

Let Γ be a reduct of G. Then:

 \bullet Γ is first-order interdefinable with (V; E), or

Denote by G = (V; E) the random graph, i.e., the unique countably infinite graph which is

- homogeneous
- ℵ₀-universal.

Set $R^{(k)} := \{(x_1, \dots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$

Theorem (S. Thomas 1991)

- \bullet Γ is first-order interdefinable with (V; E), or

Denote by G = (V; E) the random graph, i.e., the unique countably infinite graph which is

- homogeneous
- ℵ₀-universal.

Set $R^{(k)} := \{(x_1, \dots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$

Theorem (S. Thomas 1991)

- \bullet Γ is first-order interdefinable with (V; E), or
- **3** Γ is first-order interdefinable with $(V; R^{(4)})$, or

Denote by G = (V; E) the random graph, i.e., the unique countably infinite graph which is

- homogeneous
- ℵ₀-universal.

Set $R^{(k)} := \{(x_1, \dots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$

Theorem (S. Thomas 1991)

- \bullet Γ is first-order interdefinable with (V; E), or
- \circ Γ is first-order interdefinable with $(V; R^{(3)})$, or
- **3** Γ is first-order interdefinable with $(V; R^{(4)})$, or
- **1** Γ is first-order interdefinable with $(V; R^{(5)})$, or

Denote by G = (V; E) the random graph, i.e., the unique countably infinite graph which is

- homogeneous
- ℵ₀-universal.

Set $R^{(k)} := \{(x_1, \dots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$

Theorem (S. Thomas 1991)

- \bullet Γ is first-order interdefinable with (V; E), or
- \circ Γ is first-order interdefinable with $(V; R^{(3)})$, or
- **3** Γ is first-order interdefinable with $(V; R^{(4)})$, or
- **1** Γ is first-order interdefinable with $(V; R^{(5)})$, or
- Γ is first-order interdefinable with (V; =).

Example (Cameron 1976)

 $(\mathbb{Q};<)$ has 5 reducts, up to f.o.-interdefinability.

Example (Cameron 1976)

 $(\mathbb{Q}; <)$ has 5 reducts, up to f.o.-interdefinability.

Example (Junker, Ziegler 2008)

 $(\mathbb{Q};<,0)$ has 116 reducts, up to f.o.-interdefinability.

Example (Cameron 1976)

 $(\mathbb{Q}; <)$ has 5 reducts, up to f.o.-interdefinability.

Example (Junker, Ziegler 2008)

 $(\mathbb{Q};<,0)$ has 116 reducts, up to f.o.-interdefinability.

Example (Thomas 1991)

The homogeneous K_n -free graph has 2 reducts, up to f.o.-interdefinability.

Example (Cameron 1976)

 $(\mathbb{Q}; <)$ has 5 reducts, up to f.o.-interdefinability.

Example (Junker, Ziegler 2008)

 $(\mathbb{Q};<,0)$ has 116 reducts, up to f.o.-interdefinability.

Example (Thomas 1991)

The homogeneous K_n -free graph has 2 reducts, up to f.o.-interdefinability.

Example (Thomas 1996)

The homogeneous k-graph has $2^k + 1$ reducts, up to f.o.-interdefinability.

Thomas' conjecture

Conjecture (Thomas 1991)

 Γ has always finitely many reducts up to f.o. interdefinability.

A formula is *existential* iff it is of the form $\exists x_1, \dots, x_n. \psi$, where ψ is quantifier-free.

A formula is *existential* iff it is of the form $\exists x_1, \dots, x_n. \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *existential* iff it is of the form $\exists x_1, \dots, x_n. \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

A formula is *existential* iff it is of the form $\exists x_1, \dots, x_n. \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. 2008)

For the structure $\Gamma := (X; =)$, there exist:

Finer classifications

A formula is *existential* iff it is of the form $\exists x_1, \dots, x_n. \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. 2008)

For the structure $\Gamma := (X; =)$, there exist:

• 1 reduct up to first order / existential interdefinability

Finer classifications

A formula is *existential* iff it is of the form $\exists x_1, \dots, x_n. \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. 2008)

For the structure $\Gamma := (X; =)$, there exist:

- 1 reduct up to first order / existential interdefinability
- ℵ₀ reducts up to existential positive interdefinability

Finer classifications

A formula is *existential* iff it is of the form $\exists x_1, \dots, x_n. \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. 2008)

For the structure $\Gamma := (X; =)$, there exist:

- 1 reduct up to first order / existential interdefinability
- ullet \aleph_0 reducts up to existential positive interdefinability
- 2^{ℵ₀} reducts up to primitive positive interdefinability

Theorem

 The mapping Δ → Aut(Δ) is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of Aut(Γ).

Theorem

- The mapping Δ → Aut(Δ) is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of Aut(Γ).
- The mapping $\Delta \mapsto \operatorname{End}(\Delta)$ is a one-to-one correspondence between the existential positive closed reducts of Γ and the closed supermonoids of $\operatorname{Aut}(\Gamma)$.

Theorem

- The mapping Δ → Aut(Δ) is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of Aut(Γ).
- The mapping Δ → End(Δ) is a one-to-one correspondence between the existential positive closed reducts of Γ and the closed supermonoids of Aut(Γ).
- The mapping $\Delta \mapsto \operatorname{Pol}(\Delta)$ is a one-to-one correspondence between the primitive positive closed reducts of Γ and the closed superclones of $\operatorname{Aut}(\Gamma)$.

Theorem

- The mapping Δ → Aut(Δ) is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of Aut(Γ).
- The mapping Δ → End(Δ) is a one-to-one correspondence between the existential positive closed reducts of Γ and the closed supermonoids of Aut(Γ).
- The mapping $\Delta \mapsto \text{Pol}(\Delta)$ is a one-to-one correspondence between the primitive positive closed reducts of Γ and the closed superclones of $\text{Aut}(\Gamma)$.

 $Pol(\Delta)$... Polymorphisms of Δ , i.e., all homomorphisms from finite powers of Δ to Δ

Theorem

- The mapping Δ → Aut(Δ) is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of Aut(Γ).
- The mapping Δ → End(Δ) is a one-to-one correspondence between the existential positive closed reducts of Γ and the closed supermonoids of Aut(Γ).
- The mapping $\Delta \mapsto \text{Pol}(\Delta)$ is a one-to-one correspondence between the primitive positive closed reducts of Γ and the closed superclones of $\text{Aut}(\Gamma)$.

 $Pol(\Delta)\dots Polymorphisms$ of Δ , i.e., all homomorphisms from finite powers of Δ to Δ

Clone... set of finitary operations which contains all projections and which is closed under composition

Let G := (V; E) be the random graph.

Let G := (V; E) be the random graph.

Let \bar{G} be the graph that arises by switching edges and non-edges.

Let G := (V; E) be the random graph.

Let \bar{G} be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

Let G := (V; E) be the random graph.

Let \bar{G} be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.

Let G := (V; E) be the random graph.

Let \bar{G} be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.

Let $sw_c: V \to V$ be an isomorphism between G and G_c .

Let G := (V; E) be the random graph.

Let \bar{G} be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.

Let $sw_c: V \to V$ be an isomorphism between G and G_c .

Theorem (Thomas 1991)

Let G := (V; E) be the random graph.

Let \bar{G} be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.

Let $sw_c: V \to V$ be an isomorphism between G and G_c .

Theorem (Thomas 1991)

The closed groups containing Aut(G) are the following:

• Aut(*G*)

Let G := (V; E) be the random graph.

Let \bar{G} be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.

Let $sw_c: V \to V$ be an isomorphism between G and G_c .

Theorem (Thomas 1991)

- Aut(G)
- $\langle \{-\} \cup \operatorname{Aut}(G) \rangle$

Let G := (V; E) be the random graph.

Let \bar{G} be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.

Let $sw_c: V \to V$ be an isomorphism between G and G_c .

Theorem (Thomas 1991)

- Aut(*G*)
- $\langle \{-\} \cup \operatorname{Aut}(G) \rangle$
- ⟨{sw_c} ∪ Aut(G)⟩

Let G := (V; E) be the random graph.

Let \bar{G} be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.

Let $sw_c: V \to V$ be an isomorphism between G and G_c .

Theorem (Thomas 1991)

- Aut(G)
- $\langle \{-\} \cup \operatorname{Aut}(G) \rangle$
- $\langle \{ sw_c \} \cup Aut(G) \rangle$
- $\langle \{-, \mathsf{sw}_c\} \cup \mathsf{Aut}(G) \rangle$

Let G := (V; E) be the random graph.

Let \bar{G} be the graph that arises by switching edges and non-edges.

Let $-: V \to V$ be an isomorphism between G and \bar{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.

Let $sw_c: V \to V$ be an isomorphism between G and G_c .

Theorem (Thomas 1991)

- Aut(*G*)
- $\langle \{-\} \cup \operatorname{Aut}(G) \rangle$
- $\langle \{ sw_c \} \cup Aut(G) \rangle$
- $\langle \{-, \mathsf{sw}_c\} \cup \mathsf{Aut}(G) \rangle$
- The full symmetric group S_V .

Step 1.

Let $\alpha \in S_V \setminus Aut(G)$. Then α and Aut(G) generate — or sw_c

Step 1.

Let $\alpha \in S_V \setminus Aut(G)$. Then α and Aut(G) generate — or sw_c

"— and sw_c are the *minimal* permutations over Aut(G)."

Step 1.

Let $\alpha \in S_V \setminus Aut(G)$. Then α and Aut(G) generate — or sw_c

"— and sw_c are the *minimal* permutations over Aut(G)."

Step 2.

Let $\alpha \in S_V \setminus (\{-\} \cup Aut(G))$. Then α , — and Aut(G) generate sw_c .

Step 1.

Let $\alpha \in S_V \setminus Aut(G)$. Then α and Aut(G) generate — or sw_c

"— and sw_c are the *minimal* permutations over Aut(G)."

Step 2.

Let $\alpha \in S_V \setminus (\{-\} \cup Aut(G))$. Then α , — and Aut(G) generate sw_c .

Step 3.

Let $\alpha \in S_V \setminus \langle \{sw_c\} \cup Aut(G) \rangle$. Then α, sw_c and Aut(G) generate -.

Step 1.

Let $\alpha \in S_V \setminus Aut(G)$. Then α and Aut(G) generate — or sw_c

"— and sw_c are the *minimal* permutations over Aut(G)."

Step 2.

Let $\alpha \in S_V \setminus (\{-\} \cup Aut(G))$. Then α , — and Aut(G) generate sw_c .

Step 3.

Let $\alpha \in S_V \setminus \langle \{sw_c\} \cup Aut(G) \rangle$. Then α, sw_c and Aut(G) generate -.

Step 4.

Let $\alpha \in S_V \setminus (\{-, sw_c\} \cup Aut(G))$. Then $\alpha, -, sw_c$ and Aut(G) generate S_V .

Definition. $f: V \rightarrow V$ is canonical iff

Definition. $f: V \to V$ is *canonical* iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type,

Definition. $f: V \to V$ is canonical iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type, then so do (f(x), f(y)) and (f(u), f(v)).

Definition. $f: V \to V$ is canonical iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type, then so do (f(x), f(y)) and (f(u), f(v)).

Examples.

Definition. $f: V \to V$ is *canonical* iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type, then so do (f(x), f(y)) and (f(u), f(v)).

Examples.

The identity is canonical.

Definition. $f: V \to V$ is *canonical* iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type, then so do (f(x), f(y)) and (f(u), f(v)).

Examples.

The identity is canonical.

- is canonical on V.

```
Definition. f: V \to V is canonical iff for all x, y, u, v \in V, if (x, y) and (u, v) have the same type, then so do (f(x), f(y)) and (f(u), f(v)).
```

Examples.

The identity is canonical.

- is canonical on V.

 sw_c is canonical on any $F\subseteq V\setminus\{c\}$.

```
Definition. f: V \to V is canonical iff for all x, y, u, v \in V, if (x, y) and (u, v) have the same type, then so do (f(x), f(y)) and (f(u), f(v)).
```

Examples.

The identity is canonical.

- is canonical on V.

 sw_c is canonical on any $F \subseteq V \setminus \{c\}$.

 $f: V \to V$ is canonical on $F \subseteq V$ iff its restriction to F is canonical.

Finding canonical behaviour

The class of finite graphs has the following Ramsey property:

Finding canonical behaviour

The class of finite graphs has the following Ramsey property:

For all graphs *H* there exists a graph *S* such that

The class of finite graphs has the following Ramsey property:

For all graphs *H* there exists a graph *S* such that if the edges of *S* are colored with 2 colors,

The class of finite graphs has the following Ramsey property:

For all graphs *H* there exists a graph *S* such that if the edges of *S* are colored with 2 colors, then there is a copy of *H* in *S* on which the coloring is constant.

The class of finite graphs has the following Ramsey property:

For all graphs *H* there exists a graph *S* such that if the edges of *S* are colored with 2 colors, then there is a copy of *H* in *S* on which the coloring is constant.

Given $f: V \to V$, color an edge according to the type of its image (3 possibilities).

Same for non-edges.

The class of finite graphs has the following Ramsey property:

For all graphs H there exists a graph S such that if the edges of S are colored with 2 colors, then there is a copy of H in S on which the coloring is constant.

Given $f: V \to V$, color an edge according to the type of its image (3 possibilities). Same for non-edges.

Conclusion: Every finite graph has a copy in *G* on which *f* is canonical.

Being canonical means:

Being canonical means:

Turning everything into edges (e_E) , or

Being canonical means:

Turning everything into edges (e_E) , or turning everything into non-edges (e_N) , or

Being canonical means:

Turning everything into edges (e_E) , or turning everything into non-edges (e_N) , or behaving like -, or

Being canonical means:

Turning everything into edges (e_E) , or turning everything into non-edges (e_N) , or behaving like -, or being constant, or

Being canonical means:

Turning everything into edges (e_E) , or turning everything into non-edges (e_N) , or behaving like -, or being constant, or behaving like the identity.

Being canonical means:

Turning everything into edges (e_E) , or turning everything into non-edges (e_N) , or behaving like -, or being constant, or behaving like the identity.

Let $f: V \to V$. If $f \notin Aut(G)$, then there are $c, d \in V$ witnessing this.

Being canonical means:

Turning everything into edges (e_E) , or turning everything into non-edges (e_N) , or behaving like -, or being constant, or behaving like the identity.

Let $f: V \to V$. If $f \notin Aut(G)$, then there are $c, d \in V$ witnessing this.

The structure (V; E, c, d) has similar Ramsey properties as (V; E):

The subsets of elements of the same type contain the Random graph or have just one element.

An improved version of Thomas' theorem

Theorem (Thomas 1996)

Let $f: V \to V$, $f \notin Aut(G)$.

Then *f* generates one of the following:

- A constant operation
- e_E
- e_N
- -
- SW_C

An improved version of Thomas' theorem

Theorem (Thomas 1996)

Let $f: V \to V$, $f \notin Aut(G)$.

Then *f* generates one of the following:

- A constant operation
- e_E
- e_N
- -
- SW_C

We thus know the *minimal closed monoids* containing Aut(*G*).

Let N, H, P be graphs.

$$N \rightarrow (H)^P$$

means:

Let N, H, P be graphs.

$$N \rightarrow (H)^P$$

means:

For all partitions of the copies of *P* in *N* into *good* and *bad* there exists a copy of *H* in *N* such that the copies of *P* in *H* are all good or all bad.

Let N, H, P be graphs.

$$N \rightarrow (H)^P$$

means:

For all partitions of the copies of *P* in *N* into *good* and *bad* there exists a copy of *H* in *N* such that the copies of *P* in *H* are all good or all bad.

Definition

A class $\ensuremath{\mathbb{C}}$ of structures of the same signature is called a Ramsey class iff

for all $H, P \in \mathcal{C}$ there is N in \mathcal{C} such that $N \to (H)^P$.

Let Γ be Ramsey (i.e., its age is a Ramsey class).

Let *n* be the maximum of the arities of its relations.

Let Γ be Ramsey (i.e., its age is a Ramsey class).

Let *n* be the maximum of the arities of its relations.

Definition

```
f: \Gamma \to \Gamma is canonical iff for all n-tuples (x_1, \ldots, x_n), (y_1, \ldots, y_n) of the same type (f(x_1), \ldots, f(x_n)) and (f(y_1), \ldots, f(y_n)) have the same type too.
```

Let Γ be Ramsey (i.e., its age is a Ramsey class).

Let *n* be the maximum of the arities of its relations.

Definition

 $f: \Gamma \to \Gamma$ is *canonical* iff for all *n*-tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type too.

Observation. Let H be a finite structure in the age of Γ . Then there is a copy of H in Γ on which f is canonical.

Let Γ be Ramsey (i.e., its age is a Ramsey class).

Let *n* be the maximum of the arities of its relations.

Definition

 $f: \Gamma \to \Gamma$ is *canonical* iff for all *n*-tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type too.

Observation. Let H be a finite structure in the age of Γ . Then there is a copy of H in Γ on which f is canonical.

Thus: Any $f: V \rightarrow V$ generates a canonical function,

Let Γ be Ramsey (i.e., its age is a Ramsey class).

Let *n* be the maximum of the arities of its relations.

Definition

 $f: \Gamma \to \Gamma$ is *canonical* iff for all *n*-tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type too.

Observation. Let H be a finite structure in the age of Γ . Then there is a copy of H in Γ on which f is canonical.

Thus: Any $f: V \rightarrow V$ generates a canonical function, but it could be the identity.

Let Γ be Ramsey (i.e., its age is a Ramsey class).

Let *n* be the maximum of the arities of its relations.

Definition

```
f: \Gamma \to \Gamma is canonical iff for all n-tuples (x_1, \ldots, x_n), (y_1, \ldots, y_n) of the same type (f(x_1), \ldots, f(x_n)) and (f(y_1), \ldots, f(y_n)) have the same type too.
```

Observation. Let H be a finite structure in the age of Γ . Then there is a copy of H in Γ on which f is canonical.

Thus: Any $f: V \rightarrow V$ generates a canonical function, but it could be the identity.

We would like to fix c_1, \ldots, c_n witnessing $f \notin Aut(\Gamma)$, and have canonical behavior on $(\Gamma, c_1, \ldots, c_n)$.

Problem

If Γ is Ramsey, is $(\Gamma, c_1, \ldots, c_n)$ still Ramsey?

Problem

If Γ is Ramsey, is $(\Gamma, c_1, \dots, c_n)$ still Ramsey?

Theorem (Kechris, Pestov, Todorcevic 2005)

An ordered homogeneous structure Δ is Ramsey iff its automorphism group is *extremely amenable*, i.e., it has a fixed point whenever it acts on a compact topological space.

Problem

If Γ is Ramsey, is $(\Gamma, c_1, \dots, c_n)$ still Ramsey?

Theorem (Kechris, Pestov, Todorcevic 2005)

An ordered homogeneous structure Δ is Ramsey iff its automorphism group is *extremely amenable*, i.e., it has a fixed point whenever it acts on a compact topological space.

Easy observation (Tsankov 2010)

Every open subgroup of an extremely amenable group is extremely amenable.

Problem

If Γ is Ramsey, is $(\Gamma, c_1, \dots, c_n)$ still Ramsey?

Theorem (Kechris, Pestov, Todorcevic 2005)

An ordered homogeneous structure Δ is Ramsey iff its automorphism group is *extremely amenable*, i.e., it has a fixed point whenever it acts on a compact topological space.

Easy observation (Tsankov 2010)

Every open subgroup of an extremely amenable group is extremely amenable.

Corollary

If Γ is ordered Ramsey, then so is $(\Gamma, c_1, \dots, c_n)$.

Thus:

```
If \Gamma is ordered Ramsey, f: \Gamma \to \Gamma, and c_1, \ldots, c_n \in \Gamma, then f generates a function canonical for (\Gamma, c_1, \ldots, c_n) which behaves like f on \{c_1, \ldots, c_n\}.
```

Thus:

```
If \Gamma is ordered Ramsey, f: \Gamma \to \Gamma, and c_1, \ldots, c_n \in \Gamma, then f generates a function canonical for (\Gamma, c_1, \ldots, c_n) which behaves like f on \{c_1, \ldots, c_n\}.
```

Theorem

Let Γ be ordered Ramsey. Then:

Thus:

```
If \Gamma is ordered Ramsey, f: \Gamma \to \Gamma, and c_1, \ldots, c_n \in \Gamma, then f generates a function canonical for (\Gamma, c_1, \ldots, c_n) which behaves like f on \{c_1, \ldots, c_n\}.
```

Theorem

Let Γ be ordered Ramsey. Then:

There are finitely many minimal closed supermonoids of Aut(Γ).

Thus:

```
If \Gamma is ordered Ramsey, f: \Gamma \to \Gamma, and c_1, \ldots, c_n \in \Gamma, then f generates a function canonical for (\Gamma, c_1, \ldots, c_n) which behaves like f on \{c_1, \ldots, c_n\}.
```

Theorem

Let Γ be ordered Ramsey. Then:

- There are finitely many minimal closed supermonoids of $Aut(\Gamma)$.
- Every closed supermonoid of $Aut(\Gamma)$ contains a minimal closed supermonoid of $Aut(\Gamma)$.

Thus:

```
If \Gamma is ordered Ramsey, f: \Gamma \to \Gamma, and c_1, \ldots, c_n \in \Gamma, then f generates a function canonical for (\Gamma, c_1, \ldots, c_n) which behaves like f on \{c_1, \ldots, c_n\}.
```

Theorem

Let Γ be ordered Ramsey. Then:

- There are finitely many minimal closed supermonoids of Aut(Γ).
- Every closed supermonoid of Aut(Γ) contains a minimal closed supermonoid of Aut(Γ).

Holds also if Γ is a finite language-reduct of an ordered Ramsey Δ .

Thus:

```
If \Gamma is ordered Ramsey, f: \Gamma \to \Gamma, and c_1, \ldots, c_n \in \Gamma, then f generates a function canonical for (\Gamma, c_1, \ldots, c_n) which behaves like f on \{c_1, \ldots, c_n\}.
```

Theorem

Let Γ be ordered Ramsey. Then:

- There are finitely many minimal closed supermonoids of Aut(Γ).
- Every closed supermonoid of Aut(Γ) contains a minimal closed supermonoid of Aut(Γ).

Holds also if Γ is a finite language-reduct of an ordered Ramsey Δ .

Note: There are infinitely many closed supermonoids of $Aut(\Gamma)$.

Minimal group-reducts of Ramsey structures

The method does not work like this for minimal closed groups: We might lose surjectivity.

Minimal group-reducts of Ramsey structures

The method does not work like this for minimal closed groups: We might lose surjectivity.

Example: Let $\Gamma := (\mathbb{Q}, <)$.

Let $\alpha_{\pi}: \mathbb{Q} \to \mathbb{Q}$ be the flip of the order around an irrational number π .

The method does not work like this for minimal closed groups: We might lose surjectivity.

Example: Let $\Gamma := (\mathbb{Q}, <)$.

Let $\alpha_{\pi} : \mathbb{Q} \to \mathbb{Q}$ be the flip of the order around an irrational number π .

Then α_{π} does not generate a permutation which is canonical with respect to constants.

The method does not work like this for minimal closed groups: We might lose surjectivity.

Example: Let $\Gamma := (\mathbb{Q}, <)$.

Let $\alpha_{\pi}: \mathbb{Q} \to \mathbb{Q}$ be the flip of the order around an irrational number π .

Then α_{π} does not generate a permutation which is canonical with respect to constants.

Project: Refine the method so that back and forth is possible.

How about the minimal closed clones containing Aut(G)?

= Reducts closed under primitive positive definitions

How about the minimal closed clones containing Aut(G)?

= Reducts closed under primitive positive definitions

Theorem (Bodirsky, Chen, P. 2008)

There are 2 minimal closed clones containing the automorphism group of (X, =).

How about the minimal closed clones containing Aut(G)?

= Reducts closed under primitive positive definitions

Theorem (Bodirsky, Chen, P. 2008)

There are 2 minimal closed clones containing the automorphism group of (X, =).

Theorem (Bodirsky, P. 2009)

There are 14 minimal closed clones containing the automorphism group of the random graph.

How about the minimal closed clones containing Aut(G)?

= Reducts closed under primitive positive definitions

Theorem (Bodirsky, Chen, P. 2008)

There are 2 minimal closed clones containing the automorphism group of (X, =).

Theorem (Bodirsky, P. 2009)

There are 14 minimal closed clones containing the automorphism group of the random graph.

Theorem (Bodirsky, P. 2010)

If Γ is ordered Ramsey, then there are finitely many minimal closed clones containing Aut(Γ). (Arity bound: $|S_2(\Gamma)|$.)

Problem

If Γ is ordered Ramsey, does $Aut(\Gamma)$ have only finitely many minimal closed supergroups?

Problem

If Γ is ordered Ramsey, does $Aut(\Gamma)$ have only finitely many minimal closed supergroups?

Problem

If Δ is a reduct of a "nice" structure, is Δ f.o.-equivalent to a structure in a finite language?

Problem

If Γ is ordered Ramsey, does $Aut(\Gamma)$ have only finitely many minimal closed supergroups?

Problem

If Δ is a reduct of a "nice" structure, is Δ f.o.-equivalent to a structure in a finite language?

Problem

If Γ is ordered Ramsey, does it only have finitely many reducts up to f.o.-interdefinability?

Problem

If Γ is ordered Ramsey, does $Aut(\Gamma)$ have only finitely many minimal closed supergroups?

Problem

If Δ is a reduct of a "nice" structure, is Δ f.o.-equivalent to a structure in a finite language?

Problem

If Γ is ordered Ramsey, does it only have finitely many reducts up to f.o.-interdefinability?

Problem

Can a clone containing the automorphism group of an ordered Ramsey structure Γ have infinitely many superclones?

Problem (Junker, Ziegler)

If Γ is not ω -categorical, does it always have infinitely many reducts?

Problem (Junker, Ziegler)

If Γ is not ω -categorical, does it always have infinitely many reducts?

Problem

Determine the reducts of the random graph with a constant.

Problem (Junker, Ziegler)

If Γ is not ω -categorical, does it always have infinitely many reducts?

Problem

Determine the reducts of the random graph with a constant.

Problem

Determine the reducts of the random ordered graph.

Problem (Junker, Ziegler)

If Γ is not ω -categorical, does it always have infinitely many reducts?

Problem

Determine the reducts of the random graph with a constant.

Problem

Determine the reducts of the random ordered graph.

Problem

Determine the reducts of the countable atomless Boolean algebra.

Problem (Junker, Ziegler)

If Γ is not ω -categorical, does it always have infinitely many reducts?

Problem

Determine the reducts of the random graph with a constant.

Problem

Determine the reducts of the random ordered graph.

Problem

Determine the reducts of the countable atomless Boolean algebra.

Problem

Determine the reducts of the random partial order.

Danke