Reducts of Homogeneous Structures I: The Ramsey Property

Michael Pinsker

Université Denis Diderot - Paris 7 (60%) Technische Universität Wien (30%) Hebrew University of Jerusalem (10%)

LMS Northern Regional Meeting Workshop on Homogeneous Structures 2011

Outline

Reducts of homogeneous structures

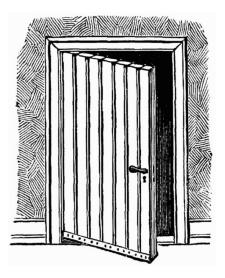
- First-order interdefinability
- Finer classifications
- Examples

Functions on homogeneous structures

- Groups, monoids, clones
- Canonical functions
- The Ramsey property
- Minimal functions

What we can do and what we cannot do

- Decidability of primitive positive definability
- Decidability of first order definability



Reducts of homogeneous structures

For all $A, B \subseteq \Delta$ finite, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(\Delta)$ extending *i*.

For all $A, B \subseteq \Delta$ finite, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(\Delta)$ extending *i*.

Definition

A *reduct* of Δ is a structure with a first-order (fo) definition in Δ .

For all $A, B \subseteq \Delta$ finite, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(\Delta)$ extending *i*.

Definition

A *reduct* of Δ is a structure with a first-order (fo) definition in Δ .

Problem

Classify the reducts of Δ .

We call Δ the *base structure*.

Classifications up to first-order interdefinability

We can consider two reducts Γ , Γ' of Δ *equivalent* iff Γ has a fo-definition from Γ' and vice-versa.

We can consider two reducts Γ , Γ' of Δ *equivalent* iff Γ has a fo-definition from Γ' and vice-versa.

We say that Γ and Γ' are *fo-interdefinable*.

We can consider two reducts Γ , Γ' of Δ *equivalent* iff Γ has a fo-definition from Γ' and vice-versa.

We say that Γ and Γ' are *fo-interdefinable*.

The relation " Γ is fo-definable in Γ " is a quasiorder on the reducts.

We can consider two reducts Γ , Γ' of Δ *equivalent* iff Γ has a fo-definition from Γ' and vice-versa.

We say that Γ and Γ' are *fo-interdefinable*.

The relation " Γ is fo-definable in Γ " is a quasiorder on the reducts.

We factor this quasiorder by the equivalence relation of fo-interdefinability, and obtain a complete lattice.

A formula is *existential* iff it is of the form $\exists x_1, \ldots, x_n . \psi$, where ψ is quantifier-free.

A formula is *existential* iff it is of the form $\exists x_1, \ldots, x_n.\psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *existential* iff it is of the form $\exists x_1, \ldots, x_n.\psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

A formula is *existential* iff it is of the form $\exists x_1, \ldots, x_n.\psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

Can consider reducts Γ , Γ' equivalent iff Γ has a ...-definition from Γ' and vice-versa.

A formula is *existential* iff it is of the form $\exists x_1, \ldots, x_n.\psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

Can consider reducts Γ , Γ' equivalent iff Γ has a ...-definition from Γ' and vice-versa.

The relation " Γ is ...-definable in Γ " is a quasiorder on the reducts.

A formula is *existential* iff it is of the form $\exists x_1, \ldots, x_n.\psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

Can consider reducts Γ , Γ' equivalent iff Γ has a ...-definition from Γ' and vice-versa.

The relation " Γ is ...-definable in Γ " is a quasiorder on the reducts.

We factor this quasiorder by the equivalence relation of ...-interdefinability and obtain a complete lattice.

Observe:

Primitive positive (pp) interdefinability is finer than existential positive (ep) interdefinability is finer than existential (ex) interdefinability is finer than first order (fo) interdefinability.

Observe:

Primitive positive (pp) interdefinability is finer than existential positive (ep) interdefinability is finer than existential (ex) interdefinability is finer than first order (fo) interdefinability.

In fact:

The lattice corresponding to fo-definability is a factor of the lattice corresponding to ex-definability is a factor of the lattice corresponding to ep-definability is a factor of the lattice corresponding to pp-definability.

Which of the 4 lattices are interesting?

Which of the 4 lattices are interesting?

Model theorists: First order!

Which of the 4 lattices are interesting?

Model theorists: First order!

Complexity theorists: Primitive positive!

Which of the 4 lattices are interesting?

Model theorists: First order!

Complexity theorists: Primitive positive!

Explanation:

- Every reduct defines a computational problem (Constraint Satisfaction Problem).
- Reducts which are pp-interdefinable have polynomial time-equivalent computational complexity.

Which of the 4 lattices are interesting?

Model theorists: First order!

Complexity theorists: Primitive positive!

Explanation:

- Every reduct defines a computational problem (Constraint Satisfaction Problem).
- Reducts which are pp-interdefinable have polynomial time-equivalent computational complexity.

This talk: Method for pp (and ep - submethod).

Which of the 4 lattices are interesting?

Model theorists: First order!

Complexity theorists: Primitive positive!

Explanation:

- Every reduct defines a computational problem (Constraint Satisfaction Problem).
- Reducts which are pp-interdefinable have polynomial time-equivalent computational complexity.

This talk: Method for pp (and ep - submethod).

STOP!

In practice helps also for fo.

Question makes sense for arbitrary base structure Δ .

Question makes sense for arbitrary base structure Δ .

 ω -categoricity implies the following:

Question makes sense for arbitrary base structure Δ .

 ω -categoricity implies the following:

• *fo-closed* reducts correspond to *closed* groups;

Question makes sense for arbitrary base structure Δ .

 ω -categoricity implies the following:

- *fo-closed* reducts correspond to *closed* groups;
- ep-closed reducts correspond to closed transformation monoids;

Question makes sense for arbitrary base structure Δ .

 ω -categoricity implies the following:

- fo-closed reducts correspond to closed groups;
- ep-closed reducts correspond to closed transformation monoids;
- pp-closed reducts correspond to closed clones.

Question makes sense for arbitrary base structure Δ .

 ω -categoricity implies the following:

- fo-closed reducts correspond to closed groups;
- ep-closed reducts correspond to closed transformation monoids;
- pp-closed reducts correspond to closed clones.

Seems that homogeneity in finite language implies few fo-closed reducts.

Why is Δ homogeneous in a finite language?

Question makes sense for arbitrary base structure Δ .

 ω -categoricity implies the following:

- *fo-closed* reducts correspond to *closed groups*;
- ep-closed reducts correspond to closed transformation monoids;
- pp-closed reducts correspond to closed clones.

Seems that homogeneity in finite language implies few fo-closed reducts.

For our method, we will need even "more" than homogeneity in a finite language:

The Ramsey property

Denote by $(\mathbb{Q}; <)$ be the order of the rationals, and set betw $(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$ $\operatorname{cycl}(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y$ $\operatorname{or} y < z < x\}$ $\operatorname{sep}(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \ldots\}$

Denote by $(\mathbb{Q}; <)$ be the order of the rationals, and set betw $(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$ $\operatorname{cycl}(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y$ $\operatorname{or} y < z < x\}$ $\operatorname{sep}(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \ldots\}$

Theorem (Cameron '76)

Denote by $(\mathbb{Q}; <)$ be the order of the rationals, and set betw $(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$ cycl $(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y$ or $y < z < x\}$ sep $(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \dots\}$

Theorem (Cameron '76)

Let Γ be a reduct of $\Delta := (\mathbb{Q}; <)$. Then:

() Γ is first-order interdefinable with (\mathbb{Q} ; <), or

Denote by $(\mathbb{Q}; <)$ be the order of the rationals, and set betw $(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$ cycl $(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y$ or $y < z < x\}$ sep $(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \dots\}$

Theorem (Cameron '76)

- **(**) Γ is first-order interdefinable with (\mathbb{Q} ; <), or
- **2** Γ is first-order interdefinable with (\mathbb{Q} ; betw), or

Denote by $(\mathbb{Q}; <)$ be the order of the rationals, and set betw $(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$ cycl $(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y$ or $y < z < x\}$ sep $(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \dots\}$

Theorem (Cameron '76)

- **1** Γ is first-order interdefinable with (\mathbb{Q} ; <), or
- **2** Γ is first-order interdefinable with (\mathbb{Q} ; betw), or
- **I** is first-order interdefinable with (\mathbb{Q} ; cycl), or

Denote by $(\mathbb{Q}; <)$ be the order of the rationals, and set betw $(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$ cycl $(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y$ or $y < z < x\}$ sep $(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \dots\}$

Theorem (Cameron '76)

- **1** Γ is first-order interdefinable with (\mathbb{Q} ; <), or
- **2** Γ is first-order interdefinable with (\mathbb{Q} ; betw), or
- **③** Γ is first-order interdefinable with (\mathbb{Q} ; cycl), or
- Γ is first-order interdefinable with (\mathbb{Q} ; sep), or

Denote by $(\mathbb{Q}; <)$ be the order of the rationals, and set $betw(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$ $cycl(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y$ $or \ y < z < x\}$ $sep(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \dots\}$

Theorem (Cameron '76)

- **(**) Γ is first-order interdefinable with (\mathbb{Q} ; <), or
- **2** Γ is first-order interdefinable with (\mathbb{Q} ; betw), or
- **I** is first-order interdefinable with (\mathbb{Q} ; cycl), or
- Γ is first-order interdefinable with (\mathbb{Q} ; sep), or
- **Ο** Γ is first-order interdefinable with $(\mathbb{Q}; =)$.

 $\mathbf{R}^{(k)} := \{ (x_1, \dots, x_k) \subseteq \mathbf{V}^k : x_i \text{ distinct, number of edges odd} \}.$

 $R^{(k)} := \{ (x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd} \}.$

Theorem (Thomas '91)

 $R^{(k)} := \{(x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$

Theorem (Thomas '91)

Let Γ be a reduct of $\Delta := G = (V; E)$. Then:

() Γ is first-order interdefinable with (V; E), or

 $R^{(k)} := \{(x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$

Theorem (Thomas '91)

- **()** Γ is first-order interdefinable with (V; E), or
- **2** Γ is first-order interdefinable with (*V*; $R^{(3)}$), or

 $R^{(k)} := \{(x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$

Theorem (Thomas '91)

- **()** Γ is first-order interdefinable with (V; E), or
- **2** Γ is first-order interdefinable with (*V*; $R^{(3)}$), or
- **③** Γ is first-order interdefinable with $(V; \mathbb{R}^{(4)})$, or

 $R^{(k)} := \{(x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$

Theorem (Thomas '91)

- **()** Γ is first-order interdefinable with (V; E), or
- **2** Γ is first-order interdefinable with (*V*; $R^{(3)}$), or
- **(a)** Γ is first-order interdefinable with $(V; R^{(4)})$, or
- Γ is first-order interdefinable with $(V; \mathbb{R}^{(5)})$, or

 $R^{(k)} := \{(x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$

Theorem (Thomas '91)

- **()** Γ is first-order interdefinable with (V; E), or
- **2** Γ is first-order interdefinable with (*V*; $R^{(3)}$), or
- **(a)** Γ is first-order interdefinable with $(V; R^{(4)})$, or
- Γ is first-order interdefinable with $(V; \mathbb{R}^{(5)})$, or
- **(**) Γ is first-order interdefinable with (V; =).

Further examples

Theorem (Thomas '91)

The homogeneous K_n -free graph has 2 reducts up to fo-interdefinability.

Theorem (Thomas '91)

The homogeneous K_n -free graph has 2 reducts up to fo-interdefinability.

Theorem (Thomas '96)

The homogeneous k-graph has $2^k + 1$ reducts up to fo-interdefinability.

Theorem (Thomas '91)

The homogeneous K_n -free graph has 2 reducts up to fo-interdefinability.

Theorem (Thomas '96)

The homogeneous k-graph has $2^k + 1$ reducts up to fo-interdefinability.

Theorem (Junker, Ziegler '08)

 $(\mathbb{Q}; <, 0)$ has 116 reducts up to fo-interdefinability.

Very recent examples

Theorem (Several people '11)

The homogeneous partial order has 5 reducts up to fo-interdefinability.

Theorem (Several people '11)

The homogeneous partial order has 5 reducts up to fo-interdefinability.

Theorem (Pongrácz '11)

The homogeneous K_n -free graph plus constant has 13 reducts if n = 3, and 16 reducts if $n \ge 4$ up to fo-interdefinability.

Theorem (Several people '11)

The homogeneous partial order has 5 reducts up to fo-interdefinability.

Theorem (Pongrácz '11)

The homogeneous K_n -free graph plus constant has 13 reducts if n = 3, and 16 reducts if $n \ge 4$ up to fo-interdefinability.

Depressing fact (Horváth, Pongrácz, P. '11)

The random graph with a constant has too many reducts up to fo-interdefinability.

Conjecture (Thomas '91)

Let Δ be homogeneous in a finite language.

Then Δ has finitely many reducts up to fo-interdefinability.

For the structure $\Delta := (X; =)$, there exist:

For the structure $\Delta := (X; =)$, there exist:

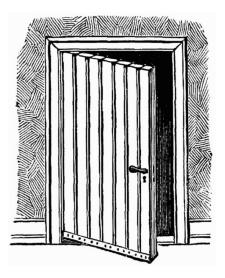
• 1 reduct up to first order / existential interdefinability

For the structure $\Delta := (X; =)$, there exist:

- 1 reduct up to first order / existential interdefinability
- \aleph_0 reducts up to existential positive interdefinability

For the structure $\Delta := (X; =)$, there exist:

- 1 reduct up to first order / existential interdefinability
- \aleph_0 reducts up to existential positive interdefinability
- 2^{\aleph_0} reducts up to primitive positive interdefinability



Functions on homogeneous structures

Permutation groups

Theorem (Ryll-Nardzewski)

Let Δ be ω -categorical.

The mapping

 $\Gamma \mapsto \mathsf{Aut}(\Gamma)$

is a one-to-one correspondence between the *first-order closed* reducts of Δ and the *closed permutation groups* containing Aut(Δ).

first order closed = contains all fo-definable relations

Monoids

Theorem (follows from the Homomorphism preservation thm)

Let Δ be ω -categorical.

The mapping

 $\Gamma\mapsto \mathsf{End}(\Gamma)$

is a one-to-one correspondence between the *existential positive closed* reducts of Δ and

the closed transformation monoids containing $Aut(\Delta)$.

A monoid of functions from Δ to Δ is *closed* iff it is closed in the Baire space Δ^{Δ} .

Clones

Theorem (Bodirsky, Nešetřil '03)

Let Δ be ω -categorical. Then

 $\Gamma \mapsto \mathsf{Pol}(\Gamma)$

is a one-to-one correspondence between the *primitive positive closed* reducts of Δ and the *closed clones* containing Aut(Δ).

A clone is a set of finitary operations on Δ which

- contains all projections $\pi_i^n(x_1, \ldots, x_n) = x_i$, and
- is closed under composition.

 $Pol(\Gamma)$ is the clone of all homomorphisms from finite powers of Γ to Γ .

A clone *C* is closed if for each $n \ge 1$, the set of *n*-ary operations in *C* is a closed subset of the Baire space Δ^{Δ^n} .

For ω -categorical Δ :

```
Reducts up to fo-interdefinability \leftrightarrow closed permutation groups \supseteq Aut(\Delta);
```

```
Reducts up to ep-interdefinability \leftrightarrow closed monoids \supseteq Aut(\Delta)
```

```
Reducts up to pp-interdefinability \leftrightarrow closed clones \supseteq Aut(\Delta).
```

Let G := (V; E) be the random graph.

Let G := (V; E) be the random graph.

Let \overline{G} be the graph that arises by switching edges and non-edges.

- Let G := (V; E) be the random graph.
- Let \overline{G} be the graph that arises by switching edges and non-edges.
- Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .

- Let G := (V; E) be the random graph.
- Let \overline{G} be the graph that arises by switching edges and non-edges.
- Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .
- For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges containing c.

- Let G := (V; E) be the random graph.
- Let \overline{G} be the graph that arises by switching edges and non-edges.
- Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .
- For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges containing c.
- Let $sw_c : V \rightarrow V$ be an isomorphism between G and G_c .

Let G := (V; E) be the random graph.

Let \overline{G} be the graph that arises by switching edges and non-edges.

Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges containing c.

Let $sw_c : V \rightarrow V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

Let G := (V; E) be the random graph.

Let \overline{G} be the graph that arises by switching edges and non-edges.

Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges containing c.

Let $sw_c : V \rightarrow V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

Let G := (V; E) be the random graph.

Let \overline{G} be the graph that arises by switching edges and non-edges.

Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges containing c.

Let $sw_c : V \rightarrow V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

- Aut(G)
- ② ({−} ∪ Aut(G))

Let G := (V; E) be the random graph.

Let \overline{G} be the graph that arises by switching edges and non-edges.

Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges containing c.

Let $sw_c : V \rightarrow V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

- Aut(G)
- ② ({−} ∪ Aut(G))
- $(\{\mathsf{sw}_c\} \cup \mathsf{Aut}(G))$

Let G := (V; E) be the random graph.

Let \overline{G} be the graph that arises by switching edges and non-edges.

Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges containing c.

Let $sw_c : V \rightarrow V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

- Aut(G)
- ② ({−} ∪ Aut(G))
- $(\{\mathsf{sw}_c\} \cup \mathsf{Aut}(G))$
- $(\{-, \mathsf{sw}_c\} \cup \mathsf{Aut}(G))$

Let G := (V; E) be the random graph.

Let \overline{G} be the graph that arises by switching edges and non-edges.

Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges containing c.

Let $sw_c : V \rightarrow V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

- Aut(G)
- ② ({−} ∪ Aut(G))
- $(\{sw_c\} \cup Aut(G))$
- $(\{ -, \mathsf{sw}_c \} \cup \mathsf{Aut}(G))$
- The full symmetric group S_V .

How to classify all reducts up to ...-interdefinability?

Climb up the lattice!

Let G = (V; E) be the random graph.

Definition. $f: G \rightarrow G$ is *canonical* iff

Let G = (V; E) be the random graph.

Definition. $f: G \rightarrow G$ is *canonical* iff

for all $x, y, u, v \in V$,

if (x, y) and (u, v) have the same type in G,

Let G = (V; E) be the random graph.

Definition. $f: G \rightarrow G$ is *canonical* iff

for all $x, y, u, v \in V$,

if (x, y) and (u, v) have the same type in G,

then (f(x), f(y)) and (f(u), f(v)) have the same type in G.

Let G = (V; E) be the random graph.

Definition. $f: G \rightarrow G$ is *canonical* iff

for all $x, y, u, v \in V$,

if (x, y) and (u, v) have the same type in *G*,

then (f(x), f(y)) and (f(u), f(v)) have the same type in G.

Let G = (V; E) be the random graph.

Definition. $f: G \rightarrow G$ is *canonical* iff

for all $x, y, u, v \in V$,

if (x, y) and (u, v) have the same type in G,

then (f(x), f(y)) and (f(u), f(v)) have the same type in G.

Examples.

• Automorphisms are canonical.

Let G = (V; E) be the random graph.

Definition. $f: G \rightarrow G$ is canonical iff

for all $x, y, u, v \in V$,

if (x, y) and (u, v) have the same type in G,

then (f(x), f(y)) and (f(u), f(v)) have the same type in G.

- Automorphisms are canonical.
- Embeddings are canonical.

Let G = (V; E) be the random graph.

Definition. $f: G \rightarrow G$ is canonical iff

for all $x, y, u, v \in V$,

if (x, y) and (u, v) have the same type in G,

then (f(x), f(y)) and (f(u), f(v)) have the same type in G.

- Automorphisms are canonical.
- Embeddings are canonical.
- is canonical.

Let G = (V; E) be the random graph.

Definition. $f: G \rightarrow G$ is canonical iff

for all $x, y, u, v \in V$,

if (x, y) and (u, v) have the same type in G,

then (f(x), f(y)) and (f(u), f(v)) have the same type in G.

- Automorphisms are canonical.
- Embeddings are canonical.
- is canonical.
- sw_c is canonical except around c.

Finding canonical behaviour

The class of finite graphs has the following **Ramsey property**:

For all graphs H

there exists a graph S such that

For all graphs *H* there exists a graph *S* such that if the edges of *S* are colored with 3 colors,

For all graphs Hthere exists a graph S such that if the edges of S are colored with 3 colors, then there is a copy of H in Son which the coloring is constant.

For all graphs Hthere exists a graph S such that if the edges of S are colored with 3 colors, then there is a copy of H in Son which the coloring is constant.

Given $f: G \rightarrow G$, color the edges of *G* according to the type of their image: 3 possibilities.

Same for non-edges.

For all graphs Hthere exists a graph S such that if the edges of S are colored with 3 colors, then there is a copy of H in Son which the coloring is constant.

Given $f: G \rightarrow G$, color the edges of *G* according to the type of their image: 3 possibilities.

Same for non-edges.

Conclusion: Every finite graph has a copy in *G* on which *f* is canonical.

A canonical function on *G* induces a function from the 2-types in *G* to the 2-types in *G*.

A canonical function on G induces a function from the 2-types in G to the 2-types in G.

Converse does not hold.

A canonical function on *G* induces a function from the 2-types in *G* to the 2-types in *G*.

Converse does not hold.

The following are all possibilities of canonical functions:

A canonical function on *G* induces a function from the 2-types in *G* to the 2-types in *G*.

Converse does not hold.

The following are all possibilities of canonical functions:

• Turning everything into edges (*e_E*)

- A canonical function on *G* induces a function from the 2-types in *G* to the 2-types in *G*.
- Converse does not hold.
- The following are all possibilities of canonical functions:
 - Turning everything into edges (*e_E*)
 - turning everything into non-edges (*e_N*)

- A canonical function on *G* induces a function from the 2-types in *G* to the 2-types in *G*.
- Converse does not hold.
- The following are all possibilities of canonical functions:
 - Turning everything into edges (*e_E*)
 - turning everything into non-edges (*e_N*)
 - behaving like –

A canonical function on *G* induces a function from the 2-types in *G* to the 2-types in *G*.

Converse does not hold.

The following are all possibilities of canonical functions:

- Turning everything into edges (*e_E*)
- turning everything into non-edges (*e_N*)
- behaving like –
- being constant

A canonical function on *G* induces a function from the 2-types in *G* to the 2-types in *G*.

Converse does not hold.

The following are all possibilities of canonical functions:

- Turning everything into edges (e_E)
- turning everything into non-edges (*e_N*)
- behaving like –
- being constant
- behaving like the identity.

A canonical function on *G* induces a function from the 2-types in *G* to the 2-types in *G*.

Converse does not hold.

The following are all possibilities of canonical functions:

- Turning everything into edges (e_E)
- turning everything into non-edges (e_N)
- behaving like –
- being constant
- behaving like the identity.

Given any $f : G \rightarrow G$, we know that one of these behaviors appears for arbitrary finite subgraphs of *G*.

A canonical function on *G* induces a function from the 2-types in *G* to the 2-types in *G*.

Converse does not hold.

The following are all possibilities of canonical functions:

- Turning everything into edges (e_E)
- turning everything into non-edges (e_N)
- behaving like –
- being constant
- behaving like the identity.

Given any $f : G \rightarrow G$, we know that one of these behaviors appears for arbitrary finite subgraphs of *G*.

Problem: Identity.

Let $f : G \rightarrow G$.

If $f \notin Aut(G)$, then there are $c, d \in V$ witnessing this.

Let $f : G \rightarrow G$.

If $f \notin Aut(G)$, then there are $c, d \in V$ witnessing this.

Fact.

The structure (V; E, c, d) has similar Ramsey properties as (V; E).

Let $f : G \rightarrow G$.

If $f \notin Aut(G)$, then there are $c, d \in V$ witnessing this.

Fact.

The structure (V; E, c, d) has similar Ramsey properties as (V; E).

Consider f as a function from (V; E, c, d) to (V; E).

Let $f : G \rightarrow G$.

If $f \notin Aut(G)$, then there are $c, d \in V$ witnessing this.

Fact.

The structure (V; E, c, d) has similar Ramsey properties as (V; E).

Consider *f* as a function from (V; E, c, d) to (V; E). Again, *f* is canonical on arbitrarily large finite substructures of (V; E, c, d).

Let $f : G \rightarrow G$.

If $f \notin Aut(G)$, then there are $c, d \in V$ witnessing this.

Fact.

The structure (V; E, c, d) has similar Ramsey properties as (V; E).

Consider f as a function from (V; E, c, d) to (V; E).

Again, f is canonical on arbitrarily large finite substructures of (V; E, c, d).

We can assume that it shows the *same* behavior on all these substructures.

Let $f : G \rightarrow G$.

If $f \notin Aut(G)$, then there are $c, d \in V$ witnessing this.

Fact.

The structure (V; E, c, d) has similar Ramsey properties as (V; E).

Consider f as a function from (V; E, c, d) to (V; E).

Again, f is canonical on arbitrarily large finite substructures of (V; E, c, d).

We can assume that it shows the *same* behavior on all these substructures.

By topological closure, *f* generates a function which:

- behaves like f on $\{c, d\}$, and
- is canonical as a function from (V; E, c, d) to (V; E).

The minimal monoids on the random graph

Theorem (Thomas '96)

Let $f : G \rightarrow G$ a function which does not locally look like an automorphism.

(that is, it violates at least one edge or a non-edge.)

Then *f* generates one of the following:

- A constant operation
- e_E
- e_N
- -
- SW_c

Theorem (Thomas '96)

Let $f : G \rightarrow G$ a function which does not locally look like an automorphism.

(that is, it violates at least one edge or a non-edge.)

Then *f* generates one of the following:

- A constant operation
- e_E
- e_N
- -
- SW_c

We thus know the *minimal closed monoids* containing Aut(G).

Theorem (Bodirsky, P. '10)

Let f be a finitary operation on G which does not locally look like an automorphism.

(that is, either *f* depends on at least two variables, or *f* violates an edge or a non-edge.)

Then *f* generates one of the following:

One of the five minimal unary functions of the previous theorem;

One of 9 canonical binary injections.

Theorem (Bodirsky, P. '10)

Let f be a finitary operation on G which does not locally look like an automorphism.

(that is, either *f* depends on at least two variables, or *f* violates an edge or a non-edge.)

Then *f* generates one of the following:

One of the five minimal unary functions of the previous theorem;

• One of 9 canonical binary injections.

We thus know the *minimal closed clones* containing Aut(G).

Theorem (Bodirsky, P. '10)

Let f be a finitary operation on G which does not locally look like an automorphism.

(that is, either *f* depends on at least two variables, or *f* violates an edge or a non-edge.)

Then *f* generates one of the following:

- One of the five minimal unary functions of the previous theorem;
- One of 9 canonical binary injections.

We thus know the *minimal closed clones* containing Aut(G).

More involved argument: Extend G by a random dense linear order.

Let S, H, P be structures in the same signature τ .

 $S
ightarrow (H)^P$

means:

Let S, H, P be structures in the same signature τ .

 $S \rightarrow (H)^P$

means:

For any coloring of the copies of P in S with 2 colors there exists a copy of H in Ssuch that the copies of P in H all have the same color. Let S, H, P be structures in the same signature τ .

 $S \rightarrow (H)^P$

means:

For any coloring of the copies of P in S with 2 colors there exists a copy of H in Ssuch that the copies of P in H all have the same color.

Definition

A class \mathcal{C} of τ -structures is called a *Ramsey class* iff for all $H, P \in \mathcal{C}$ there exists S in \mathcal{C} such that $S \to (H)^P$.

Let Δ now be an arbitrary structure.

Let Δ now be an arbitrary structure.

Definition

 $f : \Delta \to \Delta$ is *canonical* iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type too.

Let Δ now be an arbitrary structure.

Definition

 $f : \Delta \to \Delta$ is *canonical* iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type too.

Observation. If Δ is

- Ramsey
- ordered
- ω -categorical,

then all finite substructures of Δ have a copy in Δ on which *f* is canonical.

Let Δ now be an arbitrary structure.

Definition

 $f : \Delta \to \Delta$ is *canonical* iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type too.

Observation. If Δ is

- Ramsey
- ordered
- ω -categorical,

then all finite substructures of Δ have a copy in Δ on which *f* is canonical.

Thus: If Δ is in addition homogeneous in a finite language, then any $f : \Delta \rightarrow \Delta$ generates a canonical function,

Let Δ now be an arbitrary structure.

Definition

 $f : \Delta \to \Delta$ is *canonical* iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type too.

Observation. If Δ is

- Ramsey
- ordered
- ω -categorical,

then all finite substructures of Δ have a copy in Δ on which *f* is canonical.

Thus: If Δ is in addition homogeneous in a finite language, then any $f : \Delta \rightarrow \Delta$ generates a canonical function, but it could be the identity.

We would like to fix c_1, \ldots, c_n witnessing $f \notin Aut(\Gamma)$, and have canonical behavior of f as a function from $(\Gamma, c_1, \ldots, c_n)$ to Γ .

We would like to fix c_1, \ldots, c_n witnessing $f \notin Aut(\Gamma)$, and have canonical behavior of f as a function from $(\Gamma, c_1, \ldots, c_n)$ to Γ .

Why don't you just do it?

Problem

If Γ is Ramsey, is $(\Gamma, c_1, \ldots, c_n)$ still Ramsey?

Problem

If Γ is Ramsey, is $(\Gamma, c_1, \ldots, c_n)$ still Ramsey?

Theorem (Kechris, Pestov, Todorcevic '05)

An ordered homogeneous structure Δ is Ramsey iff its automorphism group is *extremely amenable*, i.e., it has a fixed point whenever it acts on a compact Hausdorff space.

Problem

If Γ is Ramsey, is $(\Gamma, c_1, \ldots, c_n)$ still Ramsey?

Theorem (Kechris, Pestov, Todorcevic '05)

An ordered homogeneous structure Δ is Ramsey iff its automorphism group is *extremely amenable*, i.e., it has a fixed point whenever it acts on a compact Hausdorff space.

Observation

Every open subgroup of an extremely amenable group is extremely amenable.

Problem

If Γ is Ramsey, is $(\Gamma, c_1, \ldots, c_n)$ still Ramsey?

Theorem (Kechris, Pestov, Todorcevic '05)

An ordered homogeneous structure Δ is Ramsey iff its automorphism group is *extremely amenable*, i.e., it has a fixed point whenever it acts on a compact Hausdorff space.

Observation

Every open subgroup of an extremely amenable group is extremely amenable.

Corollary

If Γ is ordered, homogeneous, and Ramsey, then so is $(\Gamma, c_1, \ldots, c_n)$.

Thus: If Γ is ordered Ramsey, $f : \Gamma \to \Gamma$, and $c_1, \ldots, c_n \in \Gamma$, then *f* generates a function which

- is canonical as a function from $(\Gamma, c_1, \ldots, c_n)$ to Γ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Thus: If Γ is ordered Ramsey, $f : \Gamma \to \Gamma$, and $c_1, \ldots, c_n \in \Gamma$, then *f* generates a function which

- is canonical as a function from $(\Gamma, c_1, \ldots, c_n)$ to Γ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure $\Delta.$ Then:

Thus: If Γ is ordered Ramsey, $f : \Gamma \to \Gamma$, and $c_1, \ldots, c_n \in \Gamma$, then *f* generates a function which

- is canonical as a function from $(\Gamma, c_1, \ldots, c_n)$ to Γ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure $\Delta.$ Then:

 Every minimal closed supermonoid of End(Γ) is generated by such a canonical function.

Thus: If Γ is ordered Ramsey, $f : \Gamma \to \Gamma$, and $c_1, \ldots, c_n \in \Gamma$, then *f* generates a function which

- is canonical as a function from $(\Gamma, c_1, \ldots, c_n)$ to Γ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure $\Delta.$ Then:

- Every minimal closed supermonoid of End(Γ) is generated by such a canonical function.
- If Γ has a finite language, then there are finitely many minimal closed supermonoids of End(Γ).

Thus: If Γ is ordered Ramsey, $f : \Gamma \to \Gamma$, and $c_1, \ldots, c_n \in \Gamma$, then *f* generates a function which

- is canonical as a function from $(\Gamma, c_1, \ldots, c_n)$ to Γ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure $\Delta.$ Then:

- Every minimal closed supermonoid of End(Γ) is generated by such a canonical function.
- If Γ has a finite language, then there are finitely many minimal closed supermonoids of End(Γ).
- Every closed supermonoid of End(Γ) contains a minimal closed supermonoid of End(Γ).

Minimal clones above Ramsey structures

Going to products of Γ , we get:

Minimal clones above Ramsey structures

Going to products of Γ , we get:

Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure Δ . Then:

Minimal clones above Ramsey structures

Going to products of Γ , we get:

Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure $\Delta.$ Then:

 Every minimal closed superclone of Pol(Γ) is generated by such a canonical function. Going to products of Γ , we get:

Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure $\Delta.$ Then:

Every minimal closed superclone of Pol(Γ) is generated by such a canonical function.

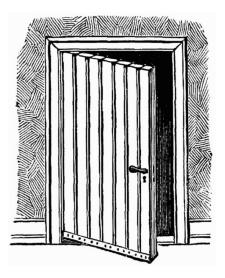
If Γ has a finite language, then there are finitely many minimal closed superclones of Pol(Γ).
 (Arity bound!)

Going to products of Γ , we get:

Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure $\Delta.$ Then:

- Every minimal closed superclone of Pol(Γ) is generated by such a canonical function.
- If Γ has a finite language, then there are finitely many minimal closed superclones of Pol(Γ).
 (Arity bound!)
- Every closed superclone of Pol(Γ) contains a minimal closed superclone of Pol(Γ).



What we can do and what we cannot do

What we can do

• Climb up the monoid and clone lattices

What we can do

- Climb up the monoid and clone lattices
- Decide pp and ep interdefinability:

What we can do

- Climb up the monoid and clone lattices
- Decide pp and ep interdefinability:

Theorem (Bodirsky, P., Tsankov '10)

Let Δ be

- ordered
- homogeneous
- Ramsey
- with finite language
- finitely bounded.

Then the following problem is decidable:

INPUT: Two finite language reducts Γ , Γ' of Δ . QUESTION: Are Γ , Γ' pp (ep-) interdefinable?

What we cannot do

What we cannot do

We do not know how to:

• Climb up the permutation group lattice

- Climb up the permutation group lattice
- Decide fo-interdefinability

- Climb up the permutation group lattice
- Decide fo-interdefinability

Open problems:

- Climb up the permutation group lattice
- Decide fo-interdefinability

Open problems:

• Does Thomas' conjecture hold in the ordered Ramsey context?

- Climb up the permutation group lattice
- Decide fo-interdefinability

Open problems:

- Does Thomas' conjecture hold in the ordered Ramsey context?
- Is the ordered Ramsey context really a proper special case of the homogeneous in a finite language context?

- Climb up the permutation group lattice
- Decide fo-interdefinability

Open problems:

- Does Thomas' conjecture hold in the ordered Ramsey context?
- Is the ordered Ramsey context really a proper special case of the homogeneous in a finite language context?
- Is fo-interdefinability decidable?

Reducts of Ramsey structures by Manuel Bodirsky and Michael Pinsker

