Reducts of Ramsey structures: the canonical approach

Michael Pinsker

Université Denis Diderot - Paris 7 (60%) Technische Universität Wien (30%) Hebrew University of Jerusalem (10%)

Freiburg, November 2011

Outline

1 Reducts of homogeneous structures

- First-order interdefinability
- Finer classifications
- Examples
- 2 Functions on homogeneous structures
 - Groups, monoids, clones
 - Canonical functions on Ramsey structures
 - The climbing up theorem
- 3 Reducts of the random graph
- 4 What we can do and what we cannot do
 - Decidability of interdefinability



Let Δ be a countable relational structure in a finite language which is *homogeneous*, i.e.,

Let Δ be a countable relational structure in a finite language which is *homogeneous*, i.e.,

For all $A, B \subseteq \Delta$ finite, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(\Delta)$ extending *i*.

Let Δ be a countable relational structure in a finite language which is *homogeneous*, i.e.,

For all $A, B \subseteq \Delta$ finite, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(\Delta)$ extending *i*.

Definition

A *reduct* of Δ is a structure with a first-order (fo) definition in Δ .

Let Δ be a countable relational structure in a finite language which is *homogeneous*, i.e.,

For all $A, B \subseteq \Delta$ finite, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(\Delta)$ extending *i*.

Definition

A *reduct* of Δ is a structure with a first-order (fo) definition in Δ .

Problem

Classify the reducts of Δ .

We call Δ the *base structure*.

The canonical approach

Michael Pinsker (Paris 7)

One possibility of classification:

We can consider two reducts Γ , Γ' of Δ *equivalent* iff Γ has a fo-definition from Γ' and vice-versa.

One possibility of classification:

We can consider two reducts Γ , Γ' of Δ *equivalent* iff Γ has a fo-definition from Γ' and vice-versa.

We say that Γ and Γ' are *fo-interdefinable*.

One possibility of classification:

We can consider two reducts Γ , Γ' of Δ *equivalent* iff Γ has a fo-definition from Γ' and vice-versa.

We say that Γ and Γ' are *fo-interdefinable*.

The relation " Γ is fo-definable in Γ " is a quasiorder on the reducts.

One possibility of classification:

We can consider two reducts Γ , Γ' of Δ *equivalent* iff Γ has a fo-definition from Γ' and vice-versa.

We say that Γ and Γ' are *fo-interdefinable*.

The relation " Γ is fo-definable in Γ " is a quasiorder on the reducts.

We factor this quasiorder by the equivalence relation of fo-interdefinability, and obtain a complete lattice.

The canonical approach

Michael Pinsker (Paris 7)

A formula is *existential* iff it is of the form $\exists x_1, \ldots, x_n \cdot \psi$, where ψ is quantifier-free.

A formula is *existential* iff it is of the form $\exists x_1, \ldots, x_n . \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *existential* iff it is of the form $\exists x_1, \ldots, x_n . \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

A formula is *existential* iff it is of the form $\exists x_1, \ldots, x_n . \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

Can consider reducts Γ , Γ' equivalent iff Γ has a ...-definition from Γ' and vice-versa.

A formula is *existential* iff it is of the form $\exists x_1, \ldots, x_n . \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

Can consider reducts Γ , Γ' equivalent iff Γ has a ...-definition from Γ' and vice-versa.

The relation " Γ is ...-definable in Γ " is a quasiorder on the reducts.

A formula is *existential* iff it is of the form $\exists x_1, \ldots, x_n . \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

Can consider reducts Γ , Γ' equivalent iff Γ has a ...-definition from Γ' and vice-versa.

The relation " Γ is ...-definable in Γ " is a quasiorder on the reducts.

We factor this quasiorder by the equivalence relation of ...-interdefinability and obtain a complete lattice.

Comparing the classifications

The canonical approach

Michael Pinsker (Paris 7)

Comparing the classifications

Observe:

Primitive positive (pp) interdefinability is finer than existential positive (ep) interdefinability is finer than existential (ex) interdefinability is finer than first order (fo) interdefinability.

Observe:

Primitive positive (pp) interdefinability is finer than existential positive (ep) interdefinability is finer than existential (ex) interdefinability is finer than first order (fo) interdefinability.

In fact:

The lattice corresponding to fo-definability is a factor of the lattice corresponding to ex-definability is a factor of the lattice corresponding to ep-definability is a factor of the lattice corresponding to pp-definability.

The canonical approach

Michael Pinsker (Paris 7)

Which of the 4 lattices are interesting?

Which of the 4 lattices are interesting?

Model theorists: First order!

Which of the 4 lattices are interesting?

Model theorists: First order!

Complexity theorists: Primitive positive!

Which of the 4 lattices are interesting?

Model theorists: First order!

Complexity theorists: Primitive positive!

Explanation:

- Every reduct defines a computational problem (Constraint Satisfaction Problem).
- Reducts which are pp-interdefinable have polynomial time-equivalent computational complexity.

Which of the 4 lattices are interesting?

Model theorists: First order!

Complexity theorists: Primitive positive!

Explanation:

- Every reduct defines a computational problem (Constraint Satisfaction Problem).
- Reducts which are pp-interdefinable have polynomial time-equivalent computational complexity.

This talk: Method for pp (and ep - submethod).

Which of the 4 lattices are interesting?

Model theorists: First order!

Complexity theorists: Primitive positive!

Explanation:

- Every reduct defines a computational problem (Constraint Satisfaction Problem).
- Reducts which are pp-interdefinable have polynomial time-equivalent computational complexity.

This talk: Method for pp (and ep - submethod).

STOP!

In practice helps also for fo.

Question makes sense for arbitrary base structure Δ .

Question makes sense for arbitrary base structure Δ .

 ω -categoricity implies the following:

Question makes sense for arbitrary base structure Δ .

 ω -categoricity implies the following:

■ *fo-closed* reducts correspond to *closed groups*;

Question makes sense for arbitrary base structure Δ .

 ω -categoricity implies the following:

- *fo-closed* reducts correspond to *closed groups*;
- ep-closed reducts correspond to closed transformation monoids;

Question makes sense for arbitrary base structure Δ .

 ω -categoricity implies the following:

- *fo-closed* reducts correspond to *closed groups*;
- ep-closed reducts correspond to closed transformation monoids;
- pp-closed reducts correspond to closed clones.

Question makes sense for arbitrary base structure Δ .

 ω -categoricity implies the following:

- *fo-closed* reducts correspond to *closed groups*;
- ep-closed reducts correspond to closed transformation monoids;
- *pp-closed reducts* correspond to *closed clones*.

Seems that homogeneity in finite language implies few fo-closed reducts.

Why is Δ homogeneous in a finite language?

Question makes sense for arbitrary base structure Δ .

 ω -categoricity implies the following:

- *fo-closed* reducts correspond to *closed groups*;
- ep-closed reducts correspond to closed transformation monoids;
- *pp-closed reducts* correspond to *closed clones*.

Seems that homogeneity in finite language implies few fo-closed reducts.

For our method, we will need even "more" than homogeneity in a finite language:

The Ramsey property

The canonical approach

Michael Pinsker (Paris 7)

Denote by $(\mathbb{Q}; <)$ be the order of the rationals, and set $betw(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$ $cycl(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y$ $or \ y < z < x\}$ $sep(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \dots\}$

Denote by $(\mathbb{Q}; <)$ be the order of the rationals, and set $betw(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$ $cycl(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y$ $or \ y < z < x\}$ $sep(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \ldots\}$

Theorem (Cameron '76)

Denote by $(\mathbb{Q}; <)$ be the order of the rationals, and set $betw(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$ $cycl(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y$ $or \ y < z < x\}$ $sep(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \ldots\}$

Theorem (Cameron '76)

Let Γ be a reduct of $\Delta := (\mathbb{Q}; <)$. Then:

1 Γ is first-order interdefinable with (\mathbb{Q} ; <), or

Denote by $(\mathbb{Q}; <)$ be the order of the rationals, and set $betw(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$ $cycl(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y$ $or \ y < z < x\}$ $sep(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \ldots\}$

Theorem (Cameron '76)

- **1** Γ is first-order interdefinable with (\mathbb{Q} ; <), or
- **2** Γ is first-order interdefinable with (\mathbb{Q} ; betw), or

Denote by $(\mathbb{Q}; <)$ be the order of the rationals, and set $betw(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$ $cycl(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y$ $or \ y < z < x\}$ $sep(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \ldots\}$

Theorem (Cameron '76)

- **1** Γ is first-order interdefinable with (\mathbb{Q} ; <), or
- **2** Γ is first-order interdefinable with (\mathbb{Q} ; betw), or
- **3** Γ is first-order interdefinable with (\mathbb{Q} ; cycl), or

Denote by $(\mathbb{Q}; <)$ be the order of the rationals, and set $betw(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$ $cycl(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y$ $or \ y < z < x\}$ $sep(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \ldots\}$

Theorem (Cameron '76)

- **1** Γ is first-order interdefinable with (\mathbb{Q} ; <), or
- **2** Γ is first-order interdefinable with (\mathbb{Q} ; betw), or
- **3** Γ is first-order interdefinable with (\mathbb{Q} ; cycl), or
- **4** Γ is first-order interdefinable with (\mathbb{Q} ; sep), or

Denote by $(\mathbb{Q}; <)$ be the order of the rationals, and set $betw(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < y < x\}$ $cycl(x, y, z) := \{(x, y, z) \in \mathbb{Q}^3 : x < y < z \text{ or } z < x < y$ $or \ y < z < x\}$ $sep(x, y, z, w) := \{(x, y, z, w) \in \mathbb{Q}^4 : \ldots\}$

Theorem (Cameron '76)

- **1** Γ is first-order interdefinable with (\mathbb{Q} ; <), or
- **2** Γ is first-order interdefinable with (\mathbb{Q} ; betw), or
- **3** Γ is first-order interdefinable with (\mathbb{Q} ; cycl), or
- **4** Γ is first-order interdefinable with (\mathbb{Q} ; sep), or
- **5** Γ is first-order interdefinable with (\mathbb{Q} ; =).

The canonical approach

Michael Pinsker (Paris 7)

Let G = (V; E) be the random graph, and set for all $k \ge 2$

 $\mathbf{R}^{(k)} := \{ (x_1, \dots, x_k) \subseteq \mathbf{V}^k : x_i \text{ distinct, number of edges odd} \}.$

Let G = (V; E) be the random graph, and set for all $k \ge 2$

 $\mathbf{R}^{(k)} := \{ (x_1, \dots, x_k) \subseteq \mathbf{V}^k : x_i \text{ distinct, number of edges odd} \}.$

Theorem (Thomas '91)

Let G = (V; E) be the random graph, and set for all $k \ge 2$

 $\mathbf{R}^{(k)} := \{ (x_1, \dots, x_k) \subseteq \mathbf{V}^k : x_i \text{ distinct, number of edges odd} \}.$

Theorem (Thomas '91)

Let Γ be a reduct of $\Delta := G = (V; E)$. Then:

1 Γ is first-order interdefinable with (V; E), or

Let G = (V; E) be the random graph, and set for all $k \ge 2$

 $\mathbf{R}^{(k)} := \{ (x_1, \dots, x_k) \subseteq \mathbf{V}^k : x_i \text{ distinct, number of edges odd} \}.$

Theorem (Thomas '91)

- **1** Γ is first-order interdefinable with (V; E), or
- **2** Γ is first-order interdefinable with $(V; R^{(3)})$, or

Let G = (V; E) be the random graph, and set for all $k \ge 2$

 $\mathbf{R}^{(k)} := \{ (x_1, \dots, x_k) \subseteq \mathbf{V}^k : x_i \text{ distinct, number of edges odd} \}.$

Theorem (Thomas '91)

- **1** Γ is first-order interdefinable with (V; E), or
- **2** Γ is first-order interdefinable with $(V; R^{(3)})$, or
- **3** Γ is first-order interdefinable with $(V; \mathbb{R}^{(4)})$, or

Let G = (V; E) be the random graph, and set for all $k \ge 2$

 $\mathbf{R}^{(k)} := \{ (x_1, \dots, x_k) \subseteq \mathbf{V}^k : x_i \text{ distinct, number of edges odd} \}.$

Theorem (Thomas '91)

- **1** Γ is first-order interdefinable with (V; E), or
- **2** Γ is first-order interdefinable with $(V; R^{(3)})$, or
- **3** Γ is first-order interdefinable with $(V; \mathbb{R}^{(4)})$, or
- **4** Γ is first-order interdefinable with $(V; \mathbb{R}^{(5)})$, or

Let G = (V; E) be the random graph, and set for all $k \ge 2$

 $\mathbf{R}^{(k)} := \{ (x_1, \dots, x_k) \subseteq \mathbf{V}^k : x_i \text{ distinct, number of edges odd} \}.$

Theorem (Thomas '91)

- **1** Γ is first-order interdefinable with (V; E), or
- **2** Γ is first-order interdefinable with $(V; R^{(3)})$, or
- **3** Γ is first-order interdefinable with $(V; \mathbb{R}^{(4)})$, or
- **4** Γ is first-order interdefinable with $(V; \mathbb{R}^{(5)})$, or
- **5** Γ is first-order interdefinable with (*V*; =).

The canonical approach

Theorem (Thomas '91)

The homogeneous universal K_n -free graph has 2 reducts up to fo-interdefinability.

Theorem (Thomas '91)

The homogeneous universal K_n -free graph has 2 reducts up to fo-interdefinability.

Theorem (Thomas '96)

The homogeneous universal *k*-graph has $2^k + 1$ reducts up to fo-interdefinability.

Theorem (Thomas '91)

The homogeneous universal K_n -free graph has 2 reducts up to fo-interdefinability.

Theorem (Thomas '96)

The homogeneous universal k-graph has $2^k + 1$ reducts up to fo-interdefinability.

Theorem (Junker, Ziegler '08)

 $(\mathbb{Q}; <, 0)$ has 116 reducts up to fo-interdefinability.

The canonical approach

Michael Pinsker (Paris 7)

Theorem (Pach, P., Pluhár, Pongrácz, Szabó '11)

The random partial order has 5 reducts up to fo-interdefinability.

Theorem (Pach, P., Pluhár, Pongrácz, Szabó '11)

The random partial order has 5 reducts up to fo-interdefinability.

Theorem (Pongrácz '11)

The homogeneous universal K_n -free graph plus constant has 13 reducts if n = 3, and 16 reducts if $n \ge 4$, up to fo-interdefinability.

Theorem (Pach, P., Pluhár, Pongrácz, Szabó '11)

The random partial order has 5 reducts up to fo-interdefinability.

Theorem (Pongrácz '11)

The homogeneous universal K_n -free graph plus constant has 13 reducts if n = 3, and 16 reducts if $n \ge 4$, up to fo-interdefinability.

Depressing fact (Horváth, Pongrácz, P. '11)

The random graph with a constant has too many reducts up to fo-interdefinability.

Conjecture (Thomas '91)

Let Δ be homogeneous in a finite language.

Then Δ has finitely many reducts up to fo-interdefinability.

Back to finer classifications

The canonical approach

Michael Pinsker (Paris 7)

For the structure $\Delta := (X; =)$, there exist:

For the structure $\Delta := (X; =)$, there exist:

1 reduct up to first order / existential interdefinability

For the structure $\Delta := (X; =)$, there exist:

- 1 reduct up to first order / existential interdefinability
- \blacksquare \aleph_0 reducts up to existential positive interdefinability

For the structure $\Delta := (X; =)$, there exist:

- 1 reduct up to first order / existential interdefinability
- \blacksquare \aleph_0 reducts up to existential positive interdefinability
- 2[№] reducts up to primitive positive interdefinability



Functions on homogeneous structures

Permutation groups

The canonical approach

Michael Pinsker (Paris 7)

Permutation groups

Theorem (Ryll-Nardzewski)

Let Δ be ω -categorical.

The mapping

 $\Gamma \mapsto Aut(\Gamma)$

is a one-to-one correspondence between the *first-order closed* reducts of Δ and the *closed permutation groups* containing Aut(Δ).

first order closed = contains all fo-definable relations

Monoids

Monoids

Theorem (follows from the Homomorphism preservation thm) Let Δ be ω -categorical.

The mapping

$\Gamma\mapsto \text{End}(\Gamma)$

is a one-to-one correspondence between the *existential positive closed* reducts of Δ and the *closed transformation monoids* containing Aut(Δ).

A monoid of functions from Δ to Δ is *closed* iff it is closed in the Baire space Δ^{Δ} .

Clones

Clones

Theorem (Bodirsky, Nešetřil '03)

Let Δ be ω -categorical. Then

 $\Gamma \mapsto \mathsf{Pol}(\Gamma)$

is a one-to-one correspondence between the *primitive positive closed* reducts of Δ and the *closed clones* containing Aut(Δ).

A clone is a set of finitary operations on Δ which

- contains all projections $\pi_i^n(x_1, \ldots, x_n) = x_i$, and
- is closed under composition.

 $Pol(\Gamma)$ is the clone of all homomorphisms from finite powers of Γ to Γ .

A clone *C* is closed if for each $n \ge 1$, the set of *n*-ary operations in *C* is a closed subset of the Baire space Δ^{Δ^n} .

Groups, Monoids, Clones

For ω -categorical Δ :

```
Reducts up to fo-interdefinability \leftrightarrow closed permutation groups \supseteq Aut(\Delta);
```

```
Reducts up to ep-interdefinability \leftrightarrow closed monoids \supseteq Aut(\Delta)
```

```
Reducts up to pp-interdefinability \leftrightarrow closed clones \supseteq Aut(\Delta).
```

Let G := (V; E) be the random graph.

Let G := (V; E) be the random graph.

Let \overline{G} be the graph that arises by switching edges and non-edges.

Let G := (V; E) be the random graph.

Let \overline{G} be the graph that arises by switching edges and non-edges.

Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .

- Let G := (V; E) be the random graph.
- Let \overline{G} be the graph that arises by switching edges and non-edges.
- Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .
- For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges containing c.

- Let G := (V; E) be the random graph.
- Let \overline{G} be the graph that arises by switching edges and non-edges.
- Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .
- For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges containing c.
- Let $sw_c : V \rightarrow V$ be an isomorphism between *G* and *G*_c.

- Let G := (V; E) be the random graph.
- Let \overline{G} be the graph that arises by switching edges and non-edges.
- Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .
- For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges containing c.
- Let $sw_c : V \rightarrow V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

- Let G := (V; E) be the random graph.
- Let \overline{G} be the graph that arises by switching edges and non-edges.
- Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .
- For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges containing c.
- Let $sw_c : V \rightarrow V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

The closed groups containing Aut(G) are the following:

1 Aut(*G*)

Let G := (V; E) be the random graph.

Let \overline{G} be the graph that arises by switching edges and non-edges.

Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges containing c.

Let $sw_c : V \rightarrow V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

- 1 Aut(*G*)
- 2 ({−} ∪ Aut(*G*))

Let G := (V; E) be the random graph.

Let \overline{G} be the graph that arises by switching edges and non-edges.

Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges containing c.

Let $sw_c : V \rightarrow V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

- 1 Aut(*G*)
- 2 $\langle \{-\} \cup \operatorname{Aut}(G) \rangle$
- 3 $\langle \{ sw_c \} \cup Aut(G) \rangle$

Let G := (V; E) be the random graph.

Let \overline{G} be the graph that arises by switching edges and non-edges.

Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges containing c.

Let $sw_c : V \rightarrow V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

- 1 Aut(*G*)
- 2 $\langle \{-\} \cup \operatorname{Aut}(G) \rangle$
- $\langle \{ sw_c \} \cup Aut(G) \rangle$
- $4 \langle \{-, \mathsf{sw}_c\} \cup \mathsf{Aut}(G) \rangle$

Let G := (V; E) be the random graph.

Let \overline{G} be the graph that arises by switching edges and non-edges.

Let $-: V \rightarrow V$ be an isomorphism between G and \overline{G} .

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges containing c.

Let $sw_c : V \rightarrow V$ be an isomorphism between G and G_c .

Theorem (Thomas '91)

- 1 Aut(*G*)
- 2 $\langle \{-\} \cup \operatorname{Aut}(G) \rangle$
- 3 $\langle \{ sw_c \} \cup Aut(G) \rangle$
- $4 \langle \{-, \mathsf{sw}_c\} \cup \mathsf{Aut}(G) \rangle$
- **5** The full symmetric group S_V .

How to classify all reducts up to ...-interdefinability?

Climb up the lattice!

The canonical approach

Michael Pinsker (Paris 7)

The canonical approach

Michael Pinsker (Paris 7)

Let Δ , Λ be structures.

Definition

 $f : \Delta \to \Lambda$ is *canonical* iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ .

Let Δ , Λ be structures.

Definition

 $f : \Delta \to \Lambda$ is *canonical* iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ .

Example. Let G = (V; E) be the random graph.

Then $f : G \to G$ is canonical iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type in *G*, then (f(x), f(y)) and (f(u), f(v)) have the same type in *G*.

Let Δ , Λ be structures.

Definition

 $f : \Delta \to \Lambda$ is *canonical* iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ .

Example. Let G = (V; E) be the random graph.

Then $f: G \rightarrow G$ is canonical iff

for all $x, y, u, v \in V$,

if (x, y) and (u, v) have the same type in G,

then (f(x), f(y)) and (f(u), f(v)) have the same type in G.

Possible types: edge, non-edge, point.

General examples.

General examples.

Automorphisms / embeddings are canonical.

General examples.

- Automorphisms / embeddings are canonical.
- Homomorphisms are NOT canonical.

General examples.

- Automorphisms / embeddings are canonical.
- Homomorphisms are NOT canonical.
- Constant functions are canonical.

General examples.

- Automorphisms / embeddings are canonical.
- Homomorphisms are NOT canonical.
- Constant functions are canonical.

General examples.

- Automorphisms / embeddings are canonical.
- Homomorphisms are NOT canonical.
- Constant functions are canonical.

Possibilities on G.

is canonical.

General examples.

- Automorphisms / embeddings are canonical.
- Homomorphisms are NOT canonical.
- Constant functions are canonical.

- is canonical.
- sw_c is canonical as a function from (V; E, c) to (V; E).

General examples.

- Automorphisms / embeddings are canonical.
- Homomorphisms are NOT canonical.
- Constant functions are canonical.

- is canonical.
- sw_c is canonical as a function from (V; E, c) to (V; E).
- e_E (injection onto a clique) is canonical.

General examples.

- Automorphisms / embeddings are canonical.
- Homomorphisms are NOT canonical.
- Constant functions are canonical.

- is canonical.
- sw_c is canonical as a function from (V; E, c) to (V; E).
- e_E (injection onto a clique) is canonical.
- e_N (injection onto an independent set) is canonical.

General examples.

- Automorphisms / embeddings are canonical.
- Homomorphisms are NOT canonical.
- Constant functions are canonical.

Possibilities on G.

- is canonical.
- sw_c is canonical as a function from (V; E, c) to (V; E).
- e_E (injection onto a clique) is canonical.
- e_N (injection onto an independent set) is canonical.

Canonical functions induce functions on types.

General examples.

- Automorphisms / embeddings are canonical.
- Homomorphisms are NOT canonical.
- Constant functions are canonical.

Possibilities on G.

- is canonical.
- sw_c is canonical as a function from (V; E, c) to (V; E).
- e_E (injection onto a clique) is canonical.
- e_N (injection onto an independent set) is canonical.

Canonical functions induce functions on types.

If the structures Δ , Λ are homogeneous in a finite language, then there are just finitely many canonical behaviors for $f : \Delta \to \Lambda$.

The canonical approach

Michael Pinsker (Paris 7)

Let S, H, P be structures in the same signature τ .

 $S
ightarrow (H)^P$

means:

Let S, H, P be structures in the same signature τ .

 $S
ightarrow (H)^P$

means:

For any coloring of the copies of P in S with 2 colors there exists a copy of H in Ssuch that the copies of P in H all have the same color.

Let S, H, P be structures in the same signature τ .

 $S \to (H)^P$

means:

For any coloring of the copies of P in S with 2 colors there exists a copy of H in Ssuch that the copies of P in H all have the same color.

Definition

A class \mathcal{C} of τ -structures is called a *Ramsey class* iff for all $H, P \in \mathcal{C}$ there exists S in \mathcal{C} such that $S \to (H)^P$.

Ramsey structures

Definition

A structure Δ is called *Ramsey* iff its age is a Ramsey class.

Ramsey structures

Definition

A structure Δ is called *Ramsey* iff its age is a Ramsey class.

Observation. If

- \blacksquare Δ is Ramsey and ordered (i.e., it has a linear order)
- **and** Λ is ω -categorical,

then all finite substructures of Δ have a copy in Δ on which *f* is canonical.

Definition

A structure Δ is called *Ramsey* iff its age is a Ramsey class.

Observation. If

- \blacksquare Δ is Ramsey and ordered (i.e., it has a linear order)
- **and** Λ is ω -categorical,

then all finite substructures of Δ have a copy in Δ on which *f* is canonical.

Thus: If Δ , Λ are homogeneous, then the closure of Aut(Λ) \circ $f \circ$ Aut(Δ) in Λ^{Δ} contains a canonical function.

Consider the universal homogeneous linearly ordered graph.

Consider the universal homogeneous linearly ordered graph.

- Its "graph part" is the random graph
- its "order part" is the order of the rationals.

Consider the universal homogeneous linearly ordered graph.

- Its "graph part" is the random graph
- its "order part" is the order of the rationals.

We can thus write $(G, \prec) = (V; E, \prec)$ for this limit.

Consider the universal homogeneous linearly ordered graph.

- Its "graph part" is the random graph
- its "order part" is the order of the rationals.

We can thus write $(G, \prec) = (V; E, \prec)$ for this limit.

Theorem (Nešetřil- Rödl)

 (G, \prec) is Ramsey.

Consider the universal homogeneous linearly ordered graph.

- Its "graph part" is the random graph
- its "order part" is the order of the rationals.

We can thus write $(G, \prec) = (V; E, \prec)$ for this limit.

Theorem (Nešetřil- Rödl)

 (G,\prec) is Ramsey.

Observation: If $f : (G, \prec) \rightarrow (G, \prec)$ is canonical, then it is also canonical as a function from *G* to *G*.

Consider the universal homogeneous linearly ordered graph.

- Its "graph part" is the random graph
- its "order part" is the order of the rationals.

We can thus write $(G, \prec) = (V; E, \prec)$ for this limit.

Theorem (Nešetřil- Rödl)

 (G, \prec) is Ramsey.

Observation: If $f : (G, \prec) \rightarrow (G, \prec)$ is canonical, then it is also canonical as a function from *G* to *G*.

Conclusion: If $f : G \to G$ is any function, then every finite graph has a copy in *G* on which *f* is canonical.

Consider the universal homogeneous linearly ordered graph.

- Its "graph part" is the random graph
- its "order part" is the order of the rationals.

We can thus write $(G, \prec) = (V; E, \prec)$ for this limit.

Theorem (Nešetřil- Rödl)

 (G, \prec) is Ramsey.

Observation: If $f : (G, \prec) \rightarrow (G, \prec)$ is canonical, then it is also canonical as a function from *G* to *G*.

Conclusion: If $f : G \to G$ is any function, then every finite graph has a copy in *G* on which *f* is canonical.

So every $f : G \rightarrow G$ generates (with Aut(*G*)) a canonical function.

What we would like to do...

The canonical approach

Michael Pinsker (Paris 7)

We would like to fix c_1, \ldots, c_n witnessing $f \notin Aut(\Delta)$, and have canonical behavior of f as a function from $(\Delta, c_1, \ldots, c_n)$ to Δ .

We would like to fix c_1, \ldots, c_n witnessing $f \notin Aut(\Delta)$, and have canonical behavior of f as a function from $(\Delta, c_1, \ldots, c_n)$ to Δ .

Why don't you just do it?

Problem

If Δ is Ramsey, is $(\Delta, c_1, \ldots, c_n)$ still Ramsey?

Problem

If Δ is Ramsey, is $(\Delta, c_1, \ldots, c_n)$ still Ramsey?

Theorem (Kechris, Pestov, Todorcevic '05)

An ordered homogeneous structure Δ is Ramsey iff its automorphism group is *extremely amenable*, i.e., it has a fixed point whenever it acts on a compact Hausdorff space.

Problem

If Δ is Ramsey, is $(\Delta, c_1, \ldots, c_n)$ still Ramsey?

Theorem (Kechris, Pestov, Todorcevic '05)

An ordered homogeneous structure Δ is Ramsey iff its automorphism group is *extremely amenable*, i.e., it has a fixed point whenever it acts on a compact Hausdorff space.

Observation

Every open subgroup of an extremely amenable group is extremely amenable.

Problem

If Δ is Ramsey, is $(\Delta, c_1, \ldots, c_n)$ still Ramsey?

Theorem (Kechris, Pestov, Todorcevic '05)

An ordered homogeneous structure Δ is Ramsey iff its automorphism group is *extremely amenable*, i.e., it has a fixed point whenever it acts on a compact Hausdorff space.

Observation

Every open subgroup of an extremely amenable group is extremely amenable.

Corollary

If Δ is ordered, homogeneous, and Ramsey, then so is $(\Delta, c_1, \ldots, c_n)$.

Proposition

If Δ is ordered Ramsey homogeneous finite language, $f : \Delta^k \to \Delta$, and $c_1, \ldots, c_n \in \Delta$, then *f* generates a function which

- is canonical as a function from $(\Delta, c_1, \dots, c_n)^k$ to Δ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Proposition (new proof 2011!)

If Δ is ordered Ramsey homogeneous finite language, $f : \Delta^k \to \Delta$, and $c_1, \ldots, c_n \in \Delta$, then *f* generates a function which

- is canonical as a function from $(\Delta, c_1, \dots, c_n)^k$ to Δ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Set $S := \{g : \Delta^k \to \Delta \mid g \text{ agrees with f on } \{c_1, \ldots, c_n\}\}.$

Proposition (new proof 2011!)

If Δ is ordered Ramsey homogeneous finite language, $f : \Delta^k \to \Delta$, and $c_1, \ldots, c_n \in \Delta$, then *f* generates a function which

- is canonical as a function from $(\Delta, c_1, \dots, c_n)^k$ to Δ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Set $S := \{g : \Delta^k \to \Delta \mid g \text{ agrees with f on } \{c_1, \dots, c_n\}\}.$ Set $g \sim h$ iff there is $\alpha \in \operatorname{Aut}(\Delta)$ such that $g = \alpha h$.

Proposition (new proof 2011!)

If Δ is ordered Ramsey homogeneous finite language, $f : \Delta^k \to \Delta$, and $c_1, \ldots, c_n \in \Delta$, then *f* generates a function which

- is canonical as a function from $(\Delta, c_1, \dots, c_n)^k$ to Δ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Set $S := \{g : \Delta^k \to \Delta \mid g \text{ agrees with f on } \{c_1, \dots, c_n\}\}.$ Set $g \sim h$ iff there is $\alpha \in Aut(\Delta)$ such that $g = \alpha h$.

Fact. S/ \sim is compact.

Proposition (new proof 2011!)

If Δ is ordered Ramsey homogeneous finite language, $f : \Delta^k \to \Delta$, and $c_1, \ldots, c_n \in \Delta$, then *f* generates a function which

- is canonical as a function from $(\Delta, c_1, \dots, c_n)^k$ to Δ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Set $S := \{g : \Delta^k \to \Delta \mid g \text{ agrees with f on } \{c_1, \dots, c_n\}\}.$ Set $g \sim h$ iff there is $\alpha \in \operatorname{Aut}(\Delta)$ such that $g = \alpha h$. **Fact.** S / \sim is compact. Let $\operatorname{Aut}(\Delta, c_1, \dots, c_n)^k$ act on S / \sim by $(\beta_1, \dots, \beta_k)([g(x_1, \dots, x_k)]_{\sim}) := [g(\beta_1(x_1), \dots, \beta_k(x_k))]_{\sim}$

Proposition (new proof 2011!)

If Δ is ordered Ramsey homogeneous finite language, $f : \Delta^k \to \Delta$, and $c_1, \ldots, c_n \in \Delta$, then *f* generates a function which

- is canonical as a function from $(\Delta, c_1, \dots, c_n)^k$ to Δ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Set $S := \{g : \Delta^k \to \Delta \mid g \text{ agrees with f on } \{c_1, \dots, c_n\}\}.$ Set $g \sim h$ iff there is $\alpha \in \text{Aut}(\Delta)$ such that $g = \alpha h$. **Fact.** S / \sim is compact. Let $\text{Aut}(\Delta, c_1, \dots, c_n)^k$ act on S / \sim by $(\beta_1, \dots, \beta_k)([g(x_1, \dots, x_k)]_{\sim}) := [g(\beta_1(x_1), \dots, \beta_k(x_k))]_{\sim}$ The continuous action has a fixed point $[h(x_1, \dots, x_k)]_{\sim}.$

Proposition (new proof 2011!)

If Δ is ordered Ramsey homogeneous finite language, $f : \Delta^k \to \Delta$, and $c_1, \ldots, c_n \in \Delta$, then *f* generates a function which

- is canonical as a function from $(\Delta, c_1, \dots, c_n)^k$ to Δ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Set $S := \{g : \Delta^k \to \Delta \mid g \text{ agrees with f on } \{c_1, \dots, c_n\}\}.$ Set $g \sim h$ iff there is $\alpha \in \text{Aut}(\Delta)$ such that $g = \alpha h$. **Fact.** S/ \sim is compact. Let $\text{Aut}(\Delta, c_1, \dots, c_n)^k$ act on S/ \sim by $(\beta_1, \dots, \beta_k)([g(x_1, \dots, x_k)]_{\sim}) := [g(\beta_1(x_1), \dots, \beta_k(x_k))]_{\sim}$ The continuous action has a fixed point $[h(x_1, \dots, x_k)]_{\sim}$. Any element of the fixed point is canonical.

The canonical approach

Michael Pinsker (Paris 7)

Theorem (Thomas '96)

Let $f : G \to G$ a function which does not locally look like an automorphism.

(that is, it violates at least one edge or a non-edge.)

Then *f* generates one of the following:

- A constant operation
- *e*_E
- *e*_N
- -
- SW_c

Theorem (Thomas '96)

Let $f : G \rightarrow G$ a function which does not locally look like an automorphism.

(that is, it violates at least one edge or a non-edge.)

Then *f* generates one of the following:

A constant operation *e_E e_N*sw_c

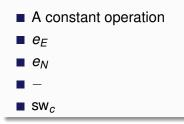
We thus know the *minimal closed monoids* containing Aut(G).

Theorem (Thomas '96)

Let $f : G \rightarrow G$ a function which does not locally look like an automorphism.

(that is, it violates at least one edge or a non-edge.)

Then *f* generates one of the following:



We thus know the *minimal closed monoids* containing Aut(G).

Generalized to minimal closed clones (14) by Bodirsky, P. 2010.

The canonical approach

Michael Pinsker (Paris 7)

Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure Δ . Then:

Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure $\Delta.$ Then:

Every minimal closed supermonoid of End(Γ) is generated by a canonical function after adding constants.

Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure $\Delta.$ Then:

- Every minimal closed supermonoid of End(Γ) is generated by a canonical function after adding constants.
- If Γ has a finite language, then there are finitely many minimal closed supermonoids of End(Γ).

Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure $\Delta.$ Then:

- Every minimal closed supermonoid of End(Γ) is generated by a canonical function after adding constants.
- If Γ has a finite language, then there are finitely many minimal closed supermonoids of End(Γ).
- Every closed supermonoid of End(Γ) contains a minimal closed supermonoid of End(Γ).

Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure $\Delta.$ Then:

- Every minimal closed supermonoid of End(Γ) is generated by a canonical function after adding constants.
- If Γ has a finite language, then there are finitely many minimal closed supermonoids of End(Γ).
- Every closed supermonoid of End(Γ) contains a minimal closed supermonoid of End(Γ).

Going to products of Γ : same theorem for $Pol(\Gamma)$ and clones.

Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure $\Delta.$ Then:

- Every minimal closed supermonoid of End(Γ) is generated by a canonical function after adding constants.
- If Γ has a finite language, then there are finitely many minimal closed supermonoids of End(Γ).
- Every closed supermonoid of End(Γ) contains a minimal closed supermonoid of End(Γ).

Going to products of Γ : same theorem for $Pol(\Gamma)$ and clones.

Non-trivial: arity bound!



Reducts of the random graph

The canonical approach

Michael Pinsker (Paris 7)

Lemma

Let $\mathfrak{G} \supseteq \operatorname{Aut}(G)$ be a closed group. Then \mathfrak{G} contains – or sw_c .

Lemma

Let $\mathfrak{G} \supseteq \operatorname{Aut}(G)$ be a closed group. Then \mathfrak{G} contains – or sw_c .

Lemma

Let $\mathfrak{G} \supseteq \langle \{-\} \cup \mathsf{Aut}(G) \rangle$ be a closed group. Then \mathfrak{G} contains sw_c .

Lemma

Let $\mathfrak{G} \supsetneq$ Aut(*G*) be a closed group. Then \mathfrak{G} contains – or sw_c .

Lemma

Let $\mathfrak{G} \supseteq \langle \{-\} \cup \operatorname{Aut}(G) \rangle$ be a closed group. Then \mathfrak{G} contains sw_c .

Etc.

Lemma

Let $\mathfrak{G} \supseteq \operatorname{Aut}(G)$ be a closed group. Then \mathfrak{G} contains – or sw_c .

Lemma

Let $\mathfrak{G} \supseteq \langle \{-\} \cup \operatorname{Aut}(G) \rangle$ be a closed group. Then \mathfrak{G} contains sw_c .

Etc.

Interesting: works without knowing the relational descriptions.



What we can do and what we cannot do

The canonical approach

Climb up the monoid and clone lattices

- Climb up the monoid and clone lattices
- Decide pp and ep interdefinability:

Climb up the monoid and clone lattices

Decide pp and ep interdefinability:

Theorem (Bodirsky, P., Tsankov '10)

Let Δ be

- ordered
- homogeneous
- Ramsey
- with finite language
- finitely bounded.

Then the following problem is decidable:

INPUT: Two finite language reducts Γ , Γ' of Δ . QUESTION: Are Γ , Γ' pp (ep-) interdefinable?

The canonical approach

Michael Pinsker (Paris 7)

We do not know how to:

We do not know how to:

Climb up the permutation group lattice

We do not know how to:

- Climb up the permutation group lattice
- Decide fo-interdefinability

We do not know how to:

- Climb up the permutation group lattice
- Decide fo-interdefinability

Open problems:

We do not know how to:

- Climb up the permutation group lattice
- Decide fo-interdefinability

Open problems:

Does Thomas' conjecture hold in the ordered Ramsey context?

We do not know how to:

- Climb up the permutation group lattice
- Decide fo-interdefinability

Open problems:

- Does Thomas' conjecture hold in the ordered Ramsey context?
- Is the ordered Ramsey context really a proper special case of the homogeneous in a finite language context?

We do not know how to:

- Climb up the permutation group lattice
- Decide fo-interdefinability

Open problems:

- Does Thomas' conjecture hold in the ordered Ramsey context?
- Is the ordered Ramsey context really a proper special case of the homogeneous in a finite language context?
- Is fo-interdefinability decidable?

Reducts of Ramsey structures

by Manuel Bodirsky and Michael Pinsker

Reducts of the random partial order

by Péter P. Pach, Michael Pinsker, András Pongrácz, Gabriella Pluhár, Csaba Szabó

