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Graph-SAT problems
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The Boolean satisfiability problem

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Theorem (Schaefer ’78)

1133 citations on google scholar

Boolean-SAT(Ψ) is either in P or NP-complete, for all Ψ.
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The Graph Satisfiability Problem

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)
Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Graph-SAT(Ψ) tractable?
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Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.
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Part II

Making the finite infinite

(Homogeneous structures)
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Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

universal, i.e., contains all finite (even countable) graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.
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Graph-SAT as CSP

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

The decision problem
whether or not a given primitive positive sentence holds in ΓΨ

is called the Constraint Satisfaction Problem of ΓΨ (or CSP(ΓΨ)).

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.
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Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of the random graph.

Note:
Could have used any universal graph!

But:
The random graph is the nicest universal graph.

Let’s study reducts of homogeneous structures!

Cooking Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of the random graph.

Note:
Could have used any universal graph!

But:
The random graph is the nicest universal graph.

Let’s study reducts of homogeneous structures!

Cooking Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of the random graph.

Note:
Could have used any universal graph!

But:
The random graph is the nicest universal graph.

Let’s study reducts of homogeneous structures!

Cooking Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of the random graph.

Note:
Could have used any universal graph!

But:
The random graph is the nicest universal graph.

Let’s study reducts of homogeneous structures!

Cooking Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of the random graph.

Note:
Could have used any universal graph!

But:
The random graph is the nicest universal graph.

Let’s study reducts of homogeneous structures!

Cooking Michael Pinsker (Paris 7)



Reducts of homogeneous structures

Let ∆ be a countable relational structure
in a finite language which is homogeneous, i.e.,

For all A,B ⊆ ∆ finite, for all isomorphisms i : A→ B
there exists α ∈ Aut(∆) extending i .

Definition
A reduct of ∆ is a structure with a first-order (fo) definition in ∆.

Problem
Classify the reducts of ∆.

We call ∆ the base structure.
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Classifications up to first-order interdefinability

One possibility of classification:

We can consider two reducts Γ, Γ′ of ∆ equivalent iff
Γ has a fo-definition from Γ′ and vice-versa.

We say that Γ and Γ′ are fo-interdefinable.

The relation “Γ is fo-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder
by the equivalence relation of fo-interdefinability,
and obtain a complete lattice.

Cooking Michael Pinsker (Paris 7)



Classifications up to first-order interdefinability

One possibility of classification:

We can consider two reducts Γ, Γ′ of ∆ equivalent iff
Γ has a fo-definition from Γ′ and vice-versa.

We say that Γ and Γ′ are fo-interdefinable.

The relation “Γ is fo-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder
by the equivalence relation of fo-interdefinability,
and obtain a complete lattice.

Cooking Michael Pinsker (Paris 7)



Classifications up to first-order interdefinability

One possibility of classification:

We can consider two reducts Γ, Γ′ of ∆ equivalent iff
Γ has a fo-definition from Γ′ and vice-versa.

We say that Γ and Γ′ are fo-interdefinable.

The relation “Γ is fo-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder
by the equivalence relation of fo-interdefinability,
and obtain a complete lattice.

Cooking Michael Pinsker (Paris 7)



Classifications up to first-order interdefinability

One possibility of classification:

We can consider two reducts Γ, Γ′ of ∆ equivalent iff
Γ has a fo-definition from Γ′ and vice-versa.

We say that Γ and Γ′ are fo-interdefinable.

The relation “Γ is fo-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder
by the equivalence relation of fo-interdefinability,
and obtain a complete lattice.

Cooking Michael Pinsker (Paris 7)



Classifications up to first-order interdefinability

One possibility of classification:

We can consider two reducts Γ, Γ′ of ∆ equivalent iff
Γ has a fo-definition from Γ′ and vice-versa.

We say that Γ and Γ′ are fo-interdefinable.

The relation “Γ is fo-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder
by the equivalence relation of fo-interdefinability,
and obtain a complete lattice.

Cooking Michael Pinsker (Paris 7)



Classifications up to pp interdefinability

Another possibility of classification:

A formula is primitive positive (pp) iff
it is of the form ∃w1, . . . ,wm.

∧
i φi , for atomic φi .

Can consider reducts Γ, Γ′ equivalent iff
Γ has a pp-definition from Γ′ and vice-versa.
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pp-interdefinability and obtain a complete lattice.
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Comparing the classifications

Observe:

Primitive positive (pp) interdefinability is finer than
first order (fo) interdefinability.

In fact:

The lattice corresponding to fo-definability is a factor of
the lattice corresponding to pp-definability.
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What is interesting?

Which of the two lattices is interesting?

Model theorists: First order!

Complexity theorists: Primitive positive!

Explanation:
Every reduct defines a computational problem
(Constraint Satisfaction Problem).
Reducts which are pp-interdefinable have
polynomial time-equivalent computational complexity.

This talk: Method for pp. Helps also for fo.
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Why is ∆ homogeneous in a finite language?

Question makes sense for arbitrary base structure ∆.

But homogeneity + finite language imply:

fo-closed reducts correspond to closed groups ⊇ Aut(∆);

pp-closed reducts correspond to closed clones ⊇ Aut(∆).

For our method, we will need even “more” than homogeneity in a finite
language:

The Ramsey property
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Example: The dense linear order

Denote by (Q;<) be the order of the rationals, and set

betw(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < y < x}
cycl(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < x < y

or y < z < x}
sep(x , y , z,w) :={(x , y , z,w) ∈ Q4 : . . .}

Theorem (Cameron ’76)

Let Γ be a reduct of ∆ := (Q;<). Then:

1 Γ is first-order interdefinable with (Q;<), or
2 Γ is first-order interdefinable with (Q; betw), or
3 Γ is first-order interdefinable with (Q; cycl), or
4 Γ is first-order interdefinable with (Q; sep), or
5 Γ is first-order interdefinable with (Q; =).
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Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)

Let Γ be a reduct of ∆ := G = (V ; E). Then:

1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

Cooking Michael Pinsker (Paris 7)



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)

Let Γ be a reduct of ∆ := G = (V ; E). Then:

1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

Cooking Michael Pinsker (Paris 7)



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)

Let Γ be a reduct of ∆ := G = (V ; E). Then:

1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

Cooking Michael Pinsker (Paris 7)



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)

Let Γ be a reduct of ∆ := G = (V ; E). Then:
1 Γ is first-order interdefinable with (V ; E), or

2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

Cooking Michael Pinsker (Paris 7)



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)

Let Γ be a reduct of ∆ := G = (V ; E). Then:
1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or

3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

Cooking Michael Pinsker (Paris 7)



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)

Let Γ be a reduct of ∆ := G = (V ; E). Then:
1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or

4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

Cooking Michael Pinsker (Paris 7)



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)

Let Γ be a reduct of ∆ := G = (V ; E). Then:
1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or

5 Γ is first-order interdefinable with (V ; =).

Cooking Michael Pinsker (Paris 7)



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)

Let Γ be a reduct of ∆ := G = (V ; E). Then:
1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

Cooking Michael Pinsker (Paris 7)



Further examples

Theorem (Thomas ’91)
The homogeneous Kn-free graph has 2 reducts up to
fo-interdefinability.

Theorem (Thomas ’96)

The homogeneous k -graph has 2k + 1 reducts up to fo-interdefinability.

Theorem (Junker, Ziegler ’08)

(Q;<,0) has 116 reducts up to fo-interdefinability.
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Very recent examples

Theorem (Pách, MP, Pluhár, Pongrácz, Szabó ’11)

The random partial order has 5 reducts up to fo-interdefinability.

Theorem (Pongrácz ’11)

The random Kn-free graph plus constant has 13 reducts if n = 3, and
16 reducts if n ≥ 4 up to fo-interdefinability.

Depressing fact (Horváth, Pongrácz, MP ’11)
The random graph with a constant has too many reducts up to
fo-interdefinability.
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Thomas’ conjecture

Conjecture (Thomas ’91)

Let ∆ be homogeneous in a finite language.

Then ∆ has finitely many reducts up to fo-interdefinability.
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pp classifications

Theorem (Bodirsky, Chen, MP ’08)

For the structure ∆ := (X ; =), there exist:

1 reduct up to first order interdefinability
2ℵ0 reducts up to primitive positive interdefinability
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Permutation groups - fo

Theorem (Ryll-Nardzewski)
Let ∆ be homogeneous, finite language.

The mapping

Γ 7→ Aut(Γ)

is a one-to-one correspondence between
the first-order closed reducts of ∆ and
the closed permutation groups containing Aut(∆).

first order closed = contains all fo-definable relations

group called closed iff it is closed in the convergence topology.
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Clones - pp

Theorem (Bodirsky, Nešetřil ’03)
Let ∆ be homogeneous, finite language. Then

Γ 7→ Pol(Γ)

is a one-to-one correspondence between
the primitive positive closed reducts of ∆ and
the closed clones containing Aut(∆).

A clone is a set of finitary operations on ∆ which
contains all projections πn

i (x1, . . . , xn) = xi , and
is closed under composition.

Pol(Γ) is the clone of all homomorphisms from finite powers of Γ to Γ.

A clone C is closed if for each n ≥ 1, the set of n-ary operations in C is
a closed subset of the Baire space ∆∆n

.
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Groups and Clones

For homogeneous ∆ in finite language:

Reducts up to fo-interdefinability↔

closed permutation groups ⊇ Aut(∆);

Reducts up to pp-interdefinability↔

closed clones ⊇ Aut(∆).

Larger reducts→ harder CSP
Γ ≤pp Γ′ → CSP(Γ)≤Poltime CSP(Γ′)

Larger clones→ easier CSP
Pol(Γ) ⊆ Pol(Γ′) → CSP(Γ′)≤Poltime CSP(Γ)
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Reducts up to fo-interdefinability↔

closed permutation groups ⊇ Aut(∆);

Reducts up to pp-interdefinability↔

closed clones ⊇ Aut(∆).

Larger reducts→ harder CSP
Γ ≤pp Γ′ → CSP(Γ)≤Poltime CSP(Γ′)

Larger clones→ easier CSP
Pol(Γ) ⊆ Pol(Γ′) → CSP(Γ′)≤Poltime CSP(Γ)

Cooking Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.

Let Ḡ be the graph that arises by switching edges and non-edges.
Let − : V → V be an isomorphism between G and Ḡ.
For c ∈ V , let Gc be the graph that arises by switching
all edges and non-edges containing c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)

The closed groups containing Aut(G) are the following:

1 Aut(G)

2 〈{−} ∪ Aut(G)〉
3 〈{swc} ∪ Aut(G)〉
4 〈{−, swc} ∪ Aut(G)〉
5 The full symmetric group SV .
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For c ∈ V , let Gc be the graph that arises by switching
all edges and non-edges containing c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)

The closed groups containing Aut(G) are the following:

1 Aut(G)

2 〈{−} ∪ Aut(G)〉
3 〈{swc} ∪ Aut(G)〉
4 〈{−, swc} ∪ Aut(G)〉
5 The full symmetric group SV .

Cooking Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.
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Let Ḡ be the graph that arises by switching edges and non-edges.
Let − : V → V be an isomorphism between G and Ḡ.
For c ∈ V , let Gc be the graph that arises by switching
all edges and non-edges containing c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)

The closed groups containing Aut(G) are the following:
1 Aut(G)

2 〈{−} ∪ Aut(G)〉
3 〈{swc} ∪ Aut(G)〉

4 〈{−, swc} ∪ Aut(G)〉
5 The full symmetric group SV .

Cooking Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.
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Part III

Making the infinite finite

(Ramsey theory)
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How to classify all reducts up to . . .-interdefinability?

Climb up the lattice!
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Canonical functions on the Random graph

Let G = (V ; E) be the random graph.

Definition. f : G→ G is canonical iff

for all x , y ,u, v ∈ V ,
if (x , y) and (u, v) have the same type in G,
then (f (x), f (y)) and (f (u), f (v)) have the same type in G.

Examples.

Automorphisms / Embeddings are canonical.

Constant functions are canonical.

Homomorphisms are not necessarily canonical.

− is canonical.

eE and eN are canonical.
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Finding canonical behaviour

The class of finite graphs has the following Ramsey property:

For all graphs H
there exists a graph S such that
if the edges of S are colored with 3 colors,
then there is a copy of H in S
on which the coloring is constant.

Given f : G→ G, color the edges of G
according to the type of their image: 3 possibilities.

Same for non-edges.

Conclusion: Every finite graph has a copy in G on which f is
canonical.
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Patterns in functions on the random graph

A canonical function f : G→ G induces a function
f ′ : {E ,N,=} → {E ,N,=} (i.e., a function on the 2-types of G).

Converse does not hold.

The following are all possibilities of canonical functions:

Turning everything into edges (eE )
turning everything into non-edges (eN)

behaving like −
being constant
behaving like an automorphism.

Given any f : G→ G, we know that one of these behaviors
appears for arbitrary finite subgraphs of G.

Problem: Keeping some information on f when canonizing.
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Adding constants

Let f : G→ G.
If f violates a relation R, then there are c1, . . . , cn ∈ V witnessing this.

Fact.
The structure (V ; E , c1, . . . , cn) has that Ramsey property, too.

Consider f as a function from (V ; E , c1, . . . , cn) to (V ; E).
Again, f is canonical on arbitrarily large finite substructures of
(V ; E , c1, . . . , cn).
We can assume that it shows the same behavior on all these
substructures.

By topological closure, f generates a function which:

behaves like f on {c1, . . . , cn}, and
is canonical as a function from (V ; E , c1, . . . , cn) to (V ; E).
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The minimal clones on the random graph

Theorem (Bodirsky, MP ’10)

Let f be a finitary operation on G which “is” not an automorphism.
Then f generates one of the following:

A constant operation
eE

eN

−
swc

One of 9 canonical binary injections.

We thus know the minimal closed clones containing Aut(G).

More involved argument: Extend G by a random dense linear order.
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Ramsey classes

Let S,H,P be structures in the same signature τ .

S → (H)P

means:

For any coloring of the copies of P in S with 2 colors
there exists a copy of H in S
such that the copies of P in H all have the same color.

Definition
A class C of τ -structures is called a Ramsey class iff
for all H,P ∈ C there exists S in C such that S → (H)P .
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Canonical functions on Ramsey structures

Let ∆ now be an arbitrary structure.

Definition
f : ∆→ ∆ is canonical iff
for all tuples (x1, . . . , xn), (y1, . . . , yn) of the same type
(f (x1), . . . , f (xn)) and (f (y1), . . . , f (yn)) have the same type too.

Observation. If ∆ is
Ramsey
homogeneous in a finite language
(ordered),

then all finite substructures of ∆ have a copy in ∆
on which f is canonical.

Thus: Any f : ∆→ ∆ generates a canonical function, but it could be
the identity.
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What we would like to do...

We would like to fix c1, . . . , cn ∈ ∆ witnessing
that f does something interesting (e.g., violate a certain relation),

and have canonical behavior of f as a function
from (∆, c1, . . . , cn) to ∆.

Why don’t you just do it?
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Adding constants to Ramsey structures

Problem
If ∆ is Ramsey, is (∆, c1, . . . , cn) still Ramsey?

Theorem (Kechris, Pestov, Todorcevic ’05)
An ordered homogeneous structure is Ramsey iff
its automorphism group is extremely amenable, i.e.,
it has a fixed point whenever it acts on a compact Hausdorff space.

Observation
Every open subgroup of an extremely amenable group
is extremely amenable.

Corollary

If ∆ is ordered, homogeneous, and Ramsey, then so is (∆, c1, . . . , cn).
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Canonizing functions on Ramsey structures

Proposition

(new proof 2011!)

If ∆ is ordered Ramsey homogeneous finite language, f : ∆k → ∆,
and c1, . . . , cn ∈ ∆, then f generates a function which

is canonical as a function from (∆, c1, . . . , cn)k to ∆

behaves like f on {c1, . . . , cn}.

Set S := {g : ∆k → ∆ | g agrees with f on {c1, . . . , cn}}.

Set g ∼ h iff there is α ∈ Aut(∆) such that g = αh.

Fact. S/ ∼ is compact.

Let Aut(∆, c1, . . . , cn)k act on S/ ∼ by

(β1, . . . , βk )([g(x1, . . . , xk )]∼) := [g(β1(x1), . . . , βk (xk ))]∼

The continuous action has a fixed point [h(x1, . . . , xk )]∼.

Any element of the fixed point is canonical. �
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Minimal clones above Ramsey structures

Theorem (Bodirsky, MP, Tsankov ’10)
Let Γ be a reduct of a finite language homogeneous ordered Ramsey
structure ∆. Then:

Every minimal closed superclone of Pol(Γ) is generated by such a
canonical function.
If Γ has a finite language, then there are finitely many minimal
closed superclones of Pol(Γ).
(Arity bound!)
Every closed superclone of Pol(Γ) contains a minimal closed
superclone of Pol(Γ).
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Part IV

The Graph-SAT dichotomy
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The Graph Satisfiability Problem

Let Ψ be a finite set of graph formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Theorem
Graph-SAT(Ψ) is either in P or NP-complete, for all Ψ.
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The Graph-SAT dichotomy visualized
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Theorem
The following 17 distinct clones are precisely the minimal tractable closed clones
containing Aut(G):

1 The clone generated by a constant operation.

2 The clone generated by a balanced binary injection of type max.

3 The clone generated by a balanced binary injection of type min.

4 The clone generated by an E-dominated binary injection of type max.

5 The clone generated by an N-dominated binary injection of type min.

6 The clone generated by a function of type majority which is hyperplanely
balanced and of type projection.

7 The clone generated by a function of type majority which is hyperplanely
E-constant.

8 The clone generated by a function of type majority which is hyperplanely
N-constant.

9 The clone generated by a function of type majority which is hyperplanely of type
max and E-dominated.

10 The clone generated by a function of type majority which is hyperplanely of type
min and N-dominated.

11 The clone generated by a function of type minority which is hyperplanely
balanced and of type projection.

12 The clone generated by a function of type minority which is hyperplanely of type
projection and E-dominated.

13 The clone generated by a function of type minority which is hyperplanely of type
projection and N-dominated.

14 The clone generated by a function of type minority which is hyperplanely of type
xnor and E-dominated.

15 The clone generated by a function of type minority which is hyperplanely of type
xor and N-dominated.

16 The clone generated by a binary injection which is E-constant.

17 The clone generated by a binary injection which is N-constant.
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The Meta Problem

Meta-Problem of Graph-SAT(Ψ)
INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

Theorem (Bodirsky, MP ’10)
The Meta-Problem of Graph-SAT(Ψ) is decidable.
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Part V

The future
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Other homogeneous structures

Graph-SAT(Ψ): Is there a finite graph such that... (constraints)

Temp-SAT(Ψ): Is there a linear order such that...

The classes of finite graphs and linear orders are
amalgamation classes.

A

D

CB
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Amalgamation classes

Further amalgamation classes.

Partial orders
Lattices
Distributive lattices
Metric spaces with rational distances
Tournaments

Homogeneous digraphs classified by Cherlin.
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