
Cooking

with model theory, universal algebra and Ramsey theory

in the complexity theory kitchen

Michael Pinsker

Université Denis Diderot - Paris 7 (60%)
Technische Universität Wien (30%)

Hebrew University of Jerusalem (10%)

Yeshiva University, October 2011

Cooking Michael Pinsker (Paris 7)



Outline

Part I
Graph-SAT problems

Part II
Making the finite infinite
Homogeneous structures

Part III
Making the infinite finite
Ramsey theory

Part IV
The Graph-SAT dichotomy

Part V
The future

Cooking Michael Pinsker (Paris 7)



Cooking Michael Pinsker (Paris 7)



Part I

Graph-SAT problems

Cooking Michael Pinsker (Paris 7)



The Boolean satisfiability problem

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Theorem (Schaefer ’78)

1133 citations on google scholar

Boolean-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Cooking Michael Pinsker (Paris 7)



The Boolean satisfiability problem

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Theorem (Schaefer ’78)

1133 citations on google scholar

Boolean-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Cooking Michael Pinsker (Paris 7)



The Boolean satisfiability problem

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Theorem (Schaefer ’78)

1133 citations on google scholar

Boolean-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Cooking Michael Pinsker (Paris 7)



The Boolean satisfiability problem

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Theorem (Schaefer ’78)

1133 citations on google scholar

Boolean-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Cooking Michael Pinsker (Paris 7)



The Boolean satisfiability problem

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Theorem (Schaefer ’78)

1133 citations on google scholar

Boolean-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Cooking Michael Pinsker (Paris 7)



The Boolean satisfiability problem

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Theorem (Schaefer ’78) 1133 citations on google scholar

Boolean-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Cooking Michael Pinsker (Paris 7)



The Graph Satisfiability Problem

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)
Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Graph-SAT(Ψ) tractable?

Cooking Michael Pinsker (Paris 7)



The Graph Satisfiability Problem

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)
Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Graph-SAT(Ψ) tractable?

Cooking Michael Pinsker (Paris 7)



The Graph Satisfiability Problem

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)
Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Graph-SAT(Ψ) tractable?

Cooking Michael Pinsker (Paris 7)



The Graph Satisfiability Problem

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)
Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Graph-SAT(Ψ) tractable?

Cooking Michael Pinsker (Paris 7)



The Graph Satisfiability Problem

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)
Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Graph-SAT(Ψ) tractable?

Cooking Michael Pinsker (Paris 7)



Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.

Cooking Michael Pinsker (Paris 7)



Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.

Cooking Michael Pinsker (Paris 7)



Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.

Cooking Michael Pinsker (Paris 7)



Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.

Cooking Michael Pinsker (Paris 7)



Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.

Cooking Michael Pinsker (Paris 7)



Cooking Michael Pinsker (Paris 7)



Part II

Making the finite infinite

(Homogeneous structures)

Cooking Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

universal, i.e., contains all finite (even countable) graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Cooking Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

universal, i.e., contains all finite (even countable) graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Cooking Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

universal, i.e., contains all finite (even countable) graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Cooking Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

universal, i.e., contains all finite (even countable) graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Cooking Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

universal, i.e., contains all finite (even countable) graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Cooking Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

universal, i.e., contains all finite (even countable) graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Cooking Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

universal, i.e., contains all finite (even countable) graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Cooking Michael Pinsker (Paris 7)



Graph-SAT as CSP

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

The decision problem
whether or not a given primitive positive sentence holds in ΓΨ

is called the Constraint Satisfaction Problem of ΓΨ (or CSP(ΓΨ)).

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.

Cooking Michael Pinsker (Paris 7)



Graph-SAT as CSP

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

The decision problem
whether or not a given primitive positive sentence holds in ΓΨ

is called the Constraint Satisfaction Problem of ΓΨ (or CSP(ΓΨ)).

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.

Cooking Michael Pinsker (Paris 7)



Graph-SAT as CSP

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

The decision problem
whether or not a given primitive positive sentence holds in ΓΨ

is called the Constraint Satisfaction Problem of ΓΨ (or CSP(ΓΨ)).

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.

Cooking Michael Pinsker (Paris 7)



Graph-SAT as CSP

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

The decision problem
whether or not a given primitive positive sentence holds in ΓΨ

is called the Constraint Satisfaction Problem of ΓΨ (or CSP(ΓΨ)).

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.

Cooking Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of the random graph.

Note:
Could have used any universal graph!

But:
The random graph is the nicest universal graph.

Let’s study reducts of homogeneous structures!

Cooking Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of the random graph.

Note:
Could have used any universal graph!

But:
The random graph is the nicest universal graph.

Let’s study reducts of homogeneous structures!

Cooking Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of the random graph.

Note:
Could have used any universal graph!

But:
The random graph is the nicest universal graph.

Let’s study reducts of homogeneous structures!

Cooking Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of the random graph.

Note:
Could have used any universal graph!

But:
The random graph is the nicest universal graph.

Let’s study reducts of homogeneous structures!

Cooking Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of the random graph.

Note:
Could have used any universal graph!

But:
The random graph is the nicest universal graph.

Let’s study reducts of homogeneous structures!

Cooking Michael Pinsker (Paris 7)



Reducts of homogeneous structures

Let ∆ be a countable relational structure
in a finite language which is homogeneous, i.e.,

For all A,B ⊆ ∆ finite, for all isomorphisms i : A→ B
there exists α ∈ Aut(∆) extending i .

Definition
A reduct of ∆ is a structure with a first-order (fo) definition in ∆.

Problem
Classify the reducts of ∆.

We call ∆ the base structure.

Cooking Michael Pinsker (Paris 7)



Reducts of homogeneous structures

Let ∆ be a countable relational structure
in a finite language which is homogeneous, i.e.,

For all A,B ⊆ ∆ finite, for all isomorphisms i : A→ B
there exists α ∈ Aut(∆) extending i .

Definition
A reduct of ∆ is a structure with a first-order (fo) definition in ∆.

Problem
Classify the reducts of ∆.

We call ∆ the base structure.

Cooking Michael Pinsker (Paris 7)



Reducts of homogeneous structures

Let ∆ be a countable relational structure
in a finite language which is homogeneous, i.e.,

For all A,B ⊆ ∆ finite, for all isomorphisms i : A→ B
there exists α ∈ Aut(∆) extending i .

Definition
A reduct of ∆ is a structure with a first-order (fo) definition in ∆.

Problem
Classify the reducts of ∆.

We call ∆ the base structure.

Cooking Michael Pinsker (Paris 7)



Reducts of homogeneous structures

Let ∆ be a countable relational structure
in a finite language which is homogeneous, i.e.,

For all A,B ⊆ ∆ finite, for all isomorphisms i : A→ B
there exists α ∈ Aut(∆) extending i .

Definition
A reduct of ∆ is a structure with a first-order (fo) definition in ∆.

Problem
Classify the reducts of ∆.

We call ∆ the base structure.

Cooking Michael Pinsker (Paris 7)



Classifications up to first-order interdefinability

One possibility of classification:

We can consider two reducts Γ, Γ′ of ∆ equivalent iff
Γ has a fo-definition from Γ′ and vice-versa.

We say that Γ and Γ′ are fo-interdefinable.

The relation “Γ is fo-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder
by the equivalence relation of fo-interdefinability,
and obtain a complete lattice.

Cooking Michael Pinsker (Paris 7)



Classifications up to first-order interdefinability

One possibility of classification:

We can consider two reducts Γ, Γ′ of ∆ equivalent iff
Γ has a fo-definition from Γ′ and vice-versa.

We say that Γ and Γ′ are fo-interdefinable.

The relation “Γ is fo-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder
by the equivalence relation of fo-interdefinability,
and obtain a complete lattice.

Cooking Michael Pinsker (Paris 7)



Classifications up to first-order interdefinability

One possibility of classification:

We can consider two reducts Γ, Γ′ of ∆ equivalent iff
Γ has a fo-definition from Γ′ and vice-versa.

We say that Γ and Γ′ are fo-interdefinable.

The relation “Γ is fo-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder
by the equivalence relation of fo-interdefinability,
and obtain a complete lattice.

Cooking Michael Pinsker (Paris 7)



Classifications up to first-order interdefinability

One possibility of classification:

We can consider two reducts Γ, Γ′ of ∆ equivalent iff
Γ has a fo-definition from Γ′ and vice-versa.

We say that Γ and Γ′ are fo-interdefinable.

The relation “Γ is fo-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder
by the equivalence relation of fo-interdefinability,
and obtain a complete lattice.

Cooking Michael Pinsker (Paris 7)



Classifications up to first-order interdefinability

One possibility of classification:

We can consider two reducts Γ, Γ′ of ∆ equivalent iff
Γ has a fo-definition from Γ′ and vice-versa.

We say that Γ and Γ′ are fo-interdefinable.

The relation “Γ is fo-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder
by the equivalence relation of fo-interdefinability,
and obtain a complete lattice.

Cooking Michael Pinsker (Paris 7)



Classifications up to pp interdefinability

Another possibility of classification:

A formula is primitive positive (pp) iff
it is of the form ∃w1, . . . ,wm.

∧
i φi , for atomic φi .

Can consider reducts Γ, Γ′ equivalent iff
Γ has a pp-definition from Γ′ and vice-versa.

The relation “Γ is pp-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder by the equivalence relation of
pp-interdefinability and obtain a complete lattice.

Cooking Michael Pinsker (Paris 7)



Classifications up to pp interdefinability

Another possibility of classification:

A formula is primitive positive (pp) iff
it is of the form ∃w1, . . . ,wm.

∧
i φi , for atomic φi .

Can consider reducts Γ, Γ′ equivalent iff
Γ has a pp-definition from Γ′ and vice-versa.

The relation “Γ is pp-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder by the equivalence relation of
pp-interdefinability and obtain a complete lattice.

Cooking Michael Pinsker (Paris 7)



Classifications up to pp interdefinability

Another possibility of classification:

A formula is primitive positive (pp) iff
it is of the form ∃w1, . . . ,wm.

∧
i φi , for atomic φi .

Can consider reducts Γ, Γ′ equivalent iff
Γ has a pp-definition from Γ′ and vice-versa.

The relation “Γ is pp-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder by the equivalence relation of
pp-interdefinability and obtain a complete lattice.

Cooking Michael Pinsker (Paris 7)



Classifications up to pp interdefinability

Another possibility of classification:

A formula is primitive positive (pp) iff
it is of the form ∃w1, . . . ,wm.

∧
i φi , for atomic φi .

Can consider reducts Γ, Γ′ equivalent iff
Γ has a pp-definition from Γ′ and vice-versa.

The relation “Γ is pp-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder by the equivalence relation of
pp-interdefinability and obtain a complete lattice.

Cooking Michael Pinsker (Paris 7)



Classifications up to pp interdefinability

Another possibility of classification:

A formula is primitive positive (pp) iff
it is of the form ∃w1, . . . ,wm.

∧
i φi , for atomic φi .

Can consider reducts Γ, Γ′ equivalent iff
Γ has a pp-definition from Γ′ and vice-versa.

The relation “Γ is pp-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder by the equivalence relation of
pp-interdefinability and obtain a complete lattice.

Cooking Michael Pinsker (Paris 7)



Comparing the classifications

Observe:

Primitive positive (pp) interdefinability is finer than
first order (fo) interdefinability.

In fact:

The lattice corresponding to fo-definability is a factor of
the lattice corresponding to pp-definability.

Cooking Michael Pinsker (Paris 7)



Comparing the classifications

Observe:

Primitive positive (pp) interdefinability is finer than
first order (fo) interdefinability.

In fact:

The lattice corresponding to fo-definability is a factor of
the lattice corresponding to pp-definability.

Cooking Michael Pinsker (Paris 7)



Comparing the classifications

Observe:

Primitive positive (pp) interdefinability is finer than
first order (fo) interdefinability.

In fact:

The lattice corresponding to fo-definability is a factor of
the lattice corresponding to pp-definability.

Cooking Michael Pinsker (Paris 7)



What is interesting?

Which of the two lattices is interesting?

Model theorists: First order!

Complexity theorists: Primitive positive!

Explanation:
Every reduct defines a computational problem
(Constraint Satisfaction Problem).
Reducts which are pp-interdefinable have
polynomial time-equivalent computational complexity.

This talk: Method for pp. Helps also for fo.

Cooking Michael Pinsker (Paris 7)



What is interesting?

Which of the two lattices is interesting?

Model theorists: First order!

Complexity theorists: Primitive positive!

Explanation:
Every reduct defines a computational problem
(Constraint Satisfaction Problem).
Reducts which are pp-interdefinable have
polynomial time-equivalent computational complexity.

This talk: Method for pp. Helps also for fo.

Cooking Michael Pinsker (Paris 7)



What is interesting?

Which of the two lattices is interesting?

Model theorists: First order!

Complexity theorists: Primitive positive!

Explanation:
Every reduct defines a computational problem
(Constraint Satisfaction Problem).
Reducts which are pp-interdefinable have
polynomial time-equivalent computational complexity.

This talk: Method for pp. Helps also for fo.

Cooking Michael Pinsker (Paris 7)



What is interesting?

Which of the two lattices is interesting?

Model theorists: First order!

Complexity theorists: Primitive positive!

Explanation:
Every reduct defines a computational problem
(Constraint Satisfaction Problem).
Reducts which are pp-interdefinable have
polynomial time-equivalent computational complexity.

This talk: Method for pp. Helps also for fo.

Cooking Michael Pinsker (Paris 7)



What is interesting?

Which of the two lattices is interesting?

Model theorists: First order!

Complexity theorists: Primitive positive!

Explanation:
Every reduct defines a computational problem
(Constraint Satisfaction Problem).
Reducts which are pp-interdefinable have
polynomial time-equivalent computational complexity.

This talk: Method for pp. Helps also for fo.

Cooking Michael Pinsker (Paris 7)



What is interesting?

Which of the two lattices is interesting?

Model theorists: First order!

Complexity theorists: Primitive positive!

Explanation:
Every reduct defines a computational problem
(Constraint Satisfaction Problem).
Reducts which are pp-interdefinable have
polynomial time-equivalent computational complexity.

This talk: Method for pp. Helps also for fo.

Cooking Michael Pinsker (Paris 7)



Why is ∆ homogeneous in a finite language?

Question makes sense for arbitrary base structure ∆.

But homogeneity + finite language imply:

fo-closed reducts correspond to closed groups ⊇ Aut(∆);

pp-closed reducts correspond to closed clones ⊇ Aut(∆).

For our method, we will need even “more” than homogeneity in a finite
language:

The Ramsey property

Cooking Michael Pinsker (Paris 7)



Why is ∆ homogeneous in a finite language?

Question makes sense for arbitrary base structure ∆.

But homogeneity + finite language imply:

fo-closed reducts correspond to closed groups ⊇ Aut(∆);

pp-closed reducts correspond to closed clones ⊇ Aut(∆).

For our method, we will need even “more” than homogeneity in a finite
language:

The Ramsey property

Cooking Michael Pinsker (Paris 7)



Why is ∆ homogeneous in a finite language?

Question makes sense for arbitrary base structure ∆.

But homogeneity + finite language imply:

fo-closed reducts correspond to closed groups ⊇ Aut(∆);

pp-closed reducts correspond to closed clones ⊇ Aut(∆).

For our method, we will need even “more” than homogeneity in a finite
language:

The Ramsey property

Cooking Michael Pinsker (Paris 7)



Why is ∆ homogeneous in a finite language?

Question makes sense for arbitrary base structure ∆.

But homogeneity + finite language imply:

fo-closed reducts correspond to closed groups ⊇ Aut(∆);

pp-closed reducts correspond to closed clones ⊇ Aut(∆).

For our method, we will need even “more” than homogeneity in a finite
language:

The Ramsey property

Cooking Michael Pinsker (Paris 7)



Why is ∆ homogeneous in a finite language?

Question makes sense for arbitrary base structure ∆.

But homogeneity + finite language imply:

fo-closed reducts correspond to closed groups ⊇ Aut(∆);

pp-closed reducts correspond to closed clones ⊇ Aut(∆).

For our method, we will need even “more” than homogeneity in a finite
language:

The Ramsey property

Cooking Michael Pinsker (Paris 7)



Example: The dense linear order

Denote by (Q;<) be the order of the rationals, and set

betw(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < y < x}
cycl(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < x < y

or y < z < x}
sep(x , y , z,w) :={(x , y , z,w) ∈ Q4 : . . .}

Theorem (Cameron ’76)

Let Γ be a reduct of ∆ := (Q;<). Then:

1 Γ is first-order interdefinable with (Q;<), or
2 Γ is first-order interdefinable with (Q; betw), or
3 Γ is first-order interdefinable with (Q; cycl), or
4 Γ is first-order interdefinable with (Q; sep), or
5 Γ is first-order interdefinable with (Q; =).

Cooking Michael Pinsker (Paris 7)



Example: The dense linear order

Denote by (Q;<) be the order of the rationals, and set

betw(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < y < x}
cycl(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < x < y

or y < z < x}
sep(x , y , z,w) :={(x , y , z,w) ∈ Q4 : . . .}

Theorem (Cameron ’76)

Let Γ be a reduct of ∆ := (Q;<). Then:

1 Γ is first-order interdefinable with (Q;<), or
2 Γ is first-order interdefinable with (Q; betw), or
3 Γ is first-order interdefinable with (Q; cycl), or
4 Γ is first-order interdefinable with (Q; sep), or
5 Γ is first-order interdefinable with (Q; =).

Cooking Michael Pinsker (Paris 7)



Example: The dense linear order

Denote by (Q;<) be the order of the rationals, and set

betw(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < y < x}
cycl(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < x < y

or y < z < x}
sep(x , y , z,w) :={(x , y , z,w) ∈ Q4 : . . .}

Theorem (Cameron ’76)

Let Γ be a reduct of ∆ := (Q;<). Then:

1 Γ is first-order interdefinable with (Q;<), or
2 Γ is first-order interdefinable with (Q; betw), or
3 Γ is first-order interdefinable with (Q; cycl), or
4 Γ is first-order interdefinable with (Q; sep), or
5 Γ is first-order interdefinable with (Q; =).

Cooking Michael Pinsker (Paris 7)



Example: The dense linear order

Denote by (Q;<) be the order of the rationals, and set

betw(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < y < x}
cycl(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < x < y

or y < z < x}
sep(x , y , z,w) :={(x , y , z,w) ∈ Q4 : . . .}

Theorem (Cameron ’76)

Let Γ be a reduct of ∆ := (Q;<). Then:
1 Γ is first-order interdefinable with (Q;<), or

2 Γ is first-order interdefinable with (Q; betw), or
3 Γ is first-order interdefinable with (Q; cycl), or
4 Γ is first-order interdefinable with (Q; sep), or
5 Γ is first-order interdefinable with (Q; =).

Cooking Michael Pinsker (Paris 7)



Example: The dense linear order

Denote by (Q;<) be the order of the rationals, and set

betw(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < y < x}
cycl(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < x < y

or y < z < x}
sep(x , y , z,w) :={(x , y , z,w) ∈ Q4 : . . .}

Theorem (Cameron ’76)

Let Γ be a reduct of ∆ := (Q;<). Then:
1 Γ is first-order interdefinable with (Q;<), or
2 Γ is first-order interdefinable with (Q; betw), or

3 Γ is first-order interdefinable with (Q; cycl), or
4 Γ is first-order interdefinable with (Q; sep), or
5 Γ is first-order interdefinable with (Q; =).

Cooking Michael Pinsker (Paris 7)



Example: The dense linear order

Denote by (Q;<) be the order of the rationals, and set

betw(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < y < x}
cycl(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < x < y

or y < z < x}
sep(x , y , z,w) :={(x , y , z,w) ∈ Q4 : . . .}

Theorem (Cameron ’76)

Let Γ be a reduct of ∆ := (Q;<). Then:
1 Γ is first-order interdefinable with (Q;<), or
2 Γ is first-order interdefinable with (Q; betw), or
3 Γ is first-order interdefinable with (Q; cycl), or

4 Γ is first-order interdefinable with (Q; sep), or
5 Γ is first-order interdefinable with (Q; =).

Cooking Michael Pinsker (Paris 7)



Example: The dense linear order

Denote by (Q;<) be the order of the rationals, and set

betw(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < y < x}
cycl(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < x < y

or y < z < x}
sep(x , y , z,w) :={(x , y , z,w) ∈ Q4 : . . .}

Theorem (Cameron ’76)

Let Γ be a reduct of ∆ := (Q;<). Then:
1 Γ is first-order interdefinable with (Q;<), or
2 Γ is first-order interdefinable with (Q; betw), or
3 Γ is first-order interdefinable with (Q; cycl), or
4 Γ is first-order interdefinable with (Q; sep), or

5 Γ is first-order interdefinable with (Q; =).

Cooking Michael Pinsker (Paris 7)



Example: The dense linear order

Denote by (Q;<) be the order of the rationals, and set

betw(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < y < x}
cycl(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < x < y

or y < z < x}
sep(x , y , z,w) :={(x , y , z,w) ∈ Q4 : . . .}

Theorem (Cameron ’76)

Let Γ be a reduct of ∆ := (Q;<). Then:
1 Γ is first-order interdefinable with (Q;<), or
2 Γ is first-order interdefinable with (Q; betw), or
3 Γ is first-order interdefinable with (Q; cycl), or
4 Γ is first-order interdefinable with (Q; sep), or
5 Γ is first-order interdefinable with (Q; =).

Cooking Michael Pinsker (Paris 7)



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)

Let Γ be a reduct of ∆ := G = (V ; E). Then:

1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

Cooking Michael Pinsker (Paris 7)



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)

Let Γ be a reduct of ∆ := G = (V ; E). Then:

1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

Cooking Michael Pinsker (Paris 7)



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)

Let Γ be a reduct of ∆ := G = (V ; E). Then:

1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

Cooking Michael Pinsker (Paris 7)



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)

Let Γ be a reduct of ∆ := G = (V ; E). Then:
1 Γ is first-order interdefinable with (V ; E), or

2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

Cooking Michael Pinsker (Paris 7)



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)

Let Γ be a reduct of ∆ := G = (V ; E). Then:
1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or

3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

Cooking Michael Pinsker (Paris 7)



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)

Let Γ be a reduct of ∆ := G = (V ; E). Then:
1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or

4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

Cooking Michael Pinsker (Paris 7)



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)

Let Γ be a reduct of ∆ := G = (V ; E). Then:
1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or

5 Γ is first-order interdefinable with (V ; =).

Cooking Michael Pinsker (Paris 7)



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)

Let Γ be a reduct of ∆ := G = (V ; E). Then:
1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

Cooking Michael Pinsker (Paris 7)



Further examples

Theorem (Thomas ’91)
The homogeneous Kn-free graph has 2 reducts up to
fo-interdefinability.

Theorem (Thomas ’96)

The homogeneous k -graph has 2k + 1 reducts up to fo-interdefinability.

Theorem (Junker, Ziegler ’08)

(Q;<,0) has 116 reducts up to fo-interdefinability.

Cooking Michael Pinsker (Paris 7)



Further examples

Theorem (Thomas ’91)
The homogeneous Kn-free graph has 2 reducts up to
fo-interdefinability.

Theorem (Thomas ’96)

The homogeneous k -graph has 2k + 1 reducts up to fo-interdefinability.

Theorem (Junker, Ziegler ’08)

(Q;<,0) has 116 reducts up to fo-interdefinability.

Cooking Michael Pinsker (Paris 7)



Further examples

Theorem (Thomas ’91)
The homogeneous Kn-free graph has 2 reducts up to
fo-interdefinability.

Theorem (Thomas ’96)

The homogeneous k -graph has 2k + 1 reducts up to fo-interdefinability.

Theorem (Junker, Ziegler ’08)

(Q;<,0) has 116 reducts up to fo-interdefinability.

Cooking Michael Pinsker (Paris 7)



Further examples

Theorem (Thomas ’91)
The homogeneous Kn-free graph has 2 reducts up to
fo-interdefinability.

Theorem (Thomas ’96)

The homogeneous k -graph has 2k + 1 reducts up to fo-interdefinability.

Theorem (Junker, Ziegler ’08)

(Q;<,0) has 116 reducts up to fo-interdefinability.

Cooking Michael Pinsker (Paris 7)



Very recent examples

Theorem (Pách, MP, Pluhár, Pongrácz, Szabó ’11)

The random partial order has 5 reducts up to fo-interdefinability.

Theorem (Pongrácz ’11)

The random Kn-free graph plus constant has 13 reducts if n = 3, and
16 reducts if n ≥ 4 up to fo-interdefinability.

Depressing fact (Horváth, Pongrácz, MP ’11)
The random graph with a constant has too many reducts up to
fo-interdefinability.

Cooking Michael Pinsker (Paris 7)



Very recent examples

Theorem (Pách, MP, Pluhár, Pongrácz, Szabó ’11)

The random partial order has 5 reducts up to fo-interdefinability.

Theorem (Pongrácz ’11)

The random Kn-free graph plus constant has 13 reducts if n = 3, and
16 reducts if n ≥ 4 up to fo-interdefinability.

Depressing fact (Horváth, Pongrácz, MP ’11)
The random graph with a constant has too many reducts up to
fo-interdefinability.

Cooking Michael Pinsker (Paris 7)



Very recent examples

Theorem (Pách, MP, Pluhár, Pongrácz, Szabó ’11)

The random partial order has 5 reducts up to fo-interdefinability.

Theorem (Pongrácz ’11)

The random Kn-free graph plus constant has 13 reducts if n = 3, and
16 reducts if n ≥ 4 up to fo-interdefinability.

Depressing fact (Horváth, Pongrácz, MP ’11)
The random graph with a constant has too many reducts up to
fo-interdefinability.

Cooking Michael Pinsker (Paris 7)



Very recent examples

Theorem (Pách, MP, Pluhár, Pongrácz, Szabó ’11)

The random partial order has 5 reducts up to fo-interdefinability.

Theorem (Pongrácz ’11)

The random Kn-free graph plus constant has 13 reducts if n = 3, and
16 reducts if n ≥ 4 up to fo-interdefinability.

Depressing fact (Horváth, Pongrácz, MP ’11)
The random graph with a constant has too many reducts up to
fo-interdefinability.

Cooking Michael Pinsker (Paris 7)



Thomas’ conjecture

Conjecture (Thomas ’91)

Let ∆ be homogeneous in a finite language.

Then ∆ has finitely many reducts up to fo-interdefinability.

Cooking Michael Pinsker (Paris 7)



pp classifications

Theorem (Bodirsky, Chen, MP ’08)

For the structure ∆ := (X ; =), there exist:

1 reduct up to first order interdefinability
2ℵ0 reducts up to primitive positive interdefinability

Cooking Michael Pinsker (Paris 7)



pp classifications

Theorem (Bodirsky, Chen, MP ’08)

For the structure ∆ := (X ; =), there exist:

1 reduct up to first order interdefinability
2ℵ0 reducts up to primitive positive interdefinability

Cooking Michael Pinsker (Paris 7)



pp classifications

Theorem (Bodirsky, Chen, MP ’08)

For the structure ∆ := (X ; =), there exist:

1 reduct up to first order interdefinability

2ℵ0 reducts up to primitive positive interdefinability

Cooking Michael Pinsker (Paris 7)



pp classifications

Theorem (Bodirsky, Chen, MP ’08)

For the structure ∆ := (X ; =), there exist:

1 reduct up to first order interdefinability
2ℵ0 reducts up to primitive positive interdefinability

Cooking Michael Pinsker (Paris 7)



Permutation groups - fo

Theorem (Ryll-Nardzewski)
Let ∆ be homogeneous, finite language.

The mapping

Γ 7→ Aut(Γ)

is a one-to-one correspondence between
the first-order closed reducts of ∆ and
the closed permutation groups containing Aut(∆).

first order closed = contains all fo-definable relations

group called closed iff it is closed in the convergence topology.

Cooking Michael Pinsker (Paris 7)



Permutation groups - fo

Theorem (Ryll-Nardzewski)
Let ∆ be homogeneous, finite language.

The mapping

Γ 7→ Aut(Γ)

is a one-to-one correspondence between
the first-order closed reducts of ∆ and
the closed permutation groups containing Aut(∆).

first order closed = contains all fo-definable relations

group called closed iff it is closed in the convergence topology.

Cooking Michael Pinsker (Paris 7)



Clones - pp

Theorem (Bodirsky, Nešetřil ’03)
Let ∆ be homogeneous, finite language. Then

Γ 7→ Pol(Γ)

is a one-to-one correspondence between
the primitive positive closed reducts of ∆ and
the closed clones containing Aut(∆).

A clone is a set of finitary operations on ∆ which
contains all projections πn

i (x1, . . . , xn) = xi , and
is closed under composition.

Pol(Γ) is the clone of all homomorphisms from finite powers of Γ to Γ.

A clone C is closed if for each n ≥ 1, the set of n-ary operations in C is
a closed subset of the Baire space ∆∆n

.

Cooking Michael Pinsker (Paris 7)



Clones - pp

Theorem (Bodirsky, Nešetřil ’03)
Let ∆ be homogeneous, finite language. Then

Γ 7→ Pol(Γ)

is a one-to-one correspondence between
the primitive positive closed reducts of ∆ and
the closed clones containing Aut(∆).

A clone is a set of finitary operations on ∆ which
contains all projections πn

i (x1, . . . , xn) = xi , and
is closed under composition.

Pol(Γ) is the clone of all homomorphisms from finite powers of Γ to Γ.

A clone C is closed if for each n ≥ 1, the set of n-ary operations in C is
a closed subset of the Baire space ∆∆n

.

Cooking Michael Pinsker (Paris 7)



Groups and Clones

For homogeneous ∆ in finite language:

Reducts up to fo-interdefinability↔

closed permutation groups ⊇ Aut(∆);

Reducts up to pp-interdefinability↔

closed clones ⊇ Aut(∆).

Larger reducts→ harder CSP
Γ ≤pp Γ′ → CSP(Γ)≤Poltime CSP(Γ′)

Larger clones→ easier CSP
Pol(Γ) ⊆ Pol(Γ′) → CSP(Γ′)≤Poltime CSP(Γ)

Cooking Michael Pinsker (Paris 7)



Groups and Clones

For homogeneous ∆ in finite language:

Reducts up to fo-interdefinability↔

closed permutation groups ⊇ Aut(∆);

Reducts up to pp-interdefinability↔

closed clones ⊇ Aut(∆).

Larger reducts→ harder CSP
Γ ≤pp Γ′ → CSP(Γ)≤Poltime CSP(Γ′)

Larger clones→ easier CSP
Pol(Γ) ⊆ Pol(Γ′) → CSP(Γ′)≤Poltime CSP(Γ)

Cooking Michael Pinsker (Paris 7)



Groups and Clones

For homogeneous ∆ in finite language:

Reducts up to fo-interdefinability↔

closed permutation groups ⊇ Aut(∆);

Reducts up to pp-interdefinability↔

closed clones ⊇ Aut(∆).

Larger reducts→ harder CSP
Γ ≤pp Γ′ → CSP(Γ)≤Poltime CSP(Γ′)

Larger clones→ easier CSP
Pol(Γ) ⊆ Pol(Γ′) → CSP(Γ′)≤Poltime CSP(Γ)

Cooking Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.

Let Ḡ be the graph that arises by switching edges and non-edges.
Let − : V → V be an isomorphism between G and Ḡ.
For c ∈ V , let Gc be the graph that arises by switching
all edges and non-edges containing c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)

The closed groups containing Aut(G) are the following:

1 Aut(G)

2 〈{−} ∪ Aut(G)〉
3 〈{swc} ∪ Aut(G)〉
4 〈{−, swc} ∪ Aut(G)〉
5 The full symmetric group SV .

Cooking Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.
Let Ḡ be the graph that arises by switching edges and non-edges.

Let − : V → V be an isomorphism between G and Ḡ.
For c ∈ V , let Gc be the graph that arises by switching
all edges and non-edges containing c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)

The closed groups containing Aut(G) are the following:

1 Aut(G)

2 〈{−} ∪ Aut(G)〉
3 〈{swc} ∪ Aut(G)〉
4 〈{−, swc} ∪ Aut(G)〉
5 The full symmetric group SV .

Cooking Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.
Let Ḡ be the graph that arises by switching edges and non-edges.
Let − : V → V be an isomorphism between G and Ḡ.

For c ∈ V , let Gc be the graph that arises by switching
all edges and non-edges containing c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)

The closed groups containing Aut(G) are the following:

1 Aut(G)

2 〈{−} ∪ Aut(G)〉
3 〈{swc} ∪ Aut(G)〉
4 〈{−, swc} ∪ Aut(G)〉
5 The full symmetric group SV .

Cooking Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.
Let Ḡ be the graph that arises by switching edges and non-edges.
Let − : V → V be an isomorphism between G and Ḡ.
For c ∈ V , let Gc be the graph that arises by switching
all edges and non-edges containing c.

Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)

The closed groups containing Aut(G) are the following:

1 Aut(G)

2 〈{−} ∪ Aut(G)〉
3 〈{swc} ∪ Aut(G)〉
4 〈{−, swc} ∪ Aut(G)〉
5 The full symmetric group SV .

Cooking Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.
Let Ḡ be the graph that arises by switching edges and non-edges.
Let − : V → V be an isomorphism between G and Ḡ.
For c ∈ V , let Gc be the graph that arises by switching
all edges and non-edges containing c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)

The closed groups containing Aut(G) are the following:

1 Aut(G)

2 〈{−} ∪ Aut(G)〉
3 〈{swc} ∪ Aut(G)〉
4 〈{−, swc} ∪ Aut(G)〉
5 The full symmetric group SV .

Cooking Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.
Let Ḡ be the graph that arises by switching edges and non-edges.
Let − : V → V be an isomorphism between G and Ḡ.
For c ∈ V , let Gc be the graph that arises by switching
all edges and non-edges containing c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)

The closed groups containing Aut(G) are the following:

1 Aut(G)

2 〈{−} ∪ Aut(G)〉
3 〈{swc} ∪ Aut(G)〉
4 〈{−, swc} ∪ Aut(G)〉
5 The full symmetric group SV .

Cooking Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.
Let Ḡ be the graph that arises by switching edges and non-edges.
Let − : V → V be an isomorphism between G and Ḡ.
For c ∈ V , let Gc be the graph that arises by switching
all edges and non-edges containing c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)

The closed groups containing Aut(G) are the following:
1 Aut(G)

2 〈{−} ∪ Aut(G)〉
3 〈{swc} ∪ Aut(G)〉
4 〈{−, swc} ∪ Aut(G)〉
5 The full symmetric group SV .

Cooking Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.
Let Ḡ be the graph that arises by switching edges and non-edges.
Let − : V → V be an isomorphism between G and Ḡ.
For c ∈ V , let Gc be the graph that arises by switching
all edges and non-edges containing c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)

The closed groups containing Aut(G) are the following:
1 Aut(G)

2 〈{−} ∪ Aut(G)〉

3 〈{swc} ∪ Aut(G)〉
4 〈{−, swc} ∪ Aut(G)〉
5 The full symmetric group SV .

Cooking Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.
Let Ḡ be the graph that arises by switching edges and non-edges.
Let − : V → V be an isomorphism between G and Ḡ.
For c ∈ V , let Gc be the graph that arises by switching
all edges and non-edges containing c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)

The closed groups containing Aut(G) are the following:
1 Aut(G)

2 〈{−} ∪ Aut(G)〉
3 〈{swc} ∪ Aut(G)〉

4 〈{−, swc} ∪ Aut(G)〉
5 The full symmetric group SV .

Cooking Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.
Let Ḡ be the graph that arises by switching edges and non-edges.
Let − : V → V be an isomorphism between G and Ḡ.
For c ∈ V , let Gc be the graph that arises by switching
all edges and non-edges containing c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)

The closed groups containing Aut(G) are the following:
1 Aut(G)

2 〈{−} ∪ Aut(G)〉
3 〈{swc} ∪ Aut(G)〉
4 〈{−, swc} ∪ Aut(G)〉

5 The full symmetric group SV .

Cooking Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.
Let Ḡ be the graph that arises by switching edges and non-edges.
Let − : V → V be an isomorphism between G and Ḡ.
For c ∈ V , let Gc be the graph that arises by switching
all edges and non-edges containing c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)

The closed groups containing Aut(G) are the following:
1 Aut(G)

2 〈{−} ∪ Aut(G)〉
3 〈{swc} ∪ Aut(G)〉
4 〈{−, swc} ∪ Aut(G)〉
5 The full symmetric group SV .

Cooking Michael Pinsker (Paris 7)



Cooking Michael Pinsker (Paris 7)



Part III

Making the infinite finite

(Ramsey theory)

Cooking Michael Pinsker (Paris 7)



How to classify all reducts up to . . .-interdefinability?

Climb up the lattice!

Cooking Michael Pinsker (Paris 7)



Canonical functions on the Random graph

Let G = (V ; E) be the random graph.

Definition. f : G→ G is canonical iff

for all x , y ,u, v ∈ V ,
if (x , y) and (u, v) have the same type in G,
then (f (x), f (y)) and (f (u), f (v)) have the same type in G.

Examples.

Automorphisms / Embeddings are canonical.

Constant functions are canonical.

Homomorphisms are not necessarily canonical.

− is canonical.

eE and eN are canonical.

Cooking Michael Pinsker (Paris 7)



Canonical functions on the Random graph

Let G = (V ; E) be the random graph.

Definition. f : G→ G is canonical iff
for all x , y ,u, v ∈ V ,
if (x , y) and (u, v) have the same type in G,

then (f (x), f (y)) and (f (u), f (v)) have the same type in G.

Examples.

Automorphisms / Embeddings are canonical.

Constant functions are canonical.

Homomorphisms are not necessarily canonical.

− is canonical.

eE and eN are canonical.

Cooking Michael Pinsker (Paris 7)



Canonical functions on the Random graph

Let G = (V ; E) be the random graph.

Definition. f : G→ G is canonical iff
for all x , y ,u, v ∈ V ,
if (x , y) and (u, v) have the same type in G,
then (f (x), f (y)) and (f (u), f (v)) have the same type in G.

Examples.

Automorphisms / Embeddings are canonical.

Constant functions are canonical.

Homomorphisms are not necessarily canonical.

− is canonical.

eE and eN are canonical.

Cooking Michael Pinsker (Paris 7)



Canonical functions on the Random graph

Let G = (V ; E) be the random graph.

Definition. f : G→ G is canonical iff
for all x , y ,u, v ∈ V ,
if (x , y) and (u, v) have the same type in G,
then (f (x), f (y)) and (f (u), f (v)) have the same type in G.

Examples.

Automorphisms / Embeddings are canonical.

Constant functions are canonical.

Homomorphisms are not necessarily canonical.

− is canonical.

eE and eN are canonical.

Cooking Michael Pinsker (Paris 7)



Canonical functions on the Random graph

Let G = (V ; E) be the random graph.

Definition. f : G→ G is canonical iff
for all x , y ,u, v ∈ V ,
if (x , y) and (u, v) have the same type in G,
then (f (x), f (y)) and (f (u), f (v)) have the same type in G.

Examples.

Automorphisms / Embeddings are canonical.

Constant functions are canonical.

Homomorphisms are not necessarily canonical.

− is canonical.

eE and eN are canonical.

Cooking Michael Pinsker (Paris 7)



Canonical functions on the Random graph

Let G = (V ; E) be the random graph.

Definition. f : G→ G is canonical iff
for all x , y ,u, v ∈ V ,
if (x , y) and (u, v) have the same type in G,
then (f (x), f (y)) and (f (u), f (v)) have the same type in G.

Examples.

Automorphisms / Embeddings are canonical.

Constant functions are canonical.

Homomorphisms are not necessarily canonical.

− is canonical.

eE and eN are canonical.

Cooking Michael Pinsker (Paris 7)



Canonical functions on the Random graph

Let G = (V ; E) be the random graph.

Definition. f : G→ G is canonical iff
for all x , y ,u, v ∈ V ,
if (x , y) and (u, v) have the same type in G,
then (f (x), f (y)) and (f (u), f (v)) have the same type in G.

Examples.

Automorphisms / Embeddings are canonical.

Constant functions are canonical.

Homomorphisms are not necessarily canonical.

− is canonical.

eE and eN are canonical.

Cooking Michael Pinsker (Paris 7)



Canonical functions on the Random graph

Let G = (V ; E) be the random graph.

Definition. f : G→ G is canonical iff
for all x , y ,u, v ∈ V ,
if (x , y) and (u, v) have the same type in G,
then (f (x), f (y)) and (f (u), f (v)) have the same type in G.

Examples.

Automorphisms / Embeddings are canonical.

Constant functions are canonical.

Homomorphisms are not necessarily canonical.

− is canonical.

eE and eN are canonical.

Cooking Michael Pinsker (Paris 7)



Canonical functions on the Random graph

Let G = (V ; E) be the random graph.

Definition. f : G→ G is canonical iff
for all x , y ,u, v ∈ V ,
if (x , y) and (u, v) have the same type in G,
then (f (x), f (y)) and (f (u), f (v)) have the same type in G.

Examples.

Automorphisms / Embeddings are canonical.

Constant functions are canonical.

Homomorphisms are not necessarily canonical.

− is canonical.

eE and eN are canonical.

Cooking Michael Pinsker (Paris 7)



Finding canonical behaviour

The class of finite graphs has the following Ramsey property:

For all graphs H
there exists a graph S such that
if the edges of S are colored with 3 colors,
then there is a copy of H in S
on which the coloring is constant.

Given f : G→ G, color the edges of G
according to the type of their image: 3 possibilities.

Same for non-edges.

Conclusion: Every finite graph has a copy in G on which f is
canonical.

Cooking Michael Pinsker (Paris 7)



Finding canonical behaviour

The class of finite graphs has the following Ramsey property:

For all graphs H
there exists a graph S such that

if the edges of S are colored with 3 colors,
then there is a copy of H in S
on which the coloring is constant.

Given f : G→ G, color the edges of G
according to the type of their image: 3 possibilities.

Same for non-edges.

Conclusion: Every finite graph has a copy in G on which f is
canonical.

Cooking Michael Pinsker (Paris 7)



Finding canonical behaviour

The class of finite graphs has the following Ramsey property:

For all graphs H
there exists a graph S such that
if the edges of S are colored with 3 colors,

then there is a copy of H in S
on which the coloring is constant.

Given f : G→ G, color the edges of G
according to the type of their image: 3 possibilities.

Same for non-edges.

Conclusion: Every finite graph has a copy in G on which f is
canonical.

Cooking Michael Pinsker (Paris 7)



Finding canonical behaviour

The class of finite graphs has the following Ramsey property:

For all graphs H
there exists a graph S such that
if the edges of S are colored with 3 colors,
then there is a copy of H in S
on which the coloring is constant.

Given f : G→ G, color the edges of G
according to the type of their image: 3 possibilities.

Same for non-edges.

Conclusion: Every finite graph has a copy in G on which f is
canonical.

Cooking Michael Pinsker (Paris 7)



Finding canonical behaviour

The class of finite graphs has the following Ramsey property:

For all graphs H
there exists a graph S such that
if the edges of S are colored with 3 colors,
then there is a copy of H in S
on which the coloring is constant.

Given f : G→ G, color the edges of G
according to the type of their image: 3 possibilities.

Same for non-edges.

Conclusion: Every finite graph has a copy in G on which f is
canonical.

Cooking Michael Pinsker (Paris 7)



Finding canonical behaviour

The class of finite graphs has the following Ramsey property:

For all graphs H
there exists a graph S such that
if the edges of S are colored with 3 colors,
then there is a copy of H in S
on which the coloring is constant.

Given f : G→ G, color the edges of G
according to the type of their image: 3 possibilities.

Same for non-edges.

Conclusion: Every finite graph has a copy in G on which f is
canonical.

Cooking Michael Pinsker (Paris 7)



Patterns in functions on the random graph

A canonical function f : G→ G induces a function
f ′ : {E ,N,=} → {E ,N,=} (i.e., a function on the 2-types of G).

Converse does not hold.

The following are all possibilities of canonical functions:

Turning everything into edges (eE )
turning everything into non-edges (eN)

behaving like −
being constant
behaving like an automorphism.

Given any f : G→ G, we know that one of these behaviors
appears for arbitrary finite subgraphs of G.

Problem: Keeping some information on f when canonizing.

Cooking Michael Pinsker (Paris 7)



Patterns in functions on the random graph

A canonical function f : G→ G induces a function
f ′ : {E ,N,=} → {E ,N,=} (i.e., a function on the 2-types of G).

Converse does not hold.

The following are all possibilities of canonical functions:

Turning everything into edges (eE )
turning everything into non-edges (eN)

behaving like −
being constant
behaving like an automorphism.

Given any f : G→ G, we know that one of these behaviors
appears for arbitrary finite subgraphs of G.

Problem: Keeping some information on f when canonizing.

Cooking Michael Pinsker (Paris 7)



Patterns in functions on the random graph

A canonical function f : G→ G induces a function
f ′ : {E ,N,=} → {E ,N,=} (i.e., a function on the 2-types of G).

Converse does not hold.

The following are all possibilities of canonical functions:

Turning everything into edges (eE )
turning everything into non-edges (eN)

behaving like −
being constant
behaving like an automorphism.

Given any f : G→ G, we know that one of these behaviors
appears for arbitrary finite subgraphs of G.

Problem: Keeping some information on f when canonizing.

Cooking Michael Pinsker (Paris 7)



Patterns in functions on the random graph

A canonical function f : G→ G induces a function
f ′ : {E ,N,=} → {E ,N,=} (i.e., a function on the 2-types of G).

Converse does not hold.

The following are all possibilities of canonical functions:

Turning everything into edges (eE )

turning everything into non-edges (eN)

behaving like −
being constant
behaving like an automorphism.

Given any f : G→ G, we know that one of these behaviors
appears for arbitrary finite subgraphs of G.

Problem: Keeping some information on f when canonizing.

Cooking Michael Pinsker (Paris 7)



Patterns in functions on the random graph

A canonical function f : G→ G induces a function
f ′ : {E ,N,=} → {E ,N,=} (i.e., a function on the 2-types of G).

Converse does not hold.

The following are all possibilities of canonical functions:

Turning everything into edges (eE )
turning everything into non-edges (eN)

behaving like −
being constant
behaving like an automorphism.

Given any f : G→ G, we know that one of these behaviors
appears for arbitrary finite subgraphs of G.

Problem: Keeping some information on f when canonizing.

Cooking Michael Pinsker (Paris 7)



Patterns in functions on the random graph

A canonical function f : G→ G induces a function
f ′ : {E ,N,=} → {E ,N,=} (i.e., a function on the 2-types of G).

Converse does not hold.

The following are all possibilities of canonical functions:

Turning everything into edges (eE )
turning everything into non-edges (eN)

behaving like −

being constant
behaving like an automorphism.

Given any f : G→ G, we know that one of these behaviors
appears for arbitrary finite subgraphs of G.

Problem: Keeping some information on f when canonizing.

Cooking Michael Pinsker (Paris 7)



Patterns in functions on the random graph

A canonical function f : G→ G induces a function
f ′ : {E ,N,=} → {E ,N,=} (i.e., a function on the 2-types of G).

Converse does not hold.

The following are all possibilities of canonical functions:

Turning everything into edges (eE )
turning everything into non-edges (eN)

behaving like −
being constant

behaving like an automorphism.

Given any f : G→ G, we know that one of these behaviors
appears for arbitrary finite subgraphs of G.

Problem: Keeping some information on f when canonizing.

Cooking Michael Pinsker (Paris 7)



Patterns in functions on the random graph

A canonical function f : G→ G induces a function
f ′ : {E ,N,=} → {E ,N,=} (i.e., a function on the 2-types of G).

Converse does not hold.

The following are all possibilities of canonical functions:

Turning everything into edges (eE )
turning everything into non-edges (eN)

behaving like −
being constant
behaving like an automorphism.

Given any f : G→ G, we know that one of these behaviors
appears for arbitrary finite subgraphs of G.

Problem: Keeping some information on f when canonizing.

Cooking Michael Pinsker (Paris 7)



Patterns in functions on the random graph

A canonical function f : G→ G induces a function
f ′ : {E ,N,=} → {E ,N,=} (i.e., a function on the 2-types of G).

Converse does not hold.

The following are all possibilities of canonical functions:

Turning everything into edges (eE )
turning everything into non-edges (eN)

behaving like −
being constant
behaving like an automorphism.

Given any f : G→ G, we know that one of these behaviors
appears for arbitrary finite subgraphs of G.

Problem: Keeping some information on f when canonizing.

Cooking Michael Pinsker (Paris 7)



Patterns in functions on the random graph

A canonical function f : G→ G induces a function
f ′ : {E ,N,=} → {E ,N,=} (i.e., a function on the 2-types of G).

Converse does not hold.

The following are all possibilities of canonical functions:

Turning everything into edges (eE )
turning everything into non-edges (eN)

behaving like −
being constant
behaving like an automorphism.

Given any f : G→ G, we know that one of these behaviors
appears for arbitrary finite subgraphs of G.

Problem: Keeping some information on f when canonizing.

Cooking Michael Pinsker (Paris 7)



Adding constants

Let f : G→ G.
If f violates a relation R, then there are c1, . . . , cn ∈ V witnessing this.

Fact.
The structure (V ; E , c1, . . . , cn) has that Ramsey property, too.

Consider f as a function from (V ; E , c1, . . . , cn) to (V ; E).
Again, f is canonical on arbitrarily large finite substructures of
(V ; E , c1, . . . , cn).
We can assume that it shows the same behavior on all these
substructures.

By topological closure, f generates a function which:

behaves like f on {c1, . . . , cn}, and
is canonical as a function from (V ; E , c1, . . . , cn) to (V ; E).

Cooking Michael Pinsker (Paris 7)



Adding constants

Let f : G→ G.
If f violates a relation R, then there are c1, . . . , cn ∈ V witnessing this.

Fact.
The structure (V ; E , c1, . . . , cn) has that Ramsey property, too.

Consider f as a function from (V ; E , c1, . . . , cn) to (V ; E).
Again, f is canonical on arbitrarily large finite substructures of
(V ; E , c1, . . . , cn).
We can assume that it shows the same behavior on all these
substructures.

By topological closure, f generates a function which:

behaves like f on {c1, . . . , cn}, and
is canonical as a function from (V ; E , c1, . . . , cn) to (V ; E).

Cooking Michael Pinsker (Paris 7)



Adding constants

Let f : G→ G.
If f violates a relation R, then there are c1, . . . , cn ∈ V witnessing this.

Fact.
The structure (V ; E , c1, . . . , cn) has that Ramsey property, too.

Consider f as a function from (V ; E , c1, . . . , cn) to (V ; E).

Again, f is canonical on arbitrarily large finite substructures of
(V ; E , c1, . . . , cn).
We can assume that it shows the same behavior on all these
substructures.

By topological closure, f generates a function which:

behaves like f on {c1, . . . , cn}, and
is canonical as a function from (V ; E , c1, . . . , cn) to (V ; E).

Cooking Michael Pinsker (Paris 7)



Adding constants

Let f : G→ G.
If f violates a relation R, then there are c1, . . . , cn ∈ V witnessing this.

Fact.
The structure (V ; E , c1, . . . , cn) has that Ramsey property, too.

Consider f as a function from (V ; E , c1, . . . , cn) to (V ; E).
Again, f is canonical on arbitrarily large finite substructures of
(V ; E , c1, . . . , cn).

We can assume that it shows the same behavior on all these
substructures.

By topological closure, f generates a function which:

behaves like f on {c1, . . . , cn}, and
is canonical as a function from (V ; E , c1, . . . , cn) to (V ; E).

Cooking Michael Pinsker (Paris 7)



Adding constants

Let f : G→ G.
If f violates a relation R, then there are c1, . . . , cn ∈ V witnessing this.

Fact.
The structure (V ; E , c1, . . . , cn) has that Ramsey property, too.

Consider f as a function from (V ; E , c1, . . . , cn) to (V ; E).
Again, f is canonical on arbitrarily large finite substructures of
(V ; E , c1, . . . , cn).
We can assume that it shows the same behavior on all these
substructures.

By topological closure, f generates a function which:

behaves like f on {c1, . . . , cn}, and
is canonical as a function from (V ; E , c1, . . . , cn) to (V ; E).

Cooking Michael Pinsker (Paris 7)



Adding constants

Let f : G→ G.
If f violates a relation R, then there are c1, . . . , cn ∈ V witnessing this.

Fact.
The structure (V ; E , c1, . . . , cn) has that Ramsey property, too.

Consider f as a function from (V ; E , c1, . . . , cn) to (V ; E).
Again, f is canonical on arbitrarily large finite substructures of
(V ; E , c1, . . . , cn).
We can assume that it shows the same behavior on all these
substructures.

By topological closure, f generates a function which:

behaves like f on {c1, . . . , cn}, and
is canonical as a function from (V ; E , c1, . . . , cn) to (V ; E).

Cooking Michael Pinsker (Paris 7)



The minimal clones on the random graph

Theorem (Bodirsky, MP ’10)

Let f be a finitary operation on G which “is” not an automorphism.
Then f generates one of the following:

A constant operation
eE

eN

−
swc

One of 9 canonical binary injections.

We thus know the minimal closed clones containing Aut(G).

More involved argument: Extend G by a random dense linear order.

Cooking Michael Pinsker (Paris 7)



The minimal clones on the random graph

Theorem (Bodirsky, MP ’10)

Let f be a finitary operation on G which “is” not an automorphism.
Then f generates one of the following:

A constant operation
eE

eN

−
swc

One of 9 canonical binary injections.

We thus know the minimal closed clones containing Aut(G).

More involved argument: Extend G by a random dense linear order.

Cooking Michael Pinsker (Paris 7)



The minimal clones on the random graph

Theorem (Bodirsky, MP ’10)

Let f be a finitary operation on G which “is” not an automorphism.
Then f generates one of the following:

A constant operation
eE

eN

−
swc

One of 9 canonical binary injections.

We thus know the minimal closed clones containing Aut(G).

More involved argument: Extend G by a random dense linear order.

Cooking Michael Pinsker (Paris 7)



Ramsey classes

Let S,H,P be structures in the same signature τ .

S → (H)P

means:

For any coloring of the copies of P in S with 2 colors
there exists a copy of H in S
such that the copies of P in H all have the same color.

Definition
A class C of τ -structures is called a Ramsey class iff
for all H,P ∈ C there exists S in C such that S → (H)P .

Cooking Michael Pinsker (Paris 7)



Ramsey classes

Let S,H,P be structures in the same signature τ .

S → (H)P

means:

For any coloring of the copies of P in S with 2 colors
there exists a copy of H in S
such that the copies of P in H all have the same color.

Definition
A class C of τ -structures is called a Ramsey class iff
for all H,P ∈ C there exists S in C such that S → (H)P .

Cooking Michael Pinsker (Paris 7)



Ramsey classes

Let S,H,P be structures in the same signature τ .

S → (H)P

means:

For any coloring of the copies of P in S with 2 colors
there exists a copy of H in S
such that the copies of P in H all have the same color.

Definition
A class C of τ -structures is called a Ramsey class iff
for all H,P ∈ C there exists S in C such that S → (H)P .

Cooking Michael Pinsker (Paris 7)



Ramsey classes

Let S,H,P be structures in the same signature τ .

S → (H)P

means:

For any coloring of the copies of P in S with 2 colors
there exists a copy of H in S
such that the copies of P in H all have the same color.

Definition
A class C of τ -structures is called a Ramsey class iff
for all H,P ∈ C there exists S in C such that S → (H)P .

Cooking Michael Pinsker (Paris 7)



Canonical functions on Ramsey structures

Let ∆ now be an arbitrary structure.

Definition
f : ∆→ ∆ is canonical iff
for all tuples (x1, . . . , xn), (y1, . . . , yn) of the same type
(f (x1), . . . , f (xn)) and (f (y1), . . . , f (yn)) have the same type too.

Observation. If ∆ is
Ramsey
homogeneous in a finite language
(ordered),

then all finite substructures of ∆ have a copy in ∆
on which f is canonical.

Thus: Any f : ∆→ ∆ generates a canonical function, but it could be
the identity.

Cooking Michael Pinsker (Paris 7)



Canonical functions on Ramsey structures

Let ∆ now be an arbitrary structure.

Definition
f : ∆→ ∆ is canonical iff
for all tuples (x1, . . . , xn), (y1, . . . , yn) of the same type
(f (x1), . . . , f (xn)) and (f (y1), . . . , f (yn)) have the same type too.

Observation. If ∆ is
Ramsey
homogeneous in a finite language
(ordered),

then all finite substructures of ∆ have a copy in ∆
on which f is canonical.

Thus: Any f : ∆→ ∆ generates a canonical function, but it could be
the identity.

Cooking Michael Pinsker (Paris 7)



Canonical functions on Ramsey structures

Let ∆ now be an arbitrary structure.

Definition
f : ∆→ ∆ is canonical iff
for all tuples (x1, . . . , xn), (y1, . . . , yn) of the same type
(f (x1), . . . , f (xn)) and (f (y1), . . . , f (yn)) have the same type too.

Observation. If ∆ is
Ramsey
homogeneous in a finite language
(ordered),

then all finite substructures of ∆ have a copy in ∆
on which f is canonical.

Thus: Any f : ∆→ ∆ generates a canonical function, but it could be
the identity.

Cooking Michael Pinsker (Paris 7)



Canonical functions on Ramsey structures

Let ∆ now be an arbitrary structure.

Definition
f : ∆→ ∆ is canonical iff
for all tuples (x1, . . . , xn), (y1, . . . , yn) of the same type
(f (x1), . . . , f (xn)) and (f (y1), . . . , f (yn)) have the same type too.

Observation. If ∆ is
Ramsey
homogeneous in a finite language
(ordered),

then all finite substructures of ∆ have a copy in ∆
on which f is canonical.

Thus: Any f : ∆→ ∆ generates a canonical function,

but it could be
the identity.

Cooking Michael Pinsker (Paris 7)



Canonical functions on Ramsey structures

Let ∆ now be an arbitrary structure.

Definition
f : ∆→ ∆ is canonical iff
for all tuples (x1, . . . , xn), (y1, . . . , yn) of the same type
(f (x1), . . . , f (xn)) and (f (y1), . . . , f (yn)) have the same type too.

Observation. If ∆ is
Ramsey
homogeneous in a finite language
(ordered),

then all finite substructures of ∆ have a copy in ∆
on which f is canonical.

Thus: Any f : ∆→ ∆ generates a canonical function, but it could be
the identity.

Cooking Michael Pinsker (Paris 7)



What we would like to do...

We would like to fix c1, . . . , cn ∈ ∆ witnessing
that f does something interesting (e.g., violate a certain relation),

and have canonical behavior of f as a function
from (∆, c1, . . . , cn) to ∆.

Why don’t you just do it?

Cooking Michael Pinsker (Paris 7)



What we would like to do...

We would like to fix c1, . . . , cn ∈ ∆ witnessing
that f does something interesting (e.g., violate a certain relation),

and have canonical behavior of f as a function
from (∆, c1, . . . , cn) to ∆.

Why don’t you just do it?

Cooking Michael Pinsker (Paris 7)



What we would like to do...

We would like to fix c1, . . . , cn ∈ ∆ witnessing
that f does something interesting (e.g., violate a certain relation),

and have canonical behavior of f as a function
from (∆, c1, . . . , cn) to ∆.

Why don’t you just do it?

Cooking Michael Pinsker (Paris 7)



Adding constants to Ramsey structures

Problem
If ∆ is Ramsey, is (∆, c1, . . . , cn) still Ramsey?

Theorem (Kechris, Pestov, Todorcevic ’05)
An ordered homogeneous structure is Ramsey iff
its automorphism group is extremely amenable, i.e.,
it has a fixed point whenever it acts on a compact Hausdorff space.

Observation
Every open subgroup of an extremely amenable group
is extremely amenable.

Corollary

If ∆ is ordered, homogeneous, and Ramsey, then so is (∆, c1, . . . , cn).

Cooking Michael Pinsker (Paris 7)



Adding constants to Ramsey structures

Problem
If ∆ is Ramsey, is (∆, c1, . . . , cn) still Ramsey?

Theorem (Kechris, Pestov, Todorcevic ’05)
An ordered homogeneous structure is Ramsey iff
its automorphism group is extremely amenable, i.e.,
it has a fixed point whenever it acts on a compact Hausdorff space.

Observation
Every open subgroup of an extremely amenable group
is extremely amenable.

Corollary

If ∆ is ordered, homogeneous, and Ramsey, then so is (∆, c1, . . . , cn).

Cooking Michael Pinsker (Paris 7)



Adding constants to Ramsey structures

Problem
If ∆ is Ramsey, is (∆, c1, . . . , cn) still Ramsey?

Theorem (Kechris, Pestov, Todorcevic ’05)
An ordered homogeneous structure is Ramsey iff
its automorphism group is extremely amenable, i.e.,
it has a fixed point whenever it acts on a compact Hausdorff space.

Observation
Every open subgroup of an extremely amenable group
is extremely amenable.

Corollary

If ∆ is ordered, homogeneous, and Ramsey, then so is (∆, c1, . . . , cn).

Cooking Michael Pinsker (Paris 7)



Adding constants to Ramsey structures

Problem
If ∆ is Ramsey, is (∆, c1, . . . , cn) still Ramsey?

Theorem (Kechris, Pestov, Todorcevic ’05)
An ordered homogeneous structure is Ramsey iff
its automorphism group is extremely amenable, i.e.,
it has a fixed point whenever it acts on a compact Hausdorff space.

Observation
Every open subgroup of an extremely amenable group
is extremely amenable.

Corollary

If ∆ is ordered, homogeneous, and Ramsey, then so is (∆, c1, . . . , cn).

Cooking Michael Pinsker (Paris 7)



Canonizing functions on Ramsey structures

Proposition

(new proof 2011!)

If ∆ is ordered Ramsey homogeneous finite language, f : ∆k → ∆,
and c1, . . . , cn ∈ ∆, then f generates a function which

is canonical as a function from (∆, c1, . . . , cn)k to ∆

behaves like f on {c1, . . . , cn}.

Set S := {g : ∆k → ∆ | g agrees with f on {c1, . . . , cn}}.

Set g ∼ h iff there is α ∈ Aut(∆) such that g = αh.

Fact. S/ ∼ is compact.

Let Aut(∆, c1, . . . , cn)k act on S/ ∼ by

(β1, . . . , βk )([g(x1, . . . , xk )]∼) := [g(β1(x1), . . . , βk (xk ))]∼

The continuous action has a fixed point [h(x1, . . . , xk )]∼.

Any element of the fixed point is canonical. �

Cooking Michael Pinsker (Paris 7)



Canonizing functions on Ramsey structures

Proposition (new proof 2011!)

If ∆ is ordered Ramsey homogeneous finite language, f : ∆k → ∆,
and c1, . . . , cn ∈ ∆, then f generates a function which

is canonical as a function from (∆, c1, . . . , cn)k to ∆

behaves like f on {c1, . . . , cn}.

Set S := {g : ∆k → ∆ | g agrees with f on {c1, . . . , cn}}.

Set g ∼ h iff there is α ∈ Aut(∆) such that g = αh.

Fact. S/ ∼ is compact.

Let Aut(∆, c1, . . . , cn)k act on S/ ∼ by

(β1, . . . , βk )([g(x1, . . . , xk )]∼) := [g(β1(x1), . . . , βk (xk ))]∼

The continuous action has a fixed point [h(x1, . . . , xk )]∼.

Any element of the fixed point is canonical. �

Cooking Michael Pinsker (Paris 7)



Canonizing functions on Ramsey structures

Proposition (new proof 2011!)

If ∆ is ordered Ramsey homogeneous finite language, f : ∆k → ∆,
and c1, . . . , cn ∈ ∆, then f generates a function which

is canonical as a function from (∆, c1, . . . , cn)k to ∆

behaves like f on {c1, . . . , cn}.

Set S := {g : ∆k → ∆ | g agrees with f on {c1, . . . , cn}}.

Set g ∼ h iff there is α ∈ Aut(∆) such that g = αh.

Fact. S/ ∼ is compact.

Let Aut(∆, c1, . . . , cn)k act on S/ ∼ by

(β1, . . . , βk )([g(x1, . . . , xk )]∼) := [g(β1(x1), . . . , βk (xk ))]∼

The continuous action has a fixed point [h(x1, . . . , xk )]∼.

Any element of the fixed point is canonical. �

Cooking Michael Pinsker (Paris 7)



Canonizing functions on Ramsey structures

Proposition (new proof 2011!)

If ∆ is ordered Ramsey homogeneous finite language, f : ∆k → ∆,
and c1, . . . , cn ∈ ∆, then f generates a function which

is canonical as a function from (∆, c1, . . . , cn)k to ∆

behaves like f on {c1, . . . , cn}.

Set S := {g : ∆k → ∆ | g agrees with f on {c1, . . . , cn}}.

Set g ∼ h iff there is α ∈ Aut(∆) such that g = αh.

Fact. S/ ∼ is compact.

Let Aut(∆, c1, . . . , cn)k act on S/ ∼ by

(β1, . . . , βk )([g(x1, . . . , xk )]∼) := [g(β1(x1), . . . , βk (xk ))]∼

The continuous action has a fixed point [h(x1, . . . , xk )]∼.

Any element of the fixed point is canonical. �

Cooking Michael Pinsker (Paris 7)



Canonizing functions on Ramsey structures

Proposition (new proof 2011!)

If ∆ is ordered Ramsey homogeneous finite language, f : ∆k → ∆,
and c1, . . . , cn ∈ ∆, then f generates a function which

is canonical as a function from (∆, c1, . . . , cn)k to ∆

behaves like f on {c1, . . . , cn}.

Set S := {g : ∆k → ∆ | g agrees with f on {c1, . . . , cn}}.

Set g ∼ h iff there is α ∈ Aut(∆) such that g = αh.

Fact. S/ ∼ is compact.

Let Aut(∆, c1, . . . , cn)k act on S/ ∼ by

(β1, . . . , βk )([g(x1, . . . , xk )]∼) := [g(β1(x1), . . . , βk (xk ))]∼

The continuous action has a fixed point [h(x1, . . . , xk )]∼.

Any element of the fixed point is canonical. �

Cooking Michael Pinsker (Paris 7)



Canonizing functions on Ramsey structures

Proposition (new proof 2011!)

If ∆ is ordered Ramsey homogeneous finite language, f : ∆k → ∆,
and c1, . . . , cn ∈ ∆, then f generates a function which

is canonical as a function from (∆, c1, . . . , cn)k to ∆

behaves like f on {c1, . . . , cn}.

Set S := {g : ∆k → ∆ | g agrees with f on {c1, . . . , cn}}.

Set g ∼ h iff there is α ∈ Aut(∆) such that g = αh.

Fact. S/ ∼ is compact.

Let Aut(∆, c1, . . . , cn)k act on S/ ∼ by

(β1, . . . , βk )([g(x1, . . . , xk )]∼) := [g(β1(x1), . . . , βk (xk ))]∼

The continuous action has a fixed point [h(x1, . . . , xk )]∼.

Any element of the fixed point is canonical. �

Cooking Michael Pinsker (Paris 7)



Canonizing functions on Ramsey structures

Proposition (new proof 2011!)

If ∆ is ordered Ramsey homogeneous finite language, f : ∆k → ∆,
and c1, . . . , cn ∈ ∆, then f generates a function which

is canonical as a function from (∆, c1, . . . , cn)k to ∆

behaves like f on {c1, . . . , cn}.

Set S := {g : ∆k → ∆ | g agrees with f on {c1, . . . , cn}}.

Set g ∼ h iff there is α ∈ Aut(∆) such that g = αh.

Fact. S/ ∼ is compact.

Let Aut(∆, c1, . . . , cn)k act on S/ ∼ by

(β1, . . . , βk )([g(x1, . . . , xk )]∼) := [g(β1(x1), . . . , βk (xk ))]∼

The continuous action has a fixed point [h(x1, . . . , xk )]∼.

Any element of the fixed point is canonical. �
Cooking Michael Pinsker (Paris 7)



Minimal clones above Ramsey structures

Theorem (Bodirsky, MP, Tsankov ’10)
Let Γ be a reduct of a finite language homogeneous ordered Ramsey
structure ∆. Then:

Every minimal closed superclone of Pol(Γ) is generated by such a
canonical function.
If Γ has a finite language, then there are finitely many minimal
closed superclones of Pol(Γ).
(Arity bound!)
Every closed superclone of Pol(Γ) contains a minimal closed
superclone of Pol(Γ).

Cooking Michael Pinsker (Paris 7)



Minimal clones above Ramsey structures

Theorem (Bodirsky, MP, Tsankov ’10)
Let Γ be a reduct of a finite language homogeneous ordered Ramsey
structure ∆. Then:

Every minimal closed superclone of Pol(Γ) is generated by such a
canonical function.

If Γ has a finite language, then there are finitely many minimal
closed superclones of Pol(Γ).
(Arity bound!)
Every closed superclone of Pol(Γ) contains a minimal closed
superclone of Pol(Γ).

Cooking Michael Pinsker (Paris 7)



Minimal clones above Ramsey structures

Theorem (Bodirsky, MP, Tsankov ’10)
Let Γ be a reduct of a finite language homogeneous ordered Ramsey
structure ∆. Then:

Every minimal closed superclone of Pol(Γ) is generated by such a
canonical function.
If Γ has a finite language, then there are finitely many minimal
closed superclones of Pol(Γ).
(Arity bound!)

Every closed superclone of Pol(Γ) contains a minimal closed
superclone of Pol(Γ).

Cooking Michael Pinsker (Paris 7)



Minimal clones above Ramsey structures

Theorem (Bodirsky, MP, Tsankov ’10)
Let Γ be a reduct of a finite language homogeneous ordered Ramsey
structure ∆. Then:

Every minimal closed superclone of Pol(Γ) is generated by such a
canonical function.
If Γ has a finite language, then there are finitely many minimal
closed superclones of Pol(Γ).
(Arity bound!)
Every closed superclone of Pol(Γ) contains a minimal closed
superclone of Pol(Γ).

Cooking Michael Pinsker (Paris 7)



Cooking Michael Pinsker (Paris 7)



Part IV

The Graph-SAT dichotomy

Cooking Michael Pinsker (Paris 7)



The Graph Satisfiability Problem

Let Ψ be a finite set of graph formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Theorem
Graph-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Cooking Michael Pinsker (Paris 7)



The Graph Satisfiability Problem

Let Ψ be a finite set of graph formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Theorem
Graph-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Cooking Michael Pinsker (Paris 7)



The Graph Satisfiability Problem

Let Ψ be a finite set of graph formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Theorem
Graph-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Cooking Michael Pinsker (Paris 7)



The Graph-SAT dichotomy visualized

balanced 
max

sw

constant

eE

E-
constant

NP-complete

in P

-

E-dom 
max

E-dom 
p1

balanced 
p1

E-semi-
dom p1

majority
hp balanced 

p1

minority
hp balanced 

p1

majority
hp E-

constant

minority
hp xnor E-

dom

majority
hp E-dom 

max

minority 
hp E-dom p1

Pol(H)

Pol(P(3))Pol(T)Pol(E6)

12,13:

14,15:

6:

7,8:

11:

9,10:

16,17:

2,3:

1:

4,5:

Cooking Michael Pinsker (Paris 7)



Theorem
The following 17 distinct clones are precisely the minimal tractable closed clones
containing Aut(G):

1 The clone generated by a constant operation.

2 The clone generated by a balanced binary injection of type max.

3 The clone generated by a balanced binary injection of type min.

4 The clone generated by an E-dominated binary injection of type max.

5 The clone generated by an N-dominated binary injection of type min.

6 The clone generated by a function of type majority which is hyperplanely
balanced and of type projection.

7 The clone generated by a function of type majority which is hyperplanely
E-constant.

8 The clone generated by a function of type majority which is hyperplanely
N-constant.

9 The clone generated by a function of type majority which is hyperplanely of type
max and E-dominated.

10 The clone generated by a function of type majority which is hyperplanely of type
min and N-dominated.

11 The clone generated by a function of type minority which is hyperplanely
balanced and of type projection.

12 The clone generated by a function of type minority which is hyperplanely of type
projection and E-dominated.

13 The clone generated by a function of type minority which is hyperplanely of type
projection and N-dominated.

14 The clone generated by a function of type minority which is hyperplanely of type
xnor and E-dominated.

15 The clone generated by a function of type minority which is hyperplanely of type
xor and N-dominated.

16 The clone generated by a binary injection which is E-constant.

17 The clone generated by a binary injection which is N-constant.

Cooking Michael Pinsker (Paris 7)



The Meta Problem

Meta-Problem of Graph-SAT(Ψ)
INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

Theorem (Bodirsky, MP ’10)
The Meta-Problem of Graph-SAT(Ψ) is decidable.

Cooking Michael Pinsker (Paris 7)



The Meta Problem

Meta-Problem of Graph-SAT(Ψ)
INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

Theorem (Bodirsky, MP ’10)
The Meta-Problem of Graph-SAT(Ψ) is decidable.

Cooking Michael Pinsker (Paris 7)



The Meta Problem

Meta-Problem of Graph-SAT(Ψ)
INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

Theorem (Bodirsky, MP ’10)
The Meta-Problem of Graph-SAT(Ψ) is decidable.

Cooking Michael Pinsker (Paris 7)



Cooking Michael Pinsker (Paris 7)



Part V

The future

Cooking Michael Pinsker (Paris 7)



Other homogeneous structures

Graph-SAT(Ψ): Is there a finite graph such that... (constraints)

Temp-SAT(Ψ): Is there a linear order such that...

The classes of finite graphs and linear orders are
amalgamation classes.

A

D

CB

Cooking Michael Pinsker (Paris 7)



Other homogeneous structures

Graph-SAT(Ψ): Is there a finite graph such that... (constraints)

Temp-SAT(Ψ): Is there a linear order such that...

The classes of finite graphs and linear orders are
amalgamation classes.

A

D

CB

Cooking Michael Pinsker (Paris 7)



Amalgamation classes

Further amalgamation classes.

Partial orders
Lattices
Distributive lattices
Metric spaces with rational distances
Tournaments

Homogeneous digraphs classified by Cherlin.

Cooking Michael Pinsker (Paris 7)



Amalgamation classes

Further amalgamation classes.

Partial orders

Lattices
Distributive lattices
Metric spaces with rational distances
Tournaments

Homogeneous digraphs classified by Cherlin.

Cooking Michael Pinsker (Paris 7)



Amalgamation classes

Further amalgamation classes.

Partial orders
Lattices

Distributive lattices
Metric spaces with rational distances
Tournaments

Homogeneous digraphs classified by Cherlin.

Cooking Michael Pinsker (Paris 7)



Amalgamation classes

Further amalgamation classes.

Partial orders
Lattices
Distributive lattices

Metric spaces with rational distances
Tournaments

Homogeneous digraphs classified by Cherlin.

Cooking Michael Pinsker (Paris 7)



Amalgamation classes

Further amalgamation classes.

Partial orders
Lattices
Distributive lattices
Metric spaces with rational distances

Tournaments

Homogeneous digraphs classified by Cherlin.

Cooking Michael Pinsker (Paris 7)



Amalgamation classes

Further amalgamation classes.

Partial orders
Lattices
Distributive lattices
Metric spaces with rational distances
Tournaments

Homogeneous digraphs classified by Cherlin.

Cooking Michael Pinsker (Paris 7)



Amalgamation classes

Further amalgamation classes.

Partial orders
Lattices
Distributive lattices
Metric spaces with rational distances
Tournaments

Homogeneous digraphs classified by Cherlin.

Cooking Michael Pinsker (Paris 7)



Cooking Michael Pinsker (Paris 7)



References

Schaefer’s theorem for graphs

by Manuel Bodirsky and Michael Pinsker

Proceedings of STOC, 2011.

Reducts of Ramsey structures

by Manuel Bodirsky and Michael Pinsker

AMS Contemporary Mathematics, 2011.

Cooking Michael Pinsker (Paris 7)


