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The Boolean satisfiability problem

Let W be a finite set of propositional formulas.

Computational problem: Boolean-SAT(V)

INPUT:
@ A set W of propositional variables, and
@ statements ¢4, ..., ¢, about the variables in W, where each ¢; is

taken from V.

QUESTION: Is A<, ¢ satisfiable?

Computational complexity depends on W. Always in NP.

Theorem (Schaefer °78)

Boolean-SAT (V) is either in P or NP-complete, for all V.
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The Graph Satisfiability Problem

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)
Let W be a finite set of quantifier-free { E}-formulas.

Computational problem: Graph-SAT (V)

INPUT:
@ A set W of variables (vertices), and
@ statements ¢4, ..., ¢, about the elements of W,

where each ¢; is taken from W.
QUESTION: Is A<, ¢; satisfiable in a graph?

Computational complexity depends on W. Always in NP.

Is Graph-SAT (V) either in P or NP-complete, for all w?
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Graph-SAT: Examples

Example 1 Let ¥4 only contain

P1(x,y,2) =(E(x,y) AN —E(y,2z) N ~E(X, 2))
vV (=E(x,y) N E(y,z) N —E(x, 2))
vV (mE(x,y) N—E(y,z) NE(x,2)) .
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Example 1 Let ¥4 only contain

P1(x,y,2) =(E(x,y) AN —E(y,2z) N ~E(X, 2))
vV (=E(x,y) N E(y,z) N —E(x, 2))
vV (mE(x,y) N—E(y,z) NE(x,2)) .

Graph-SAT(V) is NP-complete.
Example 2 Let W, only contain

ba(x,y,2) :=(E(x,y) AN=E(y, 2) N ~E(X, 2))
Vv (E(x,y) AN E(y,2) A—E(X, 2))
Vv (-E(x,y) A —E(y,2) A E(x, 2))
V(E(XY) NE(y,2) NE(x,2)) .

Graph-SAT(V,) is in P,
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Graph-SAT
%

Constraint Satisfaction Problems
of reducts of the random graph
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Graph formulas and reducts of the random graph

Let G = (V; E) denote the random graph, i.e.,
the unique countably infinite graph which

@ is (ultra-)homogeneous
@ contains all finite (even countable) graphs.

For a graph formula ¢ (xq, ..., xp), define a relation
Ry :={(a1,....an) € V" :¢(ay,...,an)}.
For a set W of graph formulas, define a structure
My = (V;(Ry ¢ e V)).

Iy is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.
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Graph-SAT as Constraint Satisfaction Problem

An instance
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of Graph-SAT(V) has a positive solution «+»
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Graph-SAT as Constraint Satisfaction Problem

An instance
o W={wy,...,wn}
o ¢17"'7¢n

of Graph-SAT(V) has a positive solution «+»

the sentence dwy, ..., wn. A, ¢; holds in I'y.

The decision problem
whether or not a given primitive positive sentence holds in 'y

is called the Constraint Satisfaction Problem of 'y (or CSP(I'y)).

So Graph-SAT(W) and CSP(I'y) are one and the same problem.
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The algebraic approach:

From reducts to polymorphisms
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Primitive positive (pp) definability and polymorphisms

For reducts I', A of the random graph,
set I <pp A iff every relation of ' has a pp-definition from A.

Easy observation.
If I <pp A, then CSP(I') has a polynomial-time reduction to CSP(A).

A function f : T" — T is a polymorphism of T iff
for all relations Rof rand all ry,...,r, € Rwe have f(ry,...,r) € R.

Generalization of endomorphism, automorphism.

We write Pol(I") for the set of polymorphisms of I'.
“Polymorphism clone of T”

Theorem (Bodirsky, NeSetfil). I <y, A iff Pol(A) C Pol(T).
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The polymorphism strategy

Larger reducts — harder CSP
N<pA — CSP(I) <poitime CSP(A)

Larger clones — easier CSP
Pol(l') C Pol(A) —  CSP(A)<poitime CSP(I)

Strategy:

(i) Prove hardness for certain relations

(ii) Prove that all reducts which do not pp-define any of these
relations are tractable.

Reducts of (ii) have polymorphisms violating the relations of (i).
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Ramsey theory:

Patterns in polymorphisms
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Canonical functions

A function f : G — G is canonical iff

whenever two pairs (x, y), (u, v) € G? have the the same type,
then (f(x), f(y)) and (f(u), f(v)) have the same type as well.
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Canonical functions

A function f : G — G is canonical iff
whenever two pairs (x, y), (u, v) € G? have the the same type,
then (f(x), f(y)) and (f(u), f(v)) have the same type as well.

Examples
@ Function which switches edges and non-edges.
@ Injection onto complete subgraph of G.

Ramsey theory implies:
Every finite graph has a copy in G on which f is canonical.

Generalization of canonical to higher arity functions.

Theorem (roughly). If a polymorphism of I violates a relation R,
then there exists a canonical polymorphism of I which violates R.

Canonical functions are finite objects!
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INPUT:
@ A set W of variables (vertices), and
@ statements ¢4, ..., ¢, about the elements of W,

where each ¢; is taken from W.
QUESTION: Is A\, ¢; satisfiable in a graph?

Graph-SAT (V) is either in P or NP-complete, for all V.
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The theorem in more detalil

Let I' be a reduct of the random graph. Then:

@ Either I' has one out of 17 canonical polymorphisms,
and CSP(I) is tractable,

@ or CSP(IN) is NP-complete.
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The theorem in more detalil

Let I' be a reduct of the random graph. Then:

@ Either I' has one out of 17 canonical polymorphisms,
and CSP(I) is tractable,

@ or CSP(IN) is NP-complete.

Let I be a reduct of the random graph. Then:

@ Either I pp-defines one out of 4 hard relations,
and CSP(I') is NP-complete,

@ or CSP(I) is tractable.
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The Meta Problem

Meta-Problem of Graph-SAT(V)

INPUT: A finite set W of graph formulas.
QUESTION: Is Graph-SAT(¥) in P?
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The Meta Problem

Meta-Problem of Graph-SAT(V)

INPUT: A finite set W of graph formulas.
QUESTION: Is Graph-SAT (V) in P?

The Meta-Problem of Graph-SAT (V) is decidable.

Michael Pinsker (Paris) Schaefer’s theorem for graphs



Michael Pinsker (Paris) Schaefer’s theorem for graphs 24 /24



