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The graph satisfiability problem

Graph-SAT(Ψ)
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The Boolean satisfiability problem

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Theorem (Schaefer ’78)
Boolean-SAT(Ψ) is either in P or NP-complete, for all Ψ.
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The Graph Satisfiability Problem

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)
Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Question
Is Graph-SAT(Ψ) either in P or NP-complete, for all Ψ?
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Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.
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Graph-SAT

→

Constraint Satisfaction Problems

of reducts of the random graph
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Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which

is (ultra-)homogeneous
contains all finite (even countable) graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.
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Graph-SAT as Constraint Satisfaction Problem

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔

the sentence ∃w1, . . . ,wm.
∧

i φi holds in ΓΨ.

The decision problem
whether or not a given primitive positive sentence holds in ΓΨ

is called the Constraint Satisfaction Problem of ΓΨ (or CSP(ΓΨ)).

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.
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The algebraic approach:

From reducts to polymorphisms
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Primitive positive (pp) definability and polymorphisms

For reducts Γ,∆ of the random graph,
set Γ ≤pp ∆ iff every relation of Γ has a pp-definition from ∆.

Easy observation.
If Γ ≤pp ∆, then CSP(Γ) has a polynomial-time reduction to CSP(∆).

A function f : Γn → Γ is a polymorphism of Γ iff
for all relations R of Γ and all r1, . . . , rn ∈ R we have f (r1, . . . , rn) ∈ R.

Generalization of endomorphism, automorphism.

We write Pol(Γ) for the set of polymorphisms of Γ.
“Polymorphism clone of Γ”

Theorem (Bodirsky, Nešetřil). Γ ≤pp ∆ iff Pol(∆) ⊆ Pol(Γ).
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The polymorphism strategy

Larger reducts→ harder CSP
Γ ≤pp ∆ → CSP(Γ)≤Poltime CSP(∆)

Larger clones→ easier CSP
Pol(Γ) ⊆ Pol(∆) → CSP(∆)≤Poltime CSP(Γ)

Strategy:

(i) Prove hardness for certain relations
(ii) Prove that all reducts which do not pp-define any of these

relations are tractable.

Reducts of (ii) have polymorphisms violating the relations of (i).
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Ramsey theory:

Patterns in polymorphisms
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Canonical functions

A function f : G→ G is canonical iff
whenever two pairs (x , y), (u, v) ∈ G2 have the the same type,
then (f (x), f (y)) and (f (u), f (v)) have the same type as well.

Examples
Function which switches edges and non-edges.
Injection onto complete subgraph of G.

Ramsey theory implies:
Every finite graph has a copy in G on which f is canonical.

Generalization of canonical to higher arity functions.

Theorem (roughly). If a polymorphism of Γ violates a relation R,
then there exists a canonical polymorphism of Γ which violates R.

Canonical functions are finite objects!
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The Graph Satisfiability Problem

Let Ψ be a finite set of graph formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Theorem
Graph-SAT(Ψ) is either in P or NP-complete, for all Ψ.
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The theorem in more detail

Theorem
Let Γ be a reduct of the random graph. Then:

Either Γ has one out of 17 canonical polymorphisms,
and CSP(Γ) is tractable,

or CSP(Γ) is NP-complete.

Theorem
Let Γ be a reduct of the random graph. Then:

Either Γ pp-defines one out of 4 hard relations,
and CSP(Γ) is NP-complete,

or CSP(Γ) is tractable.
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The Meta Problem

Meta-Problem of Graph-SAT(Ψ)
INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

Theorem
The Meta-Problem of Graph-SAT(Ψ) is decidable.
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