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Three lattices

Let X be an infinite set.

Gr(X ) . . . lattice of all permutation groups on X .
(order = containment, meet = intersection)

Alternatively: Gr(X ) subgroup lattice of the symmetric group Sym(X ).

Mo(X ) . . . lattice of all transformation monoids on X .
(order = containment, meet = intersection)

Alternatively: Mo(X ) submonoid lattice of the monoid X X .

Cl(X ) . . . lattice of all (concrete) clones on X .
(order = containment, meet = intersection)

Alternatively: Cl(X ) subclone lattice of the full clone O :=
⋃

n X X n
.
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Lattice worries

What do these lattices look like?

(lattices: Gr(X ), Mo(X ), Cl(X ))

Are they ugly?
What do they contain?

Is this vegetarian?
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Comparing the lattices

Gr(X ) is a sublattice of Mo(X ) is a sublattice of Cl(X ).

Problem
Converse true?
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Size of the lattices

Observations.

|Sym(X )| = |X X | = |O| = 2|X |.

|Gr(X )| = |Mo(X )| = |Cl(X )| = 22|X |
.

But: number of finitely generated groups / monoids / clones: 2|X |.

G finitely generated↔ G is compact, i.e.,
whenever G ≤

∨
i∈I Gi , then also G ≤

∨
i∈J Gi for some J ⊆ I finite.

Every group (monoid, clone) is the join of compact elements.

So Gr(X ), Mo(X ), Cl(X ) are algebraic.

Fact: A complete sublattice of an algebraic lattice is algebraic and
cannot have more compact elements.
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Non-vegetarian lattices

Theorem (MP ’06)

Cl(X ) is universal, i.e., every algebraic lattice with at most 2|X |

compact elements is a complete sublattice of Cl(X ).

Theorem (MP + Shelah ’11)

Mo(X ) is universal.

Theorem (MP + Shelah ’12)

Gr(X ) is universal.

So Cl(X ) is a sublattice of Mo(X ) is a sublattice of Gr(X ).
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Related work

Embeddings of algebraic lattices into subgroup lattices of (abstract)
groups already known.

E.g. Every algebraic lattice is an interval of the subgroup lattice of a
group (Tuma ’89).

Size of group equals number of compact elements.

Stone representation as permutation group acting on set of size 2|X |,
and not |X |.
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Local closure

A permutation group G is called (locally) closed↔
for all α ∈ Sym(X ), if α can be interpolated by permutations from G on
all finite sets, then α ∈ G.

Analogous definitions for transformation monoids, clones.

Group is closed↔ it is the automorphism group of a relational
structure with domain X .

Monoid is closed↔ it is the endomorphism monoid of a relational
structure with domain X .

Clone is closed↔ it is the polymorphism clone of a relational
structure with domain X .

Topological structure of groups / monoids / clones important even for
universal algebraists!

Topological Birkhoff (with M. Bodirsky)
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Lattices of closed groups / monoids / clones

Closed groups / monoids / clones form complete lattices
(meet = intersection): Grc(X ) / Moc(X ) / Clc(X ).

Size: 2|X |. Non-algebraic!

Theorem (MP ’09)

M2ℵ0 embeds into Clc(N).

Theorem (MP + Shelah ’12)

M2ℵ0 embeds into Gr(N) in such a way that
the groups are Fσ (= unions of closed groups).

Theorem (MP + Shelah ’12)

Assume that λ<λ = λ and cofinality(λ) > ℵ0.
Then M2λ embeds into Grc(λ).
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Open problems

Problem
Does M2ℵ0 embed into Grc(N)?

Problem
Does M2ℵ0 embed into Moc(N)?

Problem
Do all lattices (excluding impossible ones) embed into
Grc(N) / Moc(N) / Clc(N)?

Example of impossible: chain of length 2ℵ0 .

Lattices of permutation groups Michael Pinsker (Paris 7)



Open problems

Problem
Does M2ℵ0 embed into Grc(N)?

Problem
Does M2ℵ0 embed into Moc(N)?

Problem
Do all lattices (excluding impossible ones) embed into
Grc(N) / Moc(N) / Clc(N)?

Example of impossible: chain of length 2ℵ0 .

Lattices of permutation groups Michael Pinsker (Paris 7)



Open problems

Problem
Does M2ℵ0 embed into Grc(N)?

Problem
Does M2ℵ0 embed into Moc(N)?

Problem
Do all lattices (excluding impossible ones) embed into
Grc(N) / Moc(N) / Clc(N)?

Example of impossible: chain of length 2ℵ0 .

Lattices of permutation groups Michael Pinsker (Paris 7)



Open problems

Problem
Does M2ℵ0 embed into Grc(N)?

Problem
Does M2ℵ0 embed into Moc(N)?

Problem
Do all lattices (excluding impossible ones) embed into
Grc(N) / Moc(N) / Clc(N)?

Example of impossible: chain of length 2ℵ0 .

Lattices of permutation groups Michael Pinsker (Paris 7)



Open problems

Problem
Does M2ℵ0 embed into Grc(N)?

Problem
Does M2ℵ0 embed into Moc(N)?

Problem
Do all lattices (excluding topologically impossible ones) embed into
Grc(N) / Moc(N) / Clc(N)?

Example of impossible: chain of length 2ℵ0 .

Lattices of permutation groups Michael Pinsker (Paris 7)



Open problems

Problem
Does M2ℵ0 embed into Grc(N)?

Problem
Does M2ℵ0 embed into Moc(N)?

Problem
Do all lattices (excluding topologically impossible ones) embed into
Grc(N) / Moc(N) / Clc(N)?

Example of impossible: chain of length 2ℵ0 .

Lattices of permutation groups Michael Pinsker (Paris 7)



Lattices of permutation groups Michael Pinsker (Paris 7)


