TBA

Michael Pinsker (Paris 7)

joint work with Manuel Bodirsky (LIX Palaiseau)

Dagstuhl 2012

Topological Birkhoff & Applications

Michael Pinsker (Paris 7)

joint work with Manuel Bodirsky (LIX Palaiseau)

Dagstuhl 2012

Michael Pinsker (Paris 7)

Topological Birkhoff

Topological Birkhoff: theorem

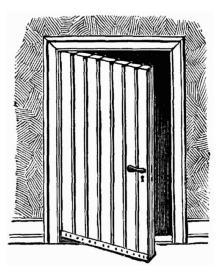
 Generalization of Birkhoff's HSP^{fin} theorem from finite to certain infinite algebras

- Generalization of Birkhoff's HSP^{fin} theorem from finite to certain infinite algebras
- Corollary in the purely model theoretic language: Primitive positive interpretations

- Generalization of Birkhoff's HSP^{fin} theorem from finite to certain infinite algebras
- Corollary in the purely model theoretic language: Primitive positive interpretations
- Applications to CSPs with infinite templates

- Generalization of Birkhoff's HSP^{fin} theorem from finite to certain infinite algebras
- Corollary in the purely model theoretic language: Primitive positive interpretations
- Applications to CSPs with infinite templates

```
Implication chain: \downarrow (TBA)
Motivation chain: \uparrow (ATB)
```



Part I: Simple cloning

Let Γ be a relational structure with finite language τ .

CSP(Γ)

INPUT: A finite set of variables and τ -constraints on these variables. QUESTION: Does there exists a satisfying assignment of values in Γ ? Let Γ be a relational structure with finite language τ .

CSP(Γ)

INPUT: A finite set of variables and τ -constraints on these variables. QUESTION: Does there exists a satisfying assignment of values in Γ ?

Γ can be infinite!

Fear 1: the fear of nonexistence

Fear 1: the fear of nonexistence

Q: Every thing in my life is finite. Why should Γ be infinite?

Fear 1: the fear of nonexistence

Q: Every thing in my life is finite. Why should Γ be infinite?

A1: You don't have to invite the elements of Γ to your living room!

Fear 1: the fear of nonexistence

Q: Every thing in my life is finite. Why should Γ be infinite?

A1: You don't have to invite the elements of Γ to your living room!

A2: Are the natural numbers part of your life?

Fear 1: the fear of nonexistence

Q: Every thing in my life is finite. Why should Γ be infinite?

A1: You don't have to invite the elements of Γ to your living room!

A2: Are the natural numbers part of your life?

Fear 1: the fear of nonexistence

- **Q:** Every thing in my life is finite. Why should Γ be infinite?
- A1: You don't have to invite the elements of Γ to your living room!
- A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence

Q: How can an algorithm calculate anything about infinite Γ ?

Fear 1: the fear of nonexistence

- **Q:** Every thing in my life is finite. Why should Γ be infinite?
- A1: You don't have to invite the elements of Γ to your living room!
- A2: Are the natural numbers part of your life?

- **Q:** How can an algorithm calculate anything about infinite Γ ?
- A: How can an algorithm add integers?

Fear 1: the fear of nonexistence

- **Q:** Every thing in my life is finite. Why should Γ be infinite?
- A1: You don't have to invite the elements of Γ to your living room!
- A2: Are the natural numbers part of your life?

- **Q:** How can an algorithm calculate anything about infinite Γ ?
- A: How can an algorithm add integers?
- Q: Aren't there undecidable infinite template CSPs?

Fear 1: the fear of nonexistence

- **Q:** Every thing in my life is finite. Why should Γ be infinite?
- A1: You don't have to invite the elements of Γ to your living room!
- A2: Are the natural numbers part of your life?

- **Q:** How can an algorithm calculate anything about infinite Γ ?
- A: How can an algorithm add integers?
- Q: Aren't there undecidable infinite template CSPs?
- A1: Isn't ... undecidable too?

Fear 1: the fear of nonexistence

- **Q:** Every thing in my life is finite. Why should Γ be infinite?
- A1: You don't have to invite the elements of Γ to your living room!
- A2: Are the natural numbers part of your life?

- **Q:** How can an algorithm calculate anything about infinite Γ ?
- A: How can an algorithm add integers?
- **Q:** Aren't there undecidable infinite template CSPs?
- A1: Isn't ... undecidable too?
- A2: There is a large interesting class of infinite Γ whose CSP is in NP.

Fear 1: the fear of nonexistence

- **Q:** Every thing in my life is finite. Why should Γ be infinite?
- A1: You don't have to invite the elements of Γ to your living room!
- A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence

- **Q:** How can an algorithm calculate anything about infinite Γ ?
- A: How can an algorithm add integers?
- **Q:** Aren't there undecidable infinite template CSPs?
- A1: Isn't ... undecidable too?
- A2: There is a large interesting class of infinite Γ whose CSP is in NP.

Fear 1: the fear of nonexistence

- **Q:** Every thing in my life is finite. Why should Γ be infinite?
- A1: You don't have to invite the elements of Γ to your living room!
- A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence

- **Q:** How can an algorithm calculate anything about infinite Γ ?
- A: How can an algorithm add integers?
- **Q:** Aren't there undecidable infinite template CSPs?
- A1: Isn't ... undecidable too?
- A2: There is a large interesting class of infinite Γ whose CSP is in NP.

Fear 3: the fear of meaninglessness

Q: Can $CSP(\Gamma)$ be meaningful for infinite Γ ?

Fear 1: the fear of nonexistence

- **Q:** Every thing in my life is finite. Why should Γ be infinite?
- A1: You don't have to invite the elements of Γ to your living room!
- A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence

- **Q:** How can an algorithm calculate anything about infinite Γ ?
- A: How can an algorithm add integers?
- **Q:** Aren't there undecidable infinite template CSPs?
- A1: Isn't ... undecidable too?
- A2: There is a large interesting class of infinite Γ whose CSP is in NP.

- **Q:** Can CSP(Γ) be meaningful for infinite Γ ?
- A: Is acyclicity of digraphs a meaningful problem?

Fear 1: the fear of nonexistence

- **Q:** Every thing in my life is finite. Why should Γ be infinite?
- A1: You don't have to invite the elements of Γ to your living room!
- A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence

- **Q:** How can an algorithm calculate anything about infinite Γ ?
- A: How can an algorithm add integers?
- **Q:** Aren't there undecidable infinite template CSPs?
- A1: Isn't ... undecidable too?
- A2: There is a large interesting class of infinite Γ whose CSP is in NP.

- **Q:** Can CSP(Γ) be meaningful for infinite Γ ?
- A: Is acyclicity of digraphs a meaningful problem?
- Q: Why do you generalize?

Fear 1: the fear of nonexistence

- **Q:** Every thing in my life is finite. Why should Γ be infinite?
- A1: You don't have to invite the elements of Γ to your living room!
- A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence

- **Q:** How can an algorithm calculate anything about infinite Γ ?
- A: How can an algorithm add integers?
- Q: Aren't there undecidable infinite template CSPs?
- A1: Isn't ... undecidable too?
- A2: There is a large interesting class of infinite Γ whose CSP is in NP.

- **Q:** Can CSP(Γ) be meaningful for infinite Γ ?
- A: Is acyclicity of digraphs a meaningful problem?
- Q: Why do you generalize?
- A: Why did you restrict?

Fear 1: the fear of nonexistence

- **Q:** Every thing in my life is finite. Why should Γ be infinite?
- A1: You don't have to invite the elements of Γ to your living room!
- A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence

- **Q:** How can an algorithm calculate anything about infinite Γ ?
- A: How can an algorithm add integers?
- Q: Aren't there undecidable infinite template CSPs?
- A1: Isn't ... undecidable too?
- A2: There is a large interesting class of infinite Γ whose CSP is in NP.

- **Q:** Can $CSP(\Gamma)$ be meaningful for infinite Γ ?
- A: Is acyclicity of digraphs a meaningful problem?
- Q: Why do you generalize?
- A: Why did you restrict? OK for technical reasons.

Finite simple cloning

Theorem (Geiger '68; Bodnarchuk+Kaluzhnin+Kotov+Romov '69) Let Γ , Δ be finite relational structures on the same domain. TFAE:

- $\blacksquare \Delta is pp-definable in \Gamma;$
- $Pol(\Gamma) \subseteq Pol(\Delta)$.

Theorem (Geiger '68; Bodnarchuk+Kaluzhnin+Kotov+Romov '69)

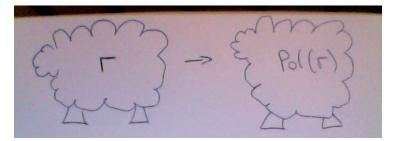
Let Γ, Δ be finite relational structures on the same domain. TFAE:

- $\blacksquare \Delta is pp-definable in \Gamma;$
- $\blacksquare \operatorname{Pol}(\Gamma) \subseteq \operatorname{Pol}(\Delta).$
- $\implies \Delta$ "sits inside" Γ .
- \implies CSP(Γ) is at least as hard as CSP(Δ).

Theorem (Geiger '68; Bodnarchuk+Kaluzhnin+Kotov+Romov '69)

Let Γ, Δ be finite relational structures on the same domain. TFAE:

- $\blacksquare \Delta is pp-definable in \Gamma;$
- $\blacksquare \ \mathsf{Pol}(\Gamma) \subseteq \mathsf{Pol}(\Delta).$
- $\implies \Delta$ "sits inside" Γ .
- \implies CSP(Γ) is at least as hard as CSP(Δ).



ω -categoricity

ω -categoricity

Def. A countable relational structure Γ is ω -categorical iff its theory has no countable non-standard model.

Def. A countable relational structure Γ is ω -categorical iff its theory has no countable non-standard model.

Finiteness condition!

Def. A countable relational structure Γ is ω -categorical iff its theory has no countable non-standard model.

Finiteness condition!

Meaning:

Def. A countable relational structure Γ is ω -categorical iff its theory has no countable non-standard model.

Finiteness condition!

Meaning:

For every $n \ge 1$

Def. A countable relational structure Γ is ω -categorical iff its theory has no countable non-standard model.

Finiteness condition!

Meaning:

For every $n \ge 1$

there exist finitely many *n*-tuples a_1, \ldots, a_k of elements of Γ

Def. A countable relational structure Γ is ω -categorical iff its theory has no countable non-standard model.

Finiteness condition!

Meaning:

For every $n \ge 1$

there exist finitely many *n*-tuples a_1, \ldots, a_k of elements of Γ such that any other *n*-tuple

Def. A countable relational structure Γ is ω -categorical iff its theory has no countable non-standard model.

Finiteness condition!

Meaning:

For every $n \ge 1$

there exist finitely many *n*-tuples a_1, \ldots, a_k of elements of Γ such that any other *n*-tuple is equivalent to one of the a_i with respect to the theory of Γ .

Def. A countable relational structure Γ is ω -categorical iff its theory has no countable non-standard model.

Finiteness condition!

Meaning:

For every $n \ge 1$

there exist finitely many *n*-tuples a_1, \ldots, a_k of elements of Γ such that any other *n*-tuple is equivalent to one of the a_i with respect to the theory of Γ .

Examples: Order of rationals, random graph, random partial order.

Def. A countable relational structure Γ is ω -categorical iff its theory has no countable non-standard model.

Finiteness condition!

Meaning:

For every $n \ge 1$

there exist finitely many *n*-tuples a_1, \ldots, a_k of elements of Γ such that any other *n*-tuple is equivalent to one of the a_i with respect to the theory of Γ .

Examples: Order of rationals, random graph, random partial order.

Non-example: Order of integers.

Def. A countable relational structure Γ is ω -categorical iff its theory has no countable non-standard model.

Finiteness condition!

Meaning:

For every $n \ge 1$

there exist finitely many *n*-tuples a_1, \ldots, a_k of elements of Γ such that any other *n*-tuple is equivalent to one of the a_i with respect to the theory of Γ .

Examples: Order of rationals, random graph, random partial order.

Non-example: Order of integers.

CSP: essentially finitely many choices for *n* variables!

Theorem (Bodirsky+Nešetřil '03)

Let Γ , Δ be ω -categorical rel. structures on the same domain. TFAE:

- $\blacksquare \Delta is pp-definable in \Gamma;$
- $Pol(\Gamma) \subseteq Pol(\Delta)$.

Theorem (Bodirsky+Nešetřil '03)

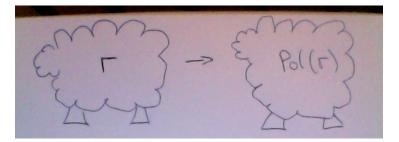
Let Γ , Δ be ω -categorical rel. structures on the same domain. TFAE:

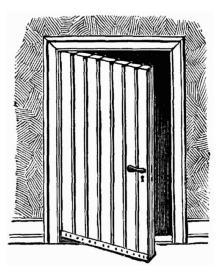
- $\blacksquare \Delta is pp-definable in \Gamma;$
- $Pol(\Gamma) \subseteq Pol(\Delta)$.
- $\implies \Delta$ "sits inside" Γ .
- \implies CSP(Γ) is at least as hard as CSP(Δ).

Theorem (Bodirsky+Nešetřil '03)

Let Γ , Δ be ω -categorical rel. structures on the same domain. TFAE:

- $\blacksquare \Delta is pp-definable in \Gamma;$
- $\blacksquare \ \mathsf{Pol}(\Gamma) \subseteq \mathsf{Pol}(\Delta).$
- $\implies \Delta$ "sits inside" Γ .
- \implies CSP(Γ) is at least as hard as CSP(Δ).





Part II: Double cloning

Definition. Let Δ , Γ be relational structures. Δ has a pp-interpretation in Γ iff it is constructible from Γ

Definition. Let Δ , Γ be relational structures.

 Δ has a pp-interpretation in Γ iff it is constructible from Γ by

- expanding Γ by all pp-definable relations;
- then taking a finite "power";
- then taking a substructure induced by a pp-definable subset;
- then factoring by a pp-definable equivalence relation;
- then forget some of the relations.

Definition. Let Δ , Γ be relational structures.

 Δ has a pp-interpretation in Γ iff it is constructible from Γ by

- expanding Γ by all pp-definable relations;
- then taking a finite "power";
- then taking a substructure induced by a pp-definable subset;
- then factoring by a pp-definable equivalence relation;
- then forget some of the relations.

Meaning.

- $\implies \Delta$ "sits inside" Γ in a weaker sense.
- \implies CSP(Γ) is at least as hard as CSP(Δ).

Definition. Let Δ , Γ be relational structures.

 Δ has a pp-interpretation in Γ iff it is constructible from Γ by

- expanding Γ by all pp-definable relations;
- then taking a finite "power";
- then taking a substructure induced by a pp-definable subset;
- then factoring by a pp-definable equivalence relation;
- then forget some of the relations.

Meaning.

- $\implies \Delta$ "sits inside" Γ in a weaker sense.
- \implies CSP(Γ) is at least as hard as CSP(Δ).

Example: $(\mathbb{Q}; +, \cdot)$ has a pp-interpretation in $(\mathbb{Z}; +, \cdot)$.

Can view $Pol(\Gamma)$ as an algebra on Γ by giving it a signature.

Can view $Pol(\Gamma)$ as an algebra on Γ by giving it a signature.

Let $\ensuremath{\mathbb{C}}$ be a class of algebras of the same signature.

Can view $Pol(\Gamma)$ as an algebra on Γ by giving it a signature.

Let $\ensuremath{\mathbb{C}}$ be a class of algebras of the same signature.

- P^{fin}(C)... all finite products of algebras in C.
- $S(\mathcal{C})$... all subalgebras of algebras in \mathcal{C} .
- $H(\mathcal{C})$... all factors of algebras in \mathcal{C} .

Can view $Pol(\Gamma)$ as an algebra on Γ by giving it a signature.

Let $\ensuremath{\mathbb{C}}$ be a class of algebras of the same signature.

- P^{fin}(C)... all finite products of algebras in C.
- $S(\mathcal{C})$... all subalgebras of algebras in \mathcal{C} .
- $H(\mathcal{C})$... all factors of algebras in \mathcal{C} .

Theorem

Let Γ , Δ be finite. TFAE:

- Δ has a pp-interpretation in Γ ;
- there exists $\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Pol}(\Gamma))$ whose functions are elements of $\mathsf{Pol}(\Delta)$.

Theorem (Birkhoff)

Let $\mathfrak{A}, \mathfrak{B}$ be finite τ -algebras. TFAE:

- $\blacksquare \ \mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A}).$
- \blacksquare all equations of \mathfrak{A} also hold in \mathfrak{B} .
- the natural homomorphism which sends every *τ*-term in 𝔄 to the corresponding term in 𝔅 exists.

Theorem (Birkhoff)

Let $\mathfrak{A}, \mathfrak{B}$ be finite τ -algebras. TFAE:

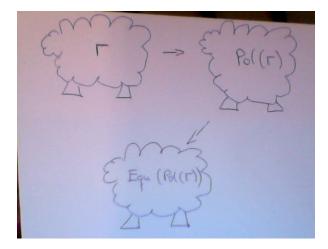
- $\blacksquare \ \mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A}).$
- \blacksquare all equations of \mathfrak{A} also hold in \mathfrak{B} .
- the natural homomorphism which sends every *τ*-term in 𝔄 to the corresponding term in 𝔅 exists.

Theorem

Let Γ , Δ be finite relational structures. TFAE:

- Δ has a pp-interpretation in Γ ;
- there exists a homomorphism from $Pol(\Gamma)$ into $Pol(\Delta)$.

Finite double cloning visualized



Let $\mathbb S$ be the structure on $\{0,1\}$ with the only relation $\{(0,0,1),(0,1,0),(1,0,0)\}.$

Let $\mathbb S$ be the structure on $\{0,1\}$ with the only relation $\{(0,0,1),(0,1,0),(1,0,0)\}.$

CSP(S) equivalent to positive 1-in-3-SAT. NP-complete.

Pol(S) is the trivial clone **1** consisting only of projections.

Let ${\mathbb S}$ be the structure on $\{0,1\}$ with the only relation $\{(0,0,1),(0,1,0),(1,0,0)\}.$

CSP(S) equivalent to positive 1-in-3-SAT. NP-complete.

Pol(S) is the trivial clone **1** consisting only of projections.

Fact

Let Γ be finite. TFAE:

- S has a pp-interpretation in Γ.
- **There exists a homomorphism from Pol(\Gamma) onto 1.**
- All finite structures have a pp-interpretation in Γ.

Let $\mathbb S$ be the structure on $\{0,1\}$ with the only relation $\{(0,0,1),(0,1,0),(1,0,0)\}.$

CSP(S) equivalent to positive 1-in-3-SAT. NP-complete.

Pol(S) is the trivial clone **1** consisting only of projections.

Fact

Let Γ be finite. TFAE:

- S has a pp-interpretation in Γ.
- **There exists a homomorphism from Pol(\Gamma) onto 1.**
- All finite structures have a pp-interpretation in Γ.

Conjecture (Bulatov+Jeavons+Krokhin; Feder+Vardi)

For finite idempotent cores Γ this is the unique reason for NP-hardness.

Theorem

Let Γ be ω -categorical, and Δ be arbitrary. TFAE:

- Δ has a pp-interpretation in Γ ;
- there exists $\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Pol}(\Gamma))$ whose functions are elements of $\mathsf{Pol}(\Delta)$.

Theorem

Let Γ be ω -categorical, and Δ be arbitrary. TFAE:

- Δ has a pp-interpretation in Γ ;
- there exists $\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Pol}(\Gamma))$ whose functions are elements of $\mathsf{Pol}(\Delta)$.

What are the elements of $HSP^{fin}(Pol(\Gamma))$? Birkhoff help!

Theorem

Let Γ be ω -categorical, and Δ be arbitrary. TFAE:

- Δ has a pp-interpretation in Γ ;
- there exists $\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Pol}(\Gamma))$ whose functions are elements of $\mathsf{Pol}(\Delta)$.

What are the elements of $HSP^{fin}(Pol(\Gamma))$? Birkhoff help! Theorem for which algebras instead of finite ones?

Theorem

Let Γ be ω -categorical, and Δ be arbitrary. TFAE:

```
• \Delta has a pp-interpretation in \Gamma;
```

• there exists $\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Pol}(\Gamma))$ whose functions are elements of $\mathsf{Pol}(\Delta)$.

What are the elements of $HSP^{fin}(Pol(\Gamma))$? Birkhoff help! Theorem for which algebras instead of finite ones?

Def. A permutation group on X is oligomorphic iff its action on X^n has finitely many orbits for all $n \ge 1$.

Theorem

Let Γ be ω -categorical, and Δ be arbitrary. TFAE:

```
• \Delta has a pp-interpretation in \Gamma;
```

• there exists $\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Pol}(\Gamma))$ whose functions are elements of $\mathsf{Pol}(\Delta)$.

What are the elements of $HSP^{fin}(Pol(\Gamma))$? Birkhoff help! Theorem for which algebras instead of finite ones?

Def. A permutation group on X is oligomorphic iff its action on X^n has finitely many orbits for all $n \ge 1$.

Def. An algebra is oligomorphic iff its term functions contain an oligomorphic permutation group.

Theorem

Let Γ be ω -categorical, and Δ be arbitrary. TFAE:

```
• \Delta has a pp-interpretation in \Gamma;
```

• there exists $\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Pol}(\Gamma))$ whose functions are elements of $\mathsf{Pol}(\Delta)$.

What are the elements of $HSP^{fin}(Pol(\Gamma))$? Birkhoff help! Theorem for which algebras instead of finite ones?

Def. A permutation group on X is oligomorphic iff its action on X^n has finitely many orbits for all $n \ge 1$.

Def. An algebra is oligomorphic iff its term functions contain an oligomorphic permutation group.

Thm. A relational structure Γ is ω -categorical iff Pol(Γ) is oligomorphic.

Birkhoff for oligomorphic algebras?

Birkhoff for oligomorphic algebras? No.

Birkhoff for oligomorphic algebras? No.

Every clone on an infinite domain carries two kinds of structure:

Birkhoff for oligomorphic algebras? No.

Every clone on an infinite domain carries two kinds of structure:

■ an algebraic structure: composition (aka equations);

Birkhoff for oligomorphic algebras? No.

Every clone on an infinite domain carries two kinds of structure:

- an algebraic structure: composition (aka equations);
- a topological structure:

a sequence $(g_n)_{n \in \omega}$ of *m*-ary functions converges to an *m*-ary function *f* iff

Birkhoff for oligomorphic algebras? No.

Every clone on an infinite domain carries two kinds of structure:

- an algebraic structure: composition (aka equations);
- a topological structure:

a sequence $(g_n)_{n \in \omega}$ of *m*-ary functions converges to an *m*-ary function *f* iff for all finite subsets *A* of the domain there is $j \in \omega$ such that g_i agrees with *f* on A^m for all i > j.

Birkhoff for oligomorphic algebras? No.

Every clone on an infinite domain carries two kinds of structure:

- an algebraic structure: composition (aka equations);
- a topological structure:

a sequence $(g_n)_{n \in \omega}$ of *m*-ary functions converges to an *m*-ary function *f* iff for all finite subsets *A* of the domain there is $j \in \omega$ such that g_i agrees with *f* on A^m for all i > j.

Theorem ("Topological Birkhoff" MB+MP '12)

Let $\mathfrak{A}, \mathfrak{B}$ be oligomorphic τ -algebras. TFAE:

- $\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A}).$
- the natural homomorphism which sends every *τ*-term in 𝔄 to the corresponding term in 𝔅 exists and is continuous.

Theorem (MB+MP '12)

Let Γ , Δ be ω -categorical or finite relational structures. TFAE:

• Δ has a pp-interpretation in Γ ;

Theorem (MB+MP '12)

Let Γ , Δ be ω -categorical or finite relational structures. TFAE:

- Δ has a pp-interpretation in Γ ;
- there exists a continuous homomorphism from Pol(Γ) into Pol(Δ) whose image is locally oligomorphic.

Theorem (MB+MP '12)

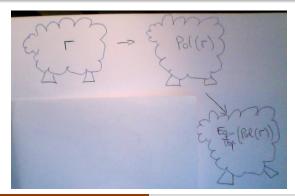
Let Γ , Δ be ω -categorical or finite relational structures. TFAE:

- Δ has a pp-interpretation in Γ ;
- there exists a continuous homomorphism from Pol(Γ) into Pol(Δ)
 whose/image/is/locally/oligomorphic. (for finite Δ)

Theorem (MB+MP '12)

Let Γ , Δ be ω -categorical or finite relational structures. TFAE:

- Δ has a pp-interpretation in Γ ;
- there exists a continuous homomorphism from Pol(Γ) into Pol(Δ)
 whose/image/is/locally/oligomorphic. (for finite Δ)



Corollary

- Let Γ be ω -categorical. TFAE:
 - positive 1-in-3-SAT has a pp-interpretation in Γ;
 - there exists a continuous homomorphism from $Pol(\Gamma)$ onto **1**.
 - all finite structures have a pp-interpretation in Γ.

Corollary

- Let Γ be ω -categorical. TFAE:
 - positive 1-in-3-SAT has a pp-interpretation in Γ;
 - there exists a continuous homomorphism from $Pol(\Gamma)$ onto **1**.
 - all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

Corollary

- Let Γ be ω -categorical. TFAE:
 - positive 1-in-3-SAT has a pp-interpretation in Γ;
 - there exists a continuous homomorphism from $Pol(\Gamma)$ onto **1**.
 - all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

 $CSP(\Gamma)$ is called *Betweenness problem*.

Corollary

- Let Γ be ω -categorical. TFAE:
 - positive 1-in-3-SAT has a pp-interpretation in Γ;
 - there exists a continuous homomorphism from $Pol(\Gamma)$ onto **1**.
 - all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

 $CSP(\Gamma)$ is called *Betweenness problem*.

Let $f \in Pol(\Gamma)$ of arity k.

Corollary

- Let Γ be ω -categorical. TFAE:
 - positive 1-in-3-SAT has a pp-interpretation in Γ;
 - there exists a continuous homomorphism from $Pol(\Gamma)$ onto **1**.
 - all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

 $CSP(\Gamma)$ is called *Betweenness problem*.

Let $f \in Pol(\Gamma)$ of arity k. There is a unique $i \in \{1, ..., k\}$ such that:

Corollary

- Let Γ be ω -categorical. TFAE:
 - positive 1-in-3-SAT has a pp-interpretation in Γ;
 - there exists a continuous homomorphism from $Pol(\Gamma)$ onto **1**.
 - all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

 $CSP(\Gamma)$ is called *Betweenness problem*.

Let $f \in \text{Pol}(\Gamma)$ of arity k. There is a unique $i \in \{1, ..., k\}$ such that: $\forall x, y \in \Gamma^k : ((\forall j \ x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) < f(y)$, or

Corollary

- Let Γ be ω -categorical. TFAE:
 - positive 1-in-3-SAT has a pp-interpretation in Γ;
 - there exists a continuous homomorphism from $Pol(\Gamma)$ onto **1**.
 - all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$ CSP(Γ) is called *Betweenness problem*.

Let $f \in \text{Pol}(\Gamma)$ of arity k. There is a unique $i \in \{1, ..., k\}$ such that: $\forall x, y \in \Gamma^k : ((\forall j \ x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) < f(y)$, or $\forall x, y \in \Gamma^k : ((\forall j \ x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) > f(y)$.

Corollary

- Let Γ be ω -categorical. TFAE:
 - positive 1-in-3-SAT has a pp-interpretation in Γ;
 - there exists a continuous homomorphism from $Pol(\Gamma)$ onto **1**.
 - all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$ CSP(Γ) is called *Betweenness problem*.

Let $f \in \text{Pol}(\Gamma)$ of arity k. There is a unique $i \in \{1, ..., k\}$ such that: $\forall x, y \in \Gamma^k : ((\forall j \ x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) < f(y)$, or $\forall x, y \in \Gamma^k : ((\forall j \ x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) > f(y)$.

Set $\xi(f)$ to be the *i*-th *k*-ary projection in **1**.

Corollary

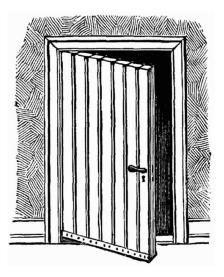
- Let Γ be ω -categorical. TFAE:
 - positive 1-in-3-SAT has a pp-interpretation in Γ;
 - there exists a continuous homomorphism from $Pol(\Gamma)$ onto **1**.
 - all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$ CSP(Γ) is called *Betweenness problem*.

Let $f \in \text{Pol}(\Gamma)$ of arity k. There is a unique $i \in \{1, ..., k\}$ such that: $\forall x, y \in \Gamma^k : ((\forall j \ x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) < f(y)$, or $\forall x, y \in \Gamma^k : ((\forall j \ x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) > f(y)$.

Set $\xi(f)$ to be the *i*-th *k*-ary projection in **1**.

Straightforward: ξ : Pol(Γ) \rightarrow **1** is continuous homomorphism.



Part III: Infinite triple cloning

Does the complexity of $CSP(\Gamma)$ only depend on the algebraic structure of $Pol(\Gamma)$?

Does the complexity of $CSP(\Gamma)$ only depend on the algebraic structure of $Pol(\Gamma)$?

Automatic continuity for automorphism groups:

Does the complexity of $CSP(\Gamma)$ only depend on the algebraic structure of $Pol(\Gamma)$?

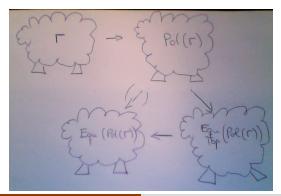
Automatic continuity for automorphism groups:

there is a model of ZF (+DC) where every homomorphism between automorphism groups set is continuous (Shelah'84).

Does the complexity of $CSP(\Gamma)$ only depend on the algebraic structure of $Pol(\Gamma)$?

Automatic continuity for automorphism groups:

there is a model of ZF (+DC) where every homomorphism between automorphism groups set is continuous (Shelah'84).



Do there exist ω -categorical Γ , Δ such that Pol(Γ), Pol(Δ) are isomorphic algebraically but not topologically?

Do there exist ω -categorical Γ , Δ such that Pol(Γ), Pol(Δ) are isomorphic algebraically but not topologically?

Yes for automorphism groups (Evans+Hewitt'90).

Do there exist ω -categorical Γ , Δ such that Pol(Γ), Pol(Δ) are isomorphic algebraically but not topologically?

Yes for automorphism groups (Evans+Hewitt'90).

If so, when does the algebraic structure of $Pol(\Gamma)$ determine the topological one?

Do there exist ω -categorical Γ , Δ such that Pol(Γ), Pol(Δ) are isomorphic algebraically but not topologically?

Yes for automorphism groups (Evans+Hewitt'90).

If so, when does the algebraic structure of $Pol(\Gamma)$ determine the topological one?

For automorphism groups: "small index property".

Do there exist ω -categorical Γ , Δ such that Pol(Γ), Pol(Δ) are isomorphic algebraically but not topologically?

Yes for automorphism groups (Evans+Hewitt'90).

If so, when does the algebraic structure of $Pol(\Gamma)$ determine the topological one?

For automorphism groups: "small index property".

- $(\mathbb{N}; =)$ (Dixon+Neumann+Thomas'86)
- (Q; <) (Truss'89)
- the random graph (Hodges+Hodkinson+Lascar+Shelah'93)

Manuel Bodirsky and Michael Pinsker

Transactions of the AMS / arXiv.

Thank you!