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Topological Birkhoff : theorem

Generalization of Birkhoff’s HSPfin theorem
from finite to certain infinite algebras

Corollary in the purely model theoretic language:
Primitive positive interpretations

Applications to CSPs with infinite templates

Implication chain: ↓ (TBA)
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TBA Michael Pinsker (Paris 7)



Outline

Topological Birkhoff

: theorem

Generalization of Birkhoff’s HSPfin theorem
from finite to certain infinite algebras

Corollary in the purely model theoretic language:
Primitive positive interpretations

Applications to CSPs with infinite templates

Implication chain: ↓ (TBA)
Motivation chain: ↑ (ATB)

TBA Michael Pinsker (Paris 7)



Outline

Topological Birkhoff : theorem

Generalization of Birkhoff’s HSPfin theorem
from finite to certain infinite algebras

Corollary in the purely model theoretic language:
Primitive positive interpretations

Applications to CSPs with infinite templates

Implication chain: ↓ (TBA)
Motivation chain: ↑ (ATB)

TBA Michael Pinsker (Paris 7)



Outline

Topological Birkhoff : theorem

Generalization of Birkhoff’s HSPfin theorem
from finite to certain infinite algebras

Corollary in the purely model theoretic language:
Primitive positive interpretations

Applications to CSPs with infinite templates

Implication chain: ↓ (TBA)
Motivation chain: ↑ (ATB)

TBA Michael Pinsker (Paris 7)



Outline

Topological Birkhoff : theorem

Generalization of Birkhoff’s HSPfin theorem
from finite to certain infinite algebras

Corollary in the purely model theoretic language:
Primitive positive interpretations

Applications to CSPs with infinite templates

Implication chain: ↓ (TBA)
Motivation chain: ↑ (ATB)

TBA Michael Pinsker (Paris 7)



Outline

Topological Birkhoff : theorem

Generalization of Birkhoff’s HSPfin theorem
from finite to certain infinite algebras

Corollary in the purely model theoretic language:
Primitive positive interpretations

Applications to CSPs with infinite templates

Implication chain: ↓ (TBA)
Motivation chain: ↑ (ATB)

TBA Michael Pinsker (Paris 7)



Outline

Topological Birkhoff : theorem

Generalization of Birkhoff’s HSPfin theorem
from finite to certain infinite algebras

Corollary in the purely model theoretic language:
Primitive positive interpretations

Applications to CSPs with infinite templates

Implication chain: ↓ (TBA)
Motivation chain: ↑ (ATB)

TBA Michael Pinsker (Paris 7)
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CSPs

Let Γ be a relational structure with finite language τ .

CSP(Γ)
INPUT: A finite set of variables and τ -constraints on these variables.
QUESTION: Does there exists a satisfying assignment of values in Γ?

Γ can be infinite!
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Three basic human fears

Fear 1: the fear of nonexistence
Q: Every thing in my life is finite. Why should Γ be infinite?
A1: You don’t have to invite the elements of Γ to your living room!
A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence
Q: How can an algorithm calculate anything about infinite Γ?
A: How can an algorithm add integers?

Q: Aren’t there undecidable infinite template CSPs?
A1: Isn’t . . . undecidable too?
A2: There is a large interesting class of infinite Γ whose CSP is in NP.

Fear 3: the fear of meaninglessness
Q: Can CSP(Γ) be meaningful for infinite Γ?
A: Is acyclicity of digraphs a meaningful problem?

Q: Why do you generalize?
A: Why did you restrict? OK for technical reasons.
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Finite simple cloning
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Finite simple cloning (“Neanderthal cloning”)

Theorem (Geiger ’68; Bodnarchuk+Kaluzhnin+Kotov+Romov ’69)

Let Γ,∆ be finite relational structures on the same domain. TFAE:
∆ is pp-definable in Γ;
Pol(Γ) ⊆ Pol(∆).

=⇒ ∆ “sits inside” Γ.
=⇒ CSP(Γ) is at least as hard as CSP(∆).
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ω-categoricity

Def. A countable relational structure Γ is ω-categorical iff
its theory has no countable non-standard model.

Finiteness condition!

Meaning:
For every n ≥ 1
there exist finitely many n-tuples a1, . . . ,ak of elements of Γ

such that any other n-tuple
is equivalent to one of the ai with respect to the theory of Γ.

Examples: Order of rationals, random graph, random partial order.

Non-example: Order of integers.

CSP: essentially finitely many choices for n variables!
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Infinite simple cloning

Theorem (Bodirsky+Nešetřil ’03)
Let Γ,∆ be ω-categorical rel. structures on the same domain. TFAE:

∆ is pp-definable in Γ;
Pol(Γ) ⊆ Pol(∆).

=⇒ ∆ “sits inside” Γ.
=⇒ CSP(Γ) is at least as hard as CSP(∆).
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Part II: Double cloning
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Interpretations

Definition. Let ∆, Γ be relational structures.
∆ has a pp-interpretation in Γ iff it is constructible from Γ by

expanding Γ by all pp-definable relations;
then taking a finite “power”;
then taking a substructure induced by a pp-definable subset;
then factoring by a pp-definable equivalence relation;
then forget some of the relations.

Meaning.
=⇒ ∆ “sits inside” Γ in a weaker sense.
=⇒ CSP(Γ) is at least as hard as CSP(∆).

Example: (Q; +, ·) has a pp-interpretation in (Z; +, ·).
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Example: (Q; +, ·) has a pp-interpretation in (Z; +, ·).
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Finite double cloning I

Can view Pol(Γ) as an algebra on Γ by giving it a signature.

Let C be a class of algebras of the same signature.

Pfin(C) . . . all finite products of algebras in C.
S(C) . . . all subalgebras of algebras in C.
H(C) . . . all factors of algebras in C.

Theorem
Let Γ,∆ be finite. TFAE:

∆ has a pp-interpretation in Γ;
there exists B ∈ HSPfin(Pol(Γ)) whose functions are elements of
Pol(∆).
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Finite double cloning II

Theorem (Birkhoff)
Let A, B be finite τ -algebras. TFAE:

B ∈ HSPfin(A).
all equations of A also hold in B.
the natural homomorphism which sends every τ -term in A to the
corresponding term in B exists.

Theorem
Let Γ,∆ be finite relational structures. TFAE:

∆ has a pp-interpretation in Γ;
there exists a homomorphism from Pol(Γ) into Pol(∆).
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Finite double cloning visualized
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Dichotomy?

Let S be the structure on {0,1} with the only relation
{(0,0,1), (0,1,0), (1,0,0)}.

CSP(S) equivalent to positive 1-in-3-SAT. NP-complete.

Pol(S) is the trivial clone 1 consisting only of projections.

Fact
Let Γ be finite. TFAE:

S has a pp-interpretation in Γ.
There exists a homomorphism from Pol(Γ) onto 1.
All finite structures have a pp-interpretation in Γ.

Conjecture (Bulatov+Jeavons+Krokhin; Feder+Vardi)
For finite idempotent cores Γ this is the unique reason for
NP-hardness.
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Infinite double cloning I

Theorem
Let Γ be ω-categorical, and ∆ be arbitrary. TFAE:

∆ has a pp-interpretation in Γ;
there exists B ∈ HSPfin(Pol(Γ)) whose functions are elements of
Pol(∆).

What are the elements of HSPfin(Pol(Γ))? Birkhoff help!
Theorem for which algebras instead of finite ones?

Def. A permutation group on X is oligomorphic iff
its action on X n has finitely many orbits for all n ≥ 1.

Def. An algebra is oligomorphic iff
its term functions contain an oligomorphic permutation group.

Thm. A relational structure Γ is ω-categorical iff Pol(Γ) is oligomorphic.
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Topological Birkhoff

Birkhoff for oligomorphic algebras?

No.

Every clone on an infinite domain carries two kinds of structure:

an algebraic structure: composition (aka equations);
a topological structure:
a sequence (gn)n∈ω of m-ary functions converges
to an m-ary function f iff
for all finite subsets A of the domain there is j ∈ ω
such that gi agrees with f on Am for all i ≥ j .

Theorem (“Topological Birkhoff” MB+MP ’12)
Let A, B be oligomorphic τ -algebras. TFAE:

B ∈ HSPfin(A).
the natural homomorphism which sends every τ -term in A to the
corresponding term in B exists and is continuous.
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Infinite double cloning II

Theorem (MB+MP ’12)
Let Γ,∆ be ω-categorical or finite relational structures. TFAE:

∆ has a pp-interpretation in Γ;
there exists a continuous homomorphism from Pol(Γ) into Pol(∆)
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Cool hardness proofs

Corollary
Let Γ be ω-categorical. TFAE:

positive 1-in-3-SAT has a pp-interpretation in Γ;
there exists a continuous homomorphism from Pol(Γ) onto 1.
all finite structures have a pp-interpretation in Γ.

Example: Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})
CSP(Γ) is called Betweenness problem.

Let f ∈ Pol(Γ) of arity k . There is a unique i ∈ {1, . . . , k} such that:
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) < f (y), or
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.
Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.
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CSP(Γ) is called Betweenness problem.

Let f ∈ Pol(Γ) of arity k . There is a unique i ∈ {1, . . . , k} such that:
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) < f (y), or
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.
Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.
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Part III: Infinite triple cloning
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Automatic continuity

Does the complexity of CSP(Γ) only depend on the algebraic structure
of Pol(Γ)?

Automatic continuity for automorphism groups:
there is a model of ZF (+DC) where every homomorphism between
automorphism groups set is continuous (Shelah’84).
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Reconstruction

Do there exist ω-categorical Γ, ∆ such that Pol(Γ), Pol(∆) are
isomorphic algebraically but not topologically?

Yes for automorphism groups (Evans+Hewitt’90).

If so, when does the algebraic structure of Pol(Γ) determine the
topological one?

For automorphism groups: “small index property”.

(N; =) (Dixon+Neumann+Thomas’86)
(Q;<) (Truss’89)
the random graph (Hodges+Hodkinson+Lascar+Shelah’93)
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Thank you!
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