
Schaefer’s theorem for graphs

Why to consult the infinite at times

Michael Pinsker

Université Diderot - Paris 7

Tel Aviv University, May 2012

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Outline

Part I
Graph-SAT problems

Part II
Making the finite infinite
CSPs of reducts of the random graph

Part III
Making the infinite finite
Ramsey theory and canonical functions

Part IV
The Graph-SAT dichotomy

Part V
The future
CSPs over homogeneous structures

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Outline

Part I
Graph-SAT problems

Part II
Making the finite infinite
CSPs of reducts of the random graph

Part III
Making the infinite finite
Ramsey theory and canonical functions

Part IV
The Graph-SAT dichotomy

Part V
The future
CSPs over homogeneous structures

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Outline

Part I
Graph-SAT problems

Part II
Making the finite infinite
CSPs of reducts of the random graph

Part III
Making the infinite finite
Ramsey theory and canonical functions

Part IV
The Graph-SAT dichotomy

Part V
The future
CSPs over homogeneous structures

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Outline

Part I
Graph-SAT problems

Part II
Making the finite infinite
CSPs of reducts of the random graph

Part III
Making the infinite finite
Ramsey theory and canonical functions

Part IV
The Graph-SAT dichotomy

Part V
The future
CSPs over homogeneous structures

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Outline

Part I
Graph-SAT problems

Part II
Making the finite infinite
CSPs of reducts of the random graph

Part III
Making the infinite finite
Ramsey theory and canonical functions

Part IV
The Graph-SAT dichotomy

Part V
The future
CSPs over homogeneous structures

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Outline

Part I
Graph-SAT problems

Part II
Making the finite infinite
CSPs of reducts of the random graph

Part III
Making the infinite finite
Ramsey theory and canonical functions

Part IV
The Graph-SAT dichotomy

Part V
The future
CSPs over homogeneous structures

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Part I

Graph-SAT problems

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Boolean satisfiability problems

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Theorem (Schaefer STOC’78)

1139 citations on google scholar

Boolean-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Boolean satisfiability problems

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Theorem (Schaefer STOC’78)

1139 citations on google scholar

Boolean-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Boolean satisfiability problems

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Theorem (Schaefer STOC’78)

1139 citations on google scholar

Boolean-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Boolean satisfiability problems

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Theorem (Schaefer STOC’78)

1139 citations on google scholar

Boolean-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Boolean satisfiability problems

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Theorem (Schaefer STOC’78)

1139 citations on google scholar

Boolean-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Boolean satisfiability problems

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Theorem (Schaefer STOC’78) 1139 citations on google scholar

Boolean-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph satisfiability problems

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)
Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Graph-SAT(Ψ) tractable?

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph satisfiability problems

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)
Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Graph-SAT(Ψ) tractable?

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph satisfiability problems

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)
Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Graph-SAT(Ψ) tractable?

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph satisfiability problems

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)
Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Graph-SAT(Ψ) tractable?

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph satisfiability problems

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)
Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Graph-SAT(Ψ) tractable?

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Part II

Making the finite infinite

CSPs over the random graph

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

universal, i.e., all finite graphs are induced subgraphs of G;
homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

universal, i.e., all finite graphs are induced subgraphs of G;
homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

universal, i.e., all finite graphs are induced subgraphs of G;

homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

universal, i.e., all finite graphs are induced subgraphs of G;
homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

universal, i.e., all finite graphs are induced subgraphs of G;
homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

universal, i.e., all finite graphs are induced subgraphs of G;
homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

universal, i.e., all finite graphs are induced subgraphs of G;
homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph-SAT as CSP of a reduct of G

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

The decision problem
whether or not a given primitive positive sentence holds in ΓΨ

is called the Constraint Satisfaction Problem of ΓΨ (or CSP(ΓΨ)).

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph-SAT as CSP of a reduct of G

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

The decision problem
whether or not a given primitive positive sentence holds in ΓΨ

is called the Constraint Satisfaction Problem of ΓΨ (or CSP(ΓΨ)).

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph-SAT as CSP of a reduct of G

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

The decision problem
whether or not a given primitive positive sentence holds in ΓΨ

is called the Constraint Satisfaction Problem of ΓΨ (or CSP(ΓΨ)).

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph-SAT as CSP of a reduct of G

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

The decision problem
whether or not a given primitive positive sentence holds in ΓΨ

is called the Constraint Satisfaction Problem of ΓΨ (or CSP(ΓΨ)).

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of G.

Note:
Could have used any universal graph!

But:
G is the nicest universal graph.

Let’s study CSP(Γ) for reducts Γ of G!

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of G.

Note:
Could have used any universal graph!

But:
G is the nicest universal graph.

Let’s study CSP(Γ) for reducts Γ of G!

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of G.

Note:
Could have used any universal graph!

But:
G is the nicest universal graph.

Let’s study CSP(Γ) for reducts Γ of G!

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of G.

Note:
Could have used any universal graph!

But:
G is the nicest universal graph.

Let’s study CSP(Γ) for reducts Γ of G!

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of G.

Note:
Could have used any universal graph!

But:
G is the nicest universal graph.

Let’s study CSP(Γ) for reducts Γ of G!

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Primitive positive (pp) definability and polymorphisms

For reducts Γ,∆, set Γ ≤pp ∆ iff
every relation of Γ has a pp-definition from ∆.

Easy observation.
If Γ ≤pp ∆, then CSP(Γ) has a polynomial-time reduction to CSP(∆).

For finite n ≥ 1, a function f : Γn → Γ is a polymorphism of Γ iff
for all relations R of Γ and all r1, . . . , rn ∈ R we have f (r1, . . . , rn) ∈ R.

Generalization of endomorphism, automorphism.

We write Pol(Γ) for the set of polymorphisms of Γ.
“Polymorphism clone of Γ”

Theorem (Bodirsky, Nešetřil ’03). Γ ≤pp ∆ ↔ Pol(∆) ⊆ Pol(Γ).

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Primitive positive (pp) definability and polymorphisms

For reducts Γ,∆, set Γ ≤pp ∆ iff
every relation of Γ has a pp-definition from ∆.

Easy observation.
If Γ ≤pp ∆, then CSP(Γ) has a polynomial-time reduction to CSP(∆).

For finite n ≥ 1, a function f : Γn → Γ is a polymorphism of Γ iff
for all relations R of Γ and all r1, . . . , rn ∈ R we have f (r1, . . . , rn) ∈ R.

Generalization of endomorphism, automorphism.

We write Pol(Γ) for the set of polymorphisms of Γ.
“Polymorphism clone of Γ”

Theorem (Bodirsky, Nešetřil ’03). Γ ≤pp ∆ ↔ Pol(∆) ⊆ Pol(Γ).

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Primitive positive (pp) definability and polymorphisms

For reducts Γ,∆, set Γ ≤pp ∆ iff
every relation of Γ has a pp-definition from ∆.

Easy observation.
If Γ ≤pp ∆, then CSP(Γ) has a polynomial-time reduction to CSP(∆).

For finite n ≥ 1, a function f : Γn → Γ is a polymorphism of Γ iff
for all relations R of Γ and all r1, . . . , rn ∈ R we have f (r1, . . . , rn) ∈ R.

Generalization of endomorphism, automorphism.

We write Pol(Γ) for the set of polymorphisms of Γ.
“Polymorphism clone of Γ”

Theorem (Bodirsky, Nešetřil ’03). Γ ≤pp ∆ ↔ Pol(∆) ⊆ Pol(Γ).

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Primitive positive (pp) definability and polymorphisms

For reducts Γ,∆, set Γ ≤pp ∆ iff
every relation of Γ has a pp-definition from ∆.

Easy observation.
If Γ ≤pp ∆, then CSP(Γ) has a polynomial-time reduction to CSP(∆).

For finite n ≥ 1, a function f : Γn → Γ is a polymorphism of Γ iff
for all relations R of Γ and all r1, . . . , rn ∈ R we have f (r1, . . . , rn) ∈ R.

Generalization of endomorphism, automorphism.

We write Pol(Γ) for the set of polymorphisms of Γ.
“Polymorphism clone of Γ”

Theorem (Bodirsky, Nešetřil ’03). Γ ≤pp ∆ ↔ Pol(∆) ⊆ Pol(Γ).

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Primitive positive (pp) definability and polymorphisms

For reducts Γ,∆, set Γ ≤pp ∆ iff
every relation of Γ has a pp-definition from ∆.

Easy observation.
If Γ ≤pp ∆, then CSP(Γ) has a polynomial-time reduction to CSP(∆).

For finite n ≥ 1, a function f : Γn → Γ is a polymorphism of Γ iff
for all relations R of Γ and all r1, . . . , rn ∈ R we have f (r1, . . . , rn) ∈ R.

Generalization of endomorphism, automorphism.

We write Pol(Γ) for the set of polymorphisms of Γ.
“Polymorphism clone of Γ”

Theorem (Bodirsky, Nešetřil ’03). Γ ≤pp ∆ ↔ Pol(∆) ⊆ Pol(Γ).

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Primitive positive (pp) definability and polymorphisms

For reducts Γ,∆, set Γ ≤pp ∆ iff
every relation of Γ has a pp-definition from ∆.

Easy observation.
If Γ ≤pp ∆, then CSP(Γ) has a polynomial-time reduction to CSP(∆).

For finite n ≥ 1, a function f : Γn → Γ is a polymorphism of Γ iff
for all relations R of Γ and all r1, . . . , rn ∈ R we have f (r1, . . . , rn) ∈ R.

Generalization of endomorphism, automorphism.

We write Pol(Γ) for the set of polymorphisms of Γ.
“Polymorphism clone of Γ”

Theorem (Bodirsky, Nešetřil ’03). Γ ≤pp ∆ ↔ Pol(∆) ⊆ Pol(Γ).

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Primitive positive (pp) definability and polymorphisms

For reducts Γ,∆, set Γ ≤pp ∆ iff
every relation of Γ has a pp-definition from ∆.

Easy observation.
If Γ ≤pp ∆, then CSP(Γ) has a polynomial-time reduction to CSP(∆).

For finite n ≥ 1, a function f : Γn → Γ is a polymorphism of Γ iff
for all relations R of Γ and all r1, . . . , rn ∈ R we have f (r1, . . . , rn) ∈ R.

Generalization of endomorphism, automorphism.

We write Pol(Γ) for the set of polymorphisms of Γ.
“Polymorphism clone of Γ”

Theorem (Bodirsky, Nešetřil ’03). Γ ≤pp ∆ ↔ Pol(∆) ⊆ Pol(Γ).

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



The polymorphism strategy

Larger reducts→ harder CSP
Γ ≤pp ∆ → CSP(Γ)≤Poltime CSP(∆)

Larger polymorphism clones→ easier CSP
Pol(Γ) ⊆ Pol(∆) → CSP(∆)≤Poltime CSP(Γ)

Strategy:

(i) Prove hardness for certain reducts;
(ii) Prove that all reducts which do not pp-define any of these hard

reducts are tractable.

Reducts of (ii) have polymorphisms violating the relations of (i).
Polymorphisms provide algorithms.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



The polymorphism strategy

Larger reducts→ harder CSP
Γ ≤pp ∆ → CSP(Γ)≤Poltime CSP(∆)

Larger polymorphism clones→ easier CSP
Pol(Γ) ⊆ Pol(∆) → CSP(∆)≤Poltime CSP(Γ)

Strategy:

(i) Prove hardness for certain reducts;
(ii) Prove that all reducts which do not pp-define any of these hard

reducts are tractable.

Reducts of (ii) have polymorphisms violating the relations of (i).
Polymorphisms provide algorithms.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



The polymorphism strategy

Larger reducts→ harder CSP
Γ ≤pp ∆ → CSP(Γ)≤Poltime CSP(∆)

Larger polymorphism clones→ easier CSP
Pol(Γ) ⊆ Pol(∆) → CSP(∆)≤Poltime CSP(Γ)

Strategy:

(i) Prove hardness for certain reducts;
(ii) Prove that all reducts which do not pp-define any of these hard

reducts are tractable.

Reducts of (ii) have polymorphisms violating the relations of (i).
Polymorphisms provide algorithms.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



The polymorphism strategy

Larger reducts→ harder CSP
Γ ≤pp ∆ → CSP(Γ)≤Poltime CSP(∆)

Larger polymorphism clones→ easier CSP
Pol(Γ) ⊆ Pol(∆) → CSP(∆)≤Poltime CSP(Γ)

Strategy:

(i) Prove hardness for certain reducts;
(ii) Prove that all reducts which do not pp-define any of these hard

reducts are tractable.

Reducts of (ii) have polymorphisms violating the relations of (i).
Polymorphisms provide algorithms.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



The polymorphism strategy

Larger reducts→ harder CSP
Γ ≤pp ∆ → CSP(Γ)≤Poltime CSP(∆)

Larger polymorphism clones→ easier CSP
Pol(Γ) ⊆ Pol(∆) → CSP(∆)≤Poltime CSP(Γ)

Strategy:

(i) Prove hardness for certain reducts;
(ii) Prove that all reducts which do not pp-define any of these hard

reducts are tractable.

Reducts of (ii) have polymorphisms violating the relations of (i).
Polymorphisms provide algorithms.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Part III

Making the infinite finite

Canonical polymorphisms

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Canonical functions

We have seen: Polymorphisms should prove tractability.

True for CSP of finite structures, e.g. max on {0,1} (Schaefer).
How can we use an infinite polymorphism f : Γn → Γ in an algorithm?

Definition. A function f : G→ G is canonical↔
whenever two pairs (x , y), (u, v) ∈ G2 have the the same type,
then (f (x), f (y)) and (f (u), f (v)) have the same type as well.

Examples
Function which switches edges and non-edges.
Injection onto complete subgraph of G.
Constant function.

Generalization of canonical to functions f : Gn → G possible.

Example. edge-max: G2 → G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Canonical functions

We have seen: Polymorphisms should prove tractability.
True for CSP of finite structures, e.g. max on {0,1} (Schaefer).

How can we use an infinite polymorphism f : Γn → Γ in an algorithm?

Definition. A function f : G→ G is canonical↔
whenever two pairs (x , y), (u, v) ∈ G2 have the the same type,
then (f (x), f (y)) and (f (u), f (v)) have the same type as well.

Examples
Function which switches edges and non-edges.
Injection onto complete subgraph of G.
Constant function.

Generalization of canonical to functions f : Gn → G possible.

Example. edge-max: G2 → G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Canonical functions

We have seen: Polymorphisms should prove tractability.
True for CSP of finite structures, e.g. max on {0,1} (Schaefer).
How can we use an infinite polymorphism f : Γn → Γ in an algorithm?

Definition. A function f : G→ G is canonical↔
whenever two pairs (x , y), (u, v) ∈ G2 have the the same type,
then (f (x), f (y)) and (f (u), f (v)) have the same type as well.

Examples
Function which switches edges and non-edges.
Injection onto complete subgraph of G.
Constant function.

Generalization of canonical to functions f : Gn → G possible.

Example. edge-max: G2 → G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Canonical functions

We have seen: Polymorphisms should prove tractability.
True for CSP of finite structures, e.g. max on {0,1} (Schaefer).
How can we use an infinite polymorphism f : Γn → Γ in an algorithm?

Definition. A function f : G→ G is canonical↔
whenever two pairs (x , y), (u, v) ∈ G2 have the the same type,
then (f (x), f (y)) and (f (u), f (v)) have the same type as well.

Examples
Function which switches edges and non-edges.
Injection onto complete subgraph of G.
Constant function.

Generalization of canonical to functions f : Gn → G possible.

Example. edge-max: G2 → G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Canonical functions

We have seen: Polymorphisms should prove tractability.
True for CSP of finite structures, e.g. max on {0,1} (Schaefer).
How can we use an infinite polymorphism f : Γn → Γ in an algorithm?

Definition. A function f : G→ G is canonical↔
whenever two pairs (x , y), (u, v) ∈ G2 have the the same type,
then (f (x), f (y)) and (f (u), f (v)) have the same type as well.

Examples
Function which switches edges and non-edges.

Injection onto complete subgraph of G.
Constant function.

Generalization of canonical to functions f : Gn → G possible.

Example. edge-max: G2 → G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Canonical functions

We have seen: Polymorphisms should prove tractability.
True for CSP of finite structures, e.g. max on {0,1} (Schaefer).
How can we use an infinite polymorphism f : Γn → Γ in an algorithm?

Definition. A function f : G→ G is canonical↔
whenever two pairs (x , y), (u, v) ∈ G2 have the the same type,
then (f (x), f (y)) and (f (u), f (v)) have the same type as well.

Examples
Function which switches edges and non-edges.
Injection onto complete subgraph of G.

Constant function.

Generalization of canonical to functions f : Gn → G possible.

Example. edge-max: G2 → G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Canonical functions

We have seen: Polymorphisms should prove tractability.
True for CSP of finite structures, e.g. max on {0,1} (Schaefer).
How can we use an infinite polymorphism f : Γn → Γ in an algorithm?

Definition. A function f : G→ G is canonical↔
whenever two pairs (x , y), (u, v) ∈ G2 have the the same type,
then (f (x), f (y)) and (f (u), f (v)) have the same type as well.

Examples
Function which switches edges and non-edges.
Injection onto complete subgraph of G.
Constant function.

Generalization of canonical to functions f : Gn → G possible.

Example. edge-max: G2 → G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Canonical functions

We have seen: Polymorphisms should prove tractability.
True for CSP of finite structures, e.g. max on {0,1} (Schaefer).
How can we use an infinite polymorphism f : Γn → Γ in an algorithm?

Definition. A function f : G→ G is canonical↔
whenever two pairs (x , y), (u, v) ∈ G2 have the the same type,
then (f (x), f (y)) and (f (u), f (v)) have the same type as well.

Examples
Function which switches edges and non-edges.
Injection onto complete subgraph of G.
Constant function.

Generalization of canonical to functions f : Gn → G possible.

Example. edge-max: G2 → G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Canonical functions theorem

We wish to work with canonical polymorphisms.

Fact. G has the following Ramsey-type property:

For all finite graphs H
there exists a finite graph S such that
whenever the edges of S are colored with two colors
then there exists a copy of H in S on which the coloring is constant.

Every function f : G→ G induces a coloring of the edges of G.
Exploiting this further, one obtains:

Theorem (roughly). If a polymorphism of Γ violates a relation R,
then there exists a canonical polymorphism of Γ which violates R.

General modern proof uses topological dynamics, i.e.,
continuous group actions on compact topological spaces.

Canonical functions are finite objects: functions on types!

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Canonical functions theorem

We wish to work with canonical polymorphisms.

Fact. G has the following Ramsey-type property:

For all finite graphs H
there exists a finite graph S such that
whenever the edges of S are colored with two colors
then there exists a copy of H in S on which the coloring is constant.

Every function f : G→ G induces a coloring of the edges of G.
Exploiting this further, one obtains:

Theorem (roughly). If a polymorphism of Γ violates a relation R,
then there exists a canonical polymorphism of Γ which violates R.

General modern proof uses topological dynamics, i.e.,
continuous group actions on compact topological spaces.

Canonical functions are finite objects: functions on types!

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Canonical functions theorem

We wish to work with canonical polymorphisms.

Fact. G has the following Ramsey-type property:

For all finite graphs H
there exists a finite graph S such that
whenever the edges of S are colored with two colors
then there exists a copy of H in S on which the coloring is constant.

Every function f : G→ G induces a coloring of the edges of G.
Exploiting this further, one obtains:

Theorem (roughly). If a polymorphism of Γ violates a relation R,
then there exists a canonical polymorphism of Γ which violates R.

General modern proof uses topological dynamics, i.e.,
continuous group actions on compact topological spaces.

Canonical functions are finite objects: functions on types!

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Canonical functions theorem

We wish to work with canonical polymorphisms.

Fact. G has the following Ramsey-type property:

For all finite graphs H
there exists a finite graph S such that
whenever the edges of S are colored with two colors
then there exists a copy of H in S on which the coloring is constant.

Every function f : G→ G induces a coloring of the edges of G.
Exploiting this further, one obtains:

Theorem (roughly). If a polymorphism of Γ violates a relation R,
then there exists a canonical polymorphism of Γ which violates R.

General modern proof uses topological dynamics, i.e.,
continuous group actions on compact topological spaces.

Canonical functions are finite objects: functions on types!

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Canonical functions theorem

We wish to work with canonical polymorphisms.

Fact. G has the following Ramsey-type property:

For all finite graphs H
there exists a finite graph S such that
whenever the edges of S are colored with two colors
then there exists a copy of H in S on which the coloring is constant.

Every function f : G→ G induces a coloring of the edges of G.
Exploiting this further, one obtains:

Theorem (roughly). If a polymorphism of Γ violates a relation R,
then there exists a canonical polymorphism of Γ which violates R.

General modern proof uses topological dynamics, i.e.,
continuous group actions on compact topological spaces.

Canonical functions are finite objects: functions on types!

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Canonical functions theorem

We wish to work with canonical polymorphisms.

Fact. G has the following Ramsey-type property:

For all finite graphs H
there exists a finite graph S such that
whenever the edges of S are colored with two colors
then there exists a copy of H in S on which the coloring is constant.

Every function f : G→ G induces a coloring of the edges of G.
Exploiting this further, one obtains:

Theorem (roughly). If a polymorphism of Γ violates a relation R,
then there exists a canonical polymorphism of Γ which violates R.

General modern proof uses topological dynamics, i.e.,
continuous group actions on compact topological spaces.

Canonical functions are finite objects: functions on types!

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Canonical functions theorem

We wish to work with canonical polymorphisms.

Fact. G has the following Ramsey-type property:

For all finite graphs H
there exists a finite graph S such that
whenever the edges of S are colored with two colors
then there exists a copy of H in S on which the coloring is constant.

Every function f : G→ G induces a coloring of the edges of G.
Exploiting this further, one obtains:

Theorem (roughly). If a polymorphism of Γ violates a relation R,
then there exists a canonical polymorphism of Γ which violates R.

General modern proof uses topological dynamics, i.e.,
continuous group actions on compact topological spaces.

Canonical functions are finite objects: functions on types!

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Part IV

The Graph-SAT dichotomy

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Complexity of CSP for reducts of G

Theorem (Bodirsky, MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ has one out of 17 canonical polymorphisms,
and CSP(Γ) is tractable,

or CSP(Γ) is NP-complete.

Theorem (Bodirsky, MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ pp-defines one out of 4 hard relations,
and CSP(Γ) is NP-complete,

or CSP(Γ) is tractable.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Complexity of CSP for reducts of G

Theorem (Bodirsky, MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ has one out of 17 canonical polymorphisms,
and CSP(Γ) is tractable,

or CSP(Γ) is NP-complete.

Theorem (Bodirsky, MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ pp-defines one out of 4 hard relations,
and CSP(Γ) is NP-complete,

or CSP(Γ) is tractable.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Complexity of CSP for reducts of G

Theorem (Bodirsky, MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ has one out of 17 canonical polymorphisms,
and CSP(Γ) is tractable,

or CSP(Γ) is NP-complete.

Theorem (Bodirsky, MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ pp-defines one out of 4 hard relations,
and CSP(Γ) is NP-complete,

or CSP(Γ) is tractable.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



The Graph-SAT dichotomy visualized

balanced 
max

sw

constant

eE

E-
constant

NP-complete

in P

-

E-dom 
max

E-dom 
p1

balanced 
p1

E-semi-
dom p1

majority
hp balanced 

p1

minority
hp balanced 

p1

majority
hp E-

constant

minority
hp xnor E-

dom

majority
hp E-dom 

max

minority 
hp E-dom p1

Pol(H)

Pol(P(3))Pol(T)Pol(E6)

12,13:

14,15:

6:

7,8:

11:

9,10:

16,17:

2,3:

1:

4,5:

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Theorem
The following 17 distinct clones are precisely the minimal tractable closed clones
containing Aut(G):

1 The clone generated by a constant operation.

2 The clone generated by a balanced binary injection of type max.

3 The clone generated by a balanced binary injection of type min.

4 The clone generated by an E-dominated binary injection of type max.

5 The clone generated by an N-dominated binary injection of type min.

6 The clone generated by a function of type majority which is hyperplanely
balanced and of type projection.

7 The clone generated by a function of type majority which is hyperplanely
E-constant.

8 The clone generated by a function of type majority which is hyperplanely
N-constant.

9 The clone generated by a function of type majority which is hyperplanely of type
max and E-dominated.

10 The clone generated by a function of type majority which is hyperplanely of type
min and N-dominated.

11 The clone generated by a function of type minority which is hyperplanely
balanced and of type projection.

12 The clone generated by a function of type minority which is hyperplanely of type
projection and E-dominated.

13 The clone generated by a function of type minority which is hyperplanely of type
projection and N-dominated.

14 The clone generated by a function of type minority which is hyperplanely of type
xnor and E-dominated.

15 The clone generated by a function of type minority which is hyperplanely of type
xor and N-dominated.

16 The clone generated by a binary injection which is E-constant.

17 The clone generated by a binary injection which is N-constant.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



The Meta Problem

Meta-Problem of Graph-SAT(Ψ)
INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

Theorem (Bodirsky, MP ’10)
The Meta-Problem of Graph-SAT(Ψ) is decidable.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



The Meta Problem

Meta-Problem of Graph-SAT(Ψ)
INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

Theorem (Bodirsky, MP ’10)
The Meta-Problem of Graph-SAT(Ψ) is decidable.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



The Meta Problem

Meta-Problem of Graph-SAT(Ψ)
INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

Theorem (Bodirsky, MP ’10)
The Meta-Problem of Graph-SAT(Ψ) is decidable.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph satisfiability problems

Let Ψ be a finite set of graph formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Theorem (Bodirsky, MP ’10)
Graph-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph satisfiability problems

Let Ψ be a finite set of graph formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Theorem (Bodirsky, MP ’10)
Graph-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph satisfiability problems

Let Ψ be a finite set of graph formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Theorem (Bodirsky, MP ’10)
Graph-SAT(Ψ) is either in P or NP-complete, for all Ψ.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Part V

The future

CSPs over homogeneous structures

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Amalgamation classes

Graph-SAT(Ψ): Is there a finite graph such that... (graph constraints)

Linorder-SAT(Ψ): Is there a linear order such that... (order
constraints, “temporal constraints”)

The classes of finite graphs and linear orders are
amalgamation classes.

A

D

CB

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Amalgamation classes

Graph-SAT(Ψ): Is there a finite graph such that... (graph constraints)

Linorder-SAT(Ψ): Is there a linear order such that... (order
constraints, “temporal constraints”)

The classes of finite graphs and linear orders are
amalgamation classes.

A

D

CB

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Amalgamation classes

Graph-SAT(Ψ): Is there a finite graph such that... (graph constraints)

Linorder-SAT(Ψ): Is there a linear order such that... (order
constraints, “temporal constraints”)

The classes of finite graphs and linear orders are
amalgamation classes.

A

D

CB

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Amalgamation classes

Graph-SAT(Ψ): Is there a finite graph such that... (graph constraints)

Linorder-SAT(Ψ): Is there a linear order such that... (order
constraints, “temporal constraints”)

The classes of finite graphs and linear orders are
amalgamation classes.

A

D

CB

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Amalgamation classes have homogeneous limit

Theorem (Fraïssé)
If C is a countable class of structures closed under substructures
which has amalgamation, then there exists a unique structure C
with age C which is homogeneous.

The age of a homogeneous structure is an amalgamation class.

C is called the Fraïssé limit of C. Example (Q, <).

Further amalgamation classes.

Partial orders
Metric spaces with finite set of distances
Tournaments
Kn-free graphs
Ordered graphs
Permutations

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Amalgamation classes have homogeneous limit

Theorem (Fraïssé)
If C is a countable class of structures closed under substructures
which has amalgamation, then there exists a unique structure C
with age C which is homogeneous.
The age of a homogeneous structure is an amalgamation class.

C is called the Fraïssé limit of C. Example (Q, <).

Further amalgamation classes.

Partial orders
Metric spaces with finite set of distances
Tournaments
Kn-free graphs
Ordered graphs
Permutations

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Amalgamation classes have homogeneous limit

Theorem (Fraïssé)
If C is a countable class of structures closed under substructures
which has amalgamation, then there exists a unique structure C
with age C which is homogeneous.
The age of a homogeneous structure is an amalgamation class.

C is called the Fraïssé limit of C. Example (Q, <).

Further amalgamation classes.

Partial orders
Metric spaces with finite set of distances
Tournaments
Kn-free graphs
Ordered graphs
Permutations

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Amalgamation classes have homogeneous limit

Theorem (Fraïssé)
If C is a countable class of structures closed under substructures
which has amalgamation, then there exists a unique structure C
with age C which is homogeneous.
The age of a homogeneous structure is an amalgamation class.

C is called the Fraïssé limit of C. Example (Q, <).

Further amalgamation classes.

Partial orders
Metric spaces with finite set of distances
Tournaments
Kn-free graphs
Ordered graphs
Permutations

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Amalgamation classes have homogeneous limit

Theorem (Fraïssé)
If C is a countable class of structures closed under substructures
which has amalgamation, then there exists a unique structure C
with age C which is homogeneous.
The age of a homogeneous structure is an amalgamation class.

C is called the Fraïssé limit of C. Example (Q, <).

Further amalgamation classes.

Partial orders

Metric spaces with finite set of distances
Tournaments
Kn-free graphs
Ordered graphs
Permutations

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Amalgamation classes have homogeneous limit

Theorem (Fraïssé)
If C is a countable class of structures closed under substructures
which has amalgamation, then there exists a unique structure C
with age C which is homogeneous.
The age of a homogeneous structure is an amalgamation class.

C is called the Fraïssé limit of C. Example (Q, <).

Further amalgamation classes.

Partial orders
Metric spaces with finite set of distances

Tournaments
Kn-free graphs
Ordered graphs
Permutations

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Amalgamation classes have homogeneous limit

Theorem (Fraïssé)
If C is a countable class of structures closed under substructures
which has amalgamation, then there exists a unique structure C
with age C which is homogeneous.
The age of a homogeneous structure is an amalgamation class.

C is called the Fraïssé limit of C. Example (Q, <).

Further amalgamation classes.

Partial orders
Metric spaces with finite set of distances
Tournaments

Kn-free graphs
Ordered graphs
Permutations

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Amalgamation classes have homogeneous limit

Theorem (Fraïssé)
If C is a countable class of structures closed under substructures
which has amalgamation, then there exists a unique structure C
with age C which is homogeneous.
The age of a homogeneous structure is an amalgamation class.

C is called the Fraïssé limit of C. Example (Q, <).

Further amalgamation classes.

Partial orders
Metric spaces with finite set of distances
Tournaments
Kn-free graphs

Ordered graphs
Permutations

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Amalgamation classes have homogeneous limit

Theorem (Fraïssé)
If C is a countable class of structures closed under substructures
which has amalgamation, then there exists a unique structure C
with age C which is homogeneous.
The age of a homogeneous structure is an amalgamation class.

C is called the Fraïssé limit of C. Example (Q, <).

Further amalgamation classes.

Partial orders
Metric spaces with finite set of distances
Tournaments
Kn-free graphs
Ordered graphs

Permutations

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Amalgamation classes have homogeneous limit

Theorem (Fraïssé)
If C is a countable class of structures closed under substructures
which has amalgamation, then there exists a unique structure C
with age C which is homogeneous.
The age of a homogeneous structure is an amalgamation class.

C is called the Fraïssé limit of C. Example (Q, <).

Further amalgamation classes.

Partial orders
Metric spaces with finite set of distances
Tournaments
Kn-free graphs
Ordered graphs
Permutations

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



General method for amalgamation classes

1 Given amalgamation class C, consider all C-SAT problems.

2 Every problem C-SAT(Ψ) translates into CSP(ΓΨ), where ΓΨ is a
reduct of the (homogeneous infinite) Fraïssé limit C of C.

3 For each reduct Γ of this limit C, the complexity of CSP(Γ) is
captured by the polymorphism clone Pol(Γ).

4 Tractability is implied by presence of polymorphisms in Pol(Γ).

5 If C is Ramsey, then even implied by canonical polymorphisms.
These are essentially functions on finite sets.

6 Adaptations of the algorithms for these finite functions.

7 Hardness proofs: by reduction of known finite CSPs.
Modern method: exposing a continuous homomorphism from
Pol(Γ) to the projection clone on {0,1}. Topological Birkhoff.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



General method for amalgamation classes

1 Given amalgamation class C, consider all C-SAT problems.

2 Every problem C-SAT(Ψ) translates into CSP(ΓΨ), where ΓΨ is a
reduct of the (homogeneous infinite) Fraïssé limit C of C.

3 For each reduct Γ of this limit C, the complexity of CSP(Γ) is
captured by the polymorphism clone Pol(Γ).

4 Tractability is implied by presence of polymorphisms in Pol(Γ).

5 If C is Ramsey, then even implied by canonical polymorphisms.
These are essentially functions on finite sets.

6 Adaptations of the algorithms for these finite functions.

7 Hardness proofs: by reduction of known finite CSPs.
Modern method: exposing a continuous homomorphism from
Pol(Γ) to the projection clone on {0,1}. Topological Birkhoff.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



General method for amalgamation classes

1 Given amalgamation class C, consider all C-SAT problems.

2 Every problem C-SAT(Ψ) translates into CSP(ΓΨ), where ΓΨ is a
reduct of the (homogeneous infinite) Fraïssé limit C of C.

3 For each reduct Γ of this limit C, the complexity of CSP(Γ) is
captured by the polymorphism clone Pol(Γ).

4 Tractability is implied by presence of polymorphisms in Pol(Γ).

5 If C is Ramsey, then even implied by canonical polymorphisms.
These are essentially functions on finite sets.

6 Adaptations of the algorithms for these finite functions.

7 Hardness proofs: by reduction of known finite CSPs.
Modern method: exposing a continuous homomorphism from
Pol(Γ) to the projection clone on {0,1}. Topological Birkhoff.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



General method for amalgamation classes

1 Given amalgamation class C, consider all C-SAT problems.

2 Every problem C-SAT(Ψ) translates into CSP(ΓΨ), where ΓΨ is a
reduct of the (homogeneous infinite) Fraïssé limit C of C.

3 For each reduct Γ of this limit C, the complexity of CSP(Γ) is
captured by the polymorphism clone Pol(Γ).

4 Tractability is implied by presence of polymorphisms in Pol(Γ).

5 If C is Ramsey, then even implied by canonical polymorphisms.
These are essentially functions on finite sets.

6 Adaptations of the algorithms for these finite functions.

7 Hardness proofs: by reduction of known finite CSPs.
Modern method: exposing a continuous homomorphism from
Pol(Γ) to the projection clone on {0,1}. Topological Birkhoff.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



General method for amalgamation classes

1 Given amalgamation class C, consider all C-SAT problems.

2 Every problem C-SAT(Ψ) translates into CSP(ΓΨ), where ΓΨ is a
reduct of the (homogeneous infinite) Fraïssé limit C of C.

3 For each reduct Γ of this limit C, the complexity of CSP(Γ) is
captured by the polymorphism clone Pol(Γ).

4 Tractability is implied by presence of polymorphisms in Pol(Γ).

5 If C is Ramsey, then even implied by canonical polymorphisms.
These are essentially functions on finite sets.

6 Adaptations of the algorithms for these finite functions.

7 Hardness proofs: by reduction of known finite CSPs.
Modern method: exposing a continuous homomorphism from
Pol(Γ) to the projection clone on {0,1}. Topological Birkhoff.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



General method for amalgamation classes

1 Given amalgamation class C, consider all C-SAT problems.

2 Every problem C-SAT(Ψ) translates into CSP(ΓΨ), where ΓΨ is a
reduct of the (homogeneous infinite) Fraïssé limit C of C.

3 For each reduct Γ of this limit C, the complexity of CSP(Γ) is
captured by the polymorphism clone Pol(Γ).

4 Tractability is implied by presence of polymorphisms in Pol(Γ).

5 If C is Ramsey, then even implied by canonical polymorphisms.
These are essentially functions on finite sets.

6 Adaptations of the algorithms for these finite functions.

7 Hardness proofs: by reduction of known finite CSPs.
Modern method: exposing a continuous homomorphism from
Pol(Γ) to the projection clone on {0,1}. Topological Birkhoff.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



General method for amalgamation classes

1 Given amalgamation class C, consider all C-SAT problems.

2 Every problem C-SAT(Ψ) translates into CSP(ΓΨ), where ΓΨ is a
reduct of the (homogeneous infinite) Fraïssé limit C of C.

3 For each reduct Γ of this limit C, the complexity of CSP(Γ) is
captured by the polymorphism clone Pol(Γ).

4 Tractability is implied by presence of polymorphisms in Pol(Γ).

5 If C is Ramsey, then even implied by canonical polymorphisms.
These are essentially functions on finite sets.

6 Adaptations of the algorithms for these finite functions.

7 Hardness proofs: by reduction of known finite CSPs.
Modern method: exposing a continuous homomorphism from
Pol(Γ) to the projection clone on {0,1}. Topological Birkhoff.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



General method for amalgamation classes

1 Given amalgamation class C, consider all C-SAT problems.

2 Every problem C-SAT(Ψ) translates into CSP(ΓΨ), where ΓΨ is a
reduct of the (homogeneous infinite) Fraïssé limit C of C.

3 For each reduct Γ of this limit C, the complexity of CSP(Γ) is
captured by the polymorphism clone Pol(Γ).

4 Tractability is implied by presence of polymorphisms in Pol(Γ).

5 If C is Ramsey, then even implied by canonical polymorphisms.
These are essentially functions on finite sets.

6 Adaptations of the algorithms for these finite functions.

7 Hardness proofs: by reduction of known finite CSPs.

Modern method: exposing a continuous homomorphism from
Pol(Γ) to the projection clone on {0,1}. Topological Birkhoff.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



General method for amalgamation classes

1 Given amalgamation class C, consider all C-SAT problems.

2 Every problem C-SAT(Ψ) translates into CSP(ΓΨ), where ΓΨ is a
reduct of the (homogeneous infinite) Fraïssé limit C of C.

3 For each reduct Γ of this limit C, the complexity of CSP(Γ) is
captured by the polymorphism clone Pol(Γ).

4 Tractability is implied by presence of polymorphisms in Pol(Γ).

5 If C is Ramsey, then even implied by canonical polymorphisms.
These are essentially functions on finite sets.

6 Adaptations of the algorithms for these finite functions.

7 Hardness proofs: by reduction of known finite CSPs.
Modern method: exposing a continuous homomorphism from
Pol(Γ) to the projection clone on {0,1}. Topological Birkhoff.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Future research

(a) Find (improve “making finite”):
Meta-method for translating tractability of the type function of a
canonical function into tractability of the canonical function.

(b) Prove (complete “making finite”):
If the dichotomy / tractability conjecture for finite structures holds,
then it holds for all reducts of homogeneous Ramsey structures.

(c) Answer (improve “making infinite”):
Can all homogeneous structures be made Ramsey by adding
finitely many relations?

(d) Apply method to:
- finite partial orders – Poset-SAT(Ψ)
- finite Boolean algebras – “set constraints”
etc.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Future research

(a) Find (improve “making finite”):
Meta-method for translating tractability of the type function of a
canonical function into tractability of the canonical function.

(b) Prove (complete “making finite”):
If the dichotomy / tractability conjecture for finite structures holds,
then it holds for all reducts of homogeneous Ramsey structures.

(c) Answer (improve “making infinite”):
Can all homogeneous structures be made Ramsey by adding
finitely many relations?

(d) Apply method to:
- finite partial orders – Poset-SAT(Ψ)
- finite Boolean algebras – “set constraints”
etc.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Future research

(a) Find (improve “making finite”):
Meta-method for translating tractability of the type function of a
canonical function into tractability of the canonical function.

(b) Prove (complete “making finite”):
If the dichotomy / tractability conjecture for finite structures holds,
then it holds for all reducts of homogeneous Ramsey structures.

(c) Answer (improve “making infinite”):
Can all homogeneous structures be made Ramsey by adding
finitely many relations?

(d) Apply method to:
- finite partial orders – Poset-SAT(Ψ)
- finite Boolean algebras – “set constraints”
etc.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Future research

(a) Find (improve “making finite”):
Meta-method for translating tractability of the type function of a
canonical function into tractability of the canonical function.

(b) Prove (complete “making finite”):
If the dichotomy / tractability conjecture for finite structures holds,
then it holds for all reducts of homogeneous Ramsey structures.

(c) Answer (improve “making infinite”):
Can all homogeneous structures be made Ramsey by adding
finitely many relations?

(d) Apply method to:
- finite partial orders – Poset-SAT(Ψ)
- finite Boolean algebras – “set constraints”
etc.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Future research

(a) Find (improve “making finite”):
Meta-method for translating tractability of the type function of a
canonical function into tractability of the canonical function.

(b) Prove (complete “making finite”):
If the dichotomy / tractability conjecture for finite structures holds,
then it holds for all reducts of homogeneous Ramsey structures.

(c) Answer (improve “making infinite”):
Can all homogeneous structures be made Ramsey by adding
finitely many relations?

(d) Apply method to:
- finite partial orders – Poset-SAT(Ψ)
- finite Boolean algebras – “set constraints”
etc.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



References

Graph-SAT dichotomy:
Schaefer’s theorem for graphs
by Manuel Bodirsky and Michael Pinsker,
Proceedings of STOC, 2011. Full version on arXiv.

Canonical functions method:
Reducts of Ramsey structures
by Manuel Bodirsky and Michael Pinsker,
AMS Contemporary Mathematics, 2011. Preprint on arXiv.

Modern hardness proofs:
Topological Birkhoff
by Manuel Bodirsky and Michael Pinsker,
Preprint on arXiv, 2012.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Schaefer’s theorem for graphs Michael Pinsker (Paris 7)


