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Part I

Graph-SAT problems
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Boolean satisfiability problems

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Theorem (Schaefer STOC’78)

1139 citations on google scholar

Boolean-SAT(Ψ) is either in P or NP-complete, for all Ψ.
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Graph satisfiability problems

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)
Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Graph-SAT(Ψ) tractable?
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Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.
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Part II

Making the finite infinite

CSPs over the random graph
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Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

universal, i.e., all finite graphs are induced subgraphs of G;
homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

universal, i.e., all finite graphs are induced subgraphs of G;
homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

universal, i.e., all finite graphs are induced subgraphs of G;

homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

universal, i.e., all finite graphs are induced subgraphs of G;
homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

universal, i.e., all finite graphs are induced subgraphs of G;
homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

universal, i.e., all finite graphs are induced subgraphs of G;
homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

universal, i.e., all finite graphs are induced subgraphs of G;
homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Graph-SAT as CSP of a reduct of G

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

The decision problem
whether or not a given primitive positive sentence holds in ΓΨ

is called the Constraint Satisfaction Problem of ΓΨ (or CSP(ΓΨ)).

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.
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Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of G.

Note:
Could have used any universal graph!

But:
G is the nicest universal graph.

Let’s study CSP(Γ) for reducts Γ of G!

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of G.

Note:
Could have used any universal graph!

But:
G is the nicest universal graph.

Let’s study CSP(Γ) for reducts Γ of G!

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of G.

Note:
Could have used any universal graph!

But:
G is the nicest universal graph.

Let’s study CSP(Γ) for reducts Γ of G!

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of G.

Note:
Could have used any universal graph!

But:
G is the nicest universal graph.

Let’s study CSP(Γ) for reducts Γ of G!

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Why the random graph?

We have seen:
Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of G.

Note:
Could have used any universal graph!

But:
G is the nicest universal graph.

Let’s study CSP(Γ) for reducts Γ of G!

Schaefer’s theorem for graphs Michael Pinsker (Paris 7)



Primitive positive (pp) definability and polymorphisms

For reducts Γ,∆, set Γ ≤pp ∆ iff
every relation of Γ has a pp-definition from ∆.

Easy observation.
If Γ ≤pp ∆, then CSP(Γ) has a polynomial-time reduction to CSP(∆).

For finite n ≥ 1, a function f : Γn → Γ is a polymorphism of Γ iff
for all relations R of Γ and all r1, . . . , rn ∈ R we have f (r1, . . . , rn) ∈ R.

Generalization of endomorphism, automorphism.

We write Pol(Γ) for the set of polymorphisms of Γ.
“Polymorphism clone of Γ”

Theorem (Bodirsky, Nešetřil ’03). Γ ≤pp ∆ ↔ Pol(∆) ⊆ Pol(Γ).
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The polymorphism strategy

Larger reducts→ harder CSP
Γ ≤pp ∆ → CSP(Γ)≤Poltime CSP(∆)

Larger polymorphism clones→ easier CSP
Pol(Γ) ⊆ Pol(∆) → CSP(∆)≤Poltime CSP(Γ)

Strategy:

(i) Prove hardness for certain reducts;
(ii) Prove that all reducts which do not pp-define any of these hard

reducts are tractable.

Reducts of (ii) have polymorphisms violating the relations of (i).
Polymorphisms provide algorithms.
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Part III

Making the infinite finite

Canonical polymorphisms
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Canonical functions

We have seen: Polymorphisms should prove tractability.

True for CSP of finite structures, e.g. max on {0,1} (Schaefer).
How can we use an infinite polymorphism f : Γn → Γ in an algorithm?

Definition. A function f : G→ G is canonical↔
whenever two pairs (x , y), (u, v) ∈ G2 have the the same type,
then (f (x), f (y)) and (f (u), f (v)) have the same type as well.

Examples
Function which switches edges and non-edges.
Injection onto complete subgraph of G.
Constant function.

Generalization of canonical to functions f : Gn → G possible.

Example. edge-max: G2 → G.
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Canonical functions theorem

We wish to work with canonical polymorphisms.

Fact. G has the following Ramsey-type property:

For all finite graphs H
there exists a finite graph S such that
whenever the edges of S are colored with two colors
then there exists a copy of H in S on which the coloring is constant.

Every function f : G→ G induces a coloring of the edges of G.
Exploiting this further, one obtains:

Theorem (roughly). If a polymorphism of Γ violates a relation R,
then there exists a canonical polymorphism of Γ which violates R.

General modern proof uses topological dynamics, i.e.,
continuous group actions on compact topological spaces.

Canonical functions are finite objects: functions on types!
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Part IV

The Graph-SAT dichotomy
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Complexity of CSP for reducts of G

Theorem (Bodirsky, MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ has one out of 17 canonical polymorphisms,
and CSP(Γ) is tractable,

or CSP(Γ) is NP-complete.

Theorem (Bodirsky, MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ pp-defines one out of 4 hard relations,
and CSP(Γ) is NP-complete,

or CSP(Γ) is tractable.
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The Graph-SAT dichotomy visualized
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Theorem
The following 17 distinct clones are precisely the minimal tractable closed clones
containing Aut(G):

1 The clone generated by a constant operation.

2 The clone generated by a balanced binary injection of type max.

3 The clone generated by a balanced binary injection of type min.

4 The clone generated by an E-dominated binary injection of type max.

5 The clone generated by an N-dominated binary injection of type min.

6 The clone generated by a function of type majority which is hyperplanely
balanced and of type projection.

7 The clone generated by a function of type majority which is hyperplanely
E-constant.

8 The clone generated by a function of type majority which is hyperplanely
N-constant.

9 The clone generated by a function of type majority which is hyperplanely of type
max and E-dominated.

10 The clone generated by a function of type majority which is hyperplanely of type
min and N-dominated.

11 The clone generated by a function of type minority which is hyperplanely
balanced and of type projection.

12 The clone generated by a function of type minority which is hyperplanely of type
projection and E-dominated.

13 The clone generated by a function of type minority which is hyperplanely of type
projection and N-dominated.

14 The clone generated by a function of type minority which is hyperplanely of type
xnor and E-dominated.

15 The clone generated by a function of type minority which is hyperplanely of type
xor and N-dominated.

16 The clone generated by a binary injection which is E-constant.

17 The clone generated by a binary injection which is N-constant.
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The Meta Problem

Meta-Problem of Graph-SAT(Ψ)
INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

Theorem (Bodirsky, MP ’10)
The Meta-Problem of Graph-SAT(Ψ) is decidable.
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Graph satisfiability problems

Let Ψ be a finite set of graph formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Theorem (Bodirsky, MP ’10)
Graph-SAT(Ψ) is either in P or NP-complete, for all Ψ.
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Part V

The future

CSPs over homogeneous structures
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Amalgamation classes

Graph-SAT(Ψ): Is there a finite graph such that... (graph constraints)

Linorder-SAT(Ψ): Is there a linear order such that... (order
constraints, “temporal constraints”)

The classes of finite graphs and linear orders are
amalgamation classes.

A

D

CB
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Amalgamation classes have homogeneous limit

Theorem (Fraïssé)
If C is a countable class of structures closed under substructures
which has amalgamation, then there exists a unique structure C
with age C which is homogeneous.

The age of a homogeneous structure is an amalgamation class.

C is called the Fraïssé limit of C. Example (Q, <).

Further amalgamation classes.

Partial orders
Metric spaces with finite set of distances
Tournaments
Kn-free graphs
Ordered graphs
Permutations
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Tournaments

Kn-free graphs
Ordered graphs
Permutations
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General method for amalgamation classes

1 Given amalgamation class C, consider all C-SAT problems.

2 Every problem C-SAT(Ψ) translates into CSP(ΓΨ), where ΓΨ is a
reduct of the (homogeneous infinite) Fraïssé limit C of C.

3 For each reduct Γ of this limit C, the complexity of CSP(Γ) is
captured by the polymorphism clone Pol(Γ).

4 Tractability is implied by presence of polymorphisms in Pol(Γ).

5 If C is Ramsey, then even implied by canonical polymorphisms.
These are essentially functions on finite sets.

6 Adaptations of the algorithms for these finite functions.

7 Hardness proofs: by reduction of known finite CSPs.
Modern method: exposing a continuous homomorphism from
Pol(Γ) to the projection clone on {0,1}. Topological Birkhoff.
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Future research

(a) Find (improve “making finite”):
Meta-method for translating tractability of the type function of a
canonical function into tractability of the canonical function.

(b) Prove (complete “making finite”):
If the dichotomy / tractability conjecture for finite structures holds,
then it holds for all reducts of homogeneous Ramsey structures.

(c) Answer (improve “making infinite”):
Can all homogeneous structures be made Ramsey by adding
finitely many relations?

(d) Apply method to:
- finite partial orders – Poset-SAT(Ψ)
- finite Boolean algebras – “set constraints”
etc.
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