The 42 reducts of the random ordered graph

Michael Pinsker

Technische Universität Wien / Université Diderot - Paris 7

BLAST 2013

- Part I: The setting of The Answer
- **Part II:** The 42 reducts of the random ordered graph
- Part III: Discussion of The Answer
- Part IV: The question to The Answer

Part I: The setting of The Answer

Let Δ be a structure.

Let Δ be a structure.

Definition

 Δ is homogeneous : \leftrightarrow

every isomorphism between finitely generated substructures of Δ extends to an automorphism of Δ .

Let Δ be a structure.

Definition

```
\Delta is homogeneous :\leftrightarrow
```

every isomorphism between finitely generated substructures of Δ extends to an automorphism of Δ .

Let Δ be a structure.

Definition

```
\Delta is homogeneous :\leftrightarrow
```

every isomorphism between finitely generated substructures of Δ extends to an automorphism of Δ .

Examples

• Order of the rationals $(\mathbb{Q}; <)$

Let Δ be a structure.

Definition

 Δ is homogeneous : \leftrightarrow

every isomorphism between finitely generated substructures of Δ extends to an automorphism of Δ .

- Order of the rationals $(\mathbb{Q}; <)$
- Random graph (V; E)

Let Δ be a structure.

Definition

```
\Delta is homogeneous :\leftrightarrow
```

every isomorphism between finitely generated substructures of Δ extends to an automorphism of Δ .

- Order of the rationals (Q; <)</p>
- Random graph (V; E)
- Free Boolean algebra with \aleph_0 generators

- Boolean algebras
- Lattices
- Universal Algebra
- Set theory
- Topology

Boolean algebras

 \checkmark

- Lattices
- Universal Algebra
- Set theory
- Topology

Boolean algebras

 \checkmark

 \checkmark

- Lattices
- Universal Algebra
- Set theory
- Topology

Let \mathcal{C} be a class of finitely generated structures in a countable language, closed under isomorphism.

Let \mathcal{C} be a class of finitely generated structures in a countable language, closed under isomorphism.

Theorem (Fraïssé)

Assume C

Let \mathcal{C} be a class of finitely generated structures in a countable language, closed under isomorphism.

Theorem (Fraïssé)

Assume C

■ is closed under substructures

Let $\ensuremath{\mathbb{C}}$ be a class of finitely generated structures in a countable language, closed under isomorphism.

Theorem (Fraïssé)

Assume C

- is closed under substructures
- has joint embeddings:

for all $B, C \in \mathbb{C}$ there is $D \in \mathbb{C}$ containing isomorphic copies of B, C

Let $\ensuremath{\mathbb{C}}$ be a class of finitely generated structures in a countable language, closed under isomorphism.

Theorem (Fraïssé)

Assume C

- is closed under substructures
- has joint embeddings: for all B, C ∈ C there is D ∈ C containing isomorphic copies of B, C
- has amalgamation:

for all $A, B, C \in \mathbb{C}$ and embeddings $e : A \to B$ and $e' : A \to C$ there is $D \in \mathbb{C}$ and embeddings $f : B \to D$ and $f' : C \to D$ such that $f \circ e = f' \circ e'$.

Let $\ensuremath{\mathbb{C}}$ be a class of finitely generated structures in a countable language, closed under isomorphism.

Theorem (Fraïssé)

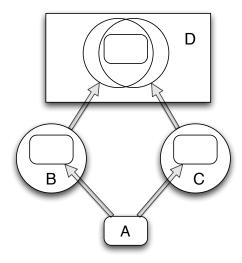
Assume C

- is closed under substructures
- has joint embeddings: for all B, C ∈ C there is D ∈ C containing isomorphic copies of B, C
- has amalgamation:

for all $A, B, C \in \mathbb{C}$ and embeddings $e : A \to B$ and $e' : A \to C$ there is $D \in \mathbb{C}$ and embeddings $f : B \to D$ and $f' : C \to D$ such that $f \circ e = f' \circ e'$.

Then there exists a unique countable homogeneous structure Δ whose age (=substructures up to iso) equals C.

Amalgamation



• (Finite) linear orders \leftrightarrow (\mathbb{Q} ; <)

- (Finite) linear orders \leftrightarrow (\mathbb{Q} ; <)
- Undirected graphs \leftrightarrow random graph (*V*; *E*)

- (Finite) linear orders \leftrightarrow (\mathbb{Q} ; <)
- Undirected graphs \leftrightarrow random graph (*V*; *E*)
- Boolean algebras ↔ random (= free) Boolean algebra

- (Finite) linear orders \leftrightarrow (\mathbb{Q} ; <)
- Undirected graphs \leftrightarrow random graph (*V*; *E*)
- Boolean algebras ↔ random (= free) Boolean algebra
- $\blacksquare Lattices \leftrightarrow random \ lattice$

- (Finite) linear orders \leftrightarrow (\mathbb{Q} ; <)
- Undirected graphs \leftrightarrow random graph (V; E)
- Boolean algebras ↔ random (= free) Boolean algebra
- $\blacksquare Lattices \leftrightarrow random \ lattice$
- \blacksquare Distributive lattices \leftrightarrow random distributive lattice

- (Finite) linear orders \leftrightarrow (\mathbb{Q} ; <)
- Undirected graphs \leftrightarrow random graph (*V*; *E*)
- Boolean algebras ↔ random (= free) Boolean algebra
- $\blacksquare Lattices \leftrightarrow random \ lattice$
- Distributive lattices ↔ random distributive lattice
- Partial orders ↔ random partial order

- (Finite) linear orders \leftrightarrow (\mathbb{Q} ; <)
- Undirected graphs \leftrightarrow random graph (*V*; *E*)
- Boolean algebras ↔ random (= free) Boolean algebra
- $\blacksquare Lattices \leftrightarrow random \ lattice$
- Distributive lattices ↔ random distributive lattice
- Partial orders ↔ random partial order
- $\blacksquare \ Tournaments \leftrightarrow random \ tournament$

- (Finite) linear orders \leftrightarrow (\mathbb{Q} ; <)
- Undirected graphs \leftrightarrow random graph (V; E)
- Boolean algebras \leftrightarrow random (= free) Boolean algebra
- $\blacksquare Lattices \leftrightarrow random \ lattice$
- \blacksquare Distributive lattices \leftrightarrow random distributive lattice
- Partial orders ↔ random partial order
- $\blacksquare \ Tournaments \leftrightarrow random \ tournament$
- Linearly ordered graphs \leftrightarrow random ordered graph (D; <, E)

Let Δ be a structure.

Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Examples

• (\mathbb{Q} ; <): reduct (\mathbb{Q} ; Between(x, y, z))

Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Examples

■ (Q; <):
■ (Q; <):

reduct $(\mathbb{Q}; \text{Between}(x, y, z))$ reduct $(\mathbb{Q}; >)$

Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

■ (ℚ; <):	reduct (\mathbb{Q} ; Between(x, y, z))
■ (ℚ; <):	reduct $(\mathbb{Q}; >)$
■ random graph $(V; E)$:	reduct $(V; K_3(x, y, z))$

Reducts

Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

- (\mathbb{Q} ; <): reduct (\mathbb{Q} ; Between(x, y, z)) ■ (\mathbb{Q} ; <): reduct (\mathbb{Q} ; >)
- random graph (V; E): reduct ($V; K_3(x, y, z)$)
- random poset (P; \leq): reduct (P; $\bot(x, y)$)

Reducts

Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Examples

- (\mathbb{Q} ; <): reduct (\mathbb{Q} ; Between(x, y, z))
- $\bullet (\mathbb{Q}; <): \qquad \text{reduct } (\mathbb{Q}; >)$
- random graph (V; E): reduct ($V; K_3(x, y, z)$)
- random poset (P; ≤): reduct (P; $\bot(x, y)$)

Problem

Understand the reducts of homogeneous structures.

Why reducts?

• Understand \triangle itself:

- Understand \triangle itself:
 - its first-order theory

- Understand \triangle itself:
 - its first-order theory
 - its symmetries (via connection with permutation groups)

- Understand \triangle itself:
 - its first-order theory
 - its symmetries (via connection with permutation groups)
- Understand the age \mathbb{C} of Δ :

- Understand \triangle itself:
 - its first-order theory
 - its symmetries (via connection with permutation groups)
- Understand the age \mathbb{C} of Δ :
 - uniform group actions on C
 (via permutation groups combinatorics of C)

- Understand Δ itself:
 - its first-order theory
 - its symmetries (via connection with permutation groups)
- Understand the age C of Δ :
 - uniform group actions on C
 (via permutation groups combinatorics of C)
 - Constraint Satisfaction Problems related to C: Graph-SAT, Poset-SAT,...

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' .

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' . Quasiorder.

For reducts Γ , Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' . Quasiorder.

Consider reducts Γ , Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

- For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' .
- Quasiorder.
- Consider reducts Γ , Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out yields a complete lattice.

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' .

Quasiorder.

```
Consider reducts \Gamma, \Gamma' equivalent iff \Gamma \leq \Gamma' and \Gamma' \leq \Gamma.
```

Factoring out yields a complete lattice.

Multiple choice: Equivalent or not?

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' .

Quasiorder.

Consider reducts Γ , Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out yields a complete lattice.

Multiple choice: Equivalent or not?

 $\blacksquare (\mathbb{Q};<) \text{ and } (\mathbb{Q};>)$

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' .

Quasiorder.

Consider reducts Γ , Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out yields a complete lattice.

Multiple choice: Equivalent or not?

```
\blacksquare (\mathbb{Q};<) \text{ and } (\mathbb{Q};>)
```

• $(\mathbb{Q}; <)$ and $(\mathbb{Q};$ Between(x, y, z))

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' .

Quasiorder.

Consider reducts Γ , Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out yields a complete lattice.

Multiple choice: Equivalent or not?

- $\blacksquare \ (\mathbb{Q};<) \ \text{and} \ (\mathbb{Q};>)$
- $(\mathbb{Q}; <)$ and $(\mathbb{Q};$ Between(x, y, z))
- random poset (P; \leq) and (P; \perp (x, y))

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' .

Quasiorder.

Consider reducts Γ , Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out yields a complete lattice.

Multiple choice: Equivalent or not?

- $\blacksquare \ (\mathbb{Q};<) \ \text{and} \ (\mathbb{Q};>)$
- $(\mathbb{Q}; <)$ and $(\mathbb{Q};$ Between(x, y, z))
- random poset (P; \leq) and (P; $\perp(x, y)$)
- random graph (V; E) and (V; $K_3(x, y, z)$)

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' .

Quasiorder.

```
Consider reducts \Gamma, \Gamma' equivalent iff \Gamma \leq \Gamma' and \Gamma' \leq \Gamma.
```

Factoring out yields a complete lattice.

Multiple choice: Equivalent or not?

- $(\mathbb{Q}; <)$ and $(\mathbb{Q}; >)$
- $(\mathbb{Q}; <)$ and $(\mathbb{Q};$ Between(x, y, z))
- random poset (P; \leq) and (P; $\perp(x, y)$)
- random graph (V; E) and (V; $K_3(x, y, z)$)

Question

How many inequivalent reducts?

■ (ℚ; <): 5 (Cameron '76)

- (Q; <): 5 (Cameron '76)
- random graph (V; E): 5 (Thomas '91)

- (Q; <): 5 (Cameron '76)
- random graph (V; E): 5 (Thomas '91)
- **random k-hypergraph:** $2^k + 1$ (Thomas '96)

- (Q; <): 5 (Cameron '76)
- random graph (V; E): 5 (Thomas '91)
- **random k-hypergraph:** $2^k + 1$ (Thomas '96)
- random tournament: 5 (Bennett '97)

■ (Q; <): 5 (Cameron '76)

- random graph (V; E): 5 (Thomas '91)
- **random k-hypergraph:** $2^k + 1$ (Thomas '96)
- random tournament: 5 (Bennett '97)
- (Q; <, 0): 116 (Junker+Ziegler '08)

- (Q; <): 5 (Cameron '76)
- random graph (V; E): 5 (Thomas '91)
- **random k-hypergraph:** $2^k + 1$ (Thomas '96)
- random tournament: 5 (Bennett '97)
- (Q; <, 0): 116 (Junker+Ziegler '08)
- random partial order: 5 (Pach+MP+Pongrácz+Szabó '11)

■ (Q; <): 5 (Cameron '76)

- random graph (V; E): 5 (Thomas '91)
- **random k-hypergraph:** $2^k + 1$ (Thomas '96)
- random tournament: 5 (Bennett '97)
- (Q; <, 0): 116 (Junker+Ziegler '08)
- random partial order: 5 (Pach+MP+Pongrácz+Szabó '11)

Conjecture (Thomas '91)

Homogeneous structures in finite relational language have finitely many reducts.

A permutation group is closed : \leftrightarrow

it contains all permutations which it can interpolate on finite subsets.

A permutation group is closed : \leftrightarrow it contains all permutations which it can interpolate on finite subsets.

Theorem (Corollary of Ryll-Nardzewski, Engeler, Svenonius) Let Δ be homogeneous in a finite relational language. Then the mapping

$\Gamma\mapsto \text{Aut}(\Gamma)$

A permutation group is closed : \leftrightarrow it contains all permutations which it can interpolate on finite subsets.

Theorem (Corollary of Ryll-Nardzewski, Engeler, Svenonius) Let Δ be homogeneous in a finite relational language. Then the mapping

 $\Gamma \mapsto \mathsf{Aut}(\Gamma)$

is an anti-isomorphism from the lattice of reducts to the lattice of closed supergroups of $Aut(\Delta)$. Boolean algebras

 \checkmark

 \checkmark

- Lattices
- Universal Algebra
- Set theory
- Topology

Boolean algebras

 \checkmark

 \checkmark

 \checkmark

- Lattices
- Universal Algebra
- Set theory
- Topology

The rationals $(\mathbb{Q}; <)$

Let \leftrightarrow be any permutation of $\mathbb Q$ which reverses the order.

Let \leftrightarrow be any permutation of $\mathbb Q$ which reverses the order.

Let \bigcirc be any permutation of \mathbb{Q} which for some irrational π puts $(-\infty; \pi)$ behind $(\pi; \infty)$ and preserves the order otherwise.

Let \leftrightarrow be any permutation of $\mathbb Q$ which reverses the order.

Let \bigcirc be any permutation of \mathbb{Q} which for some irrational π puts $(-\infty; \pi)$ behind $(\pi; \infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

Let \leftrightarrow be any permutation of $\mathbb Q$ which reverses the order.

Let \bigcirc be any permutation of \mathbb{Q} which for some irrational π puts $(-\infty; \pi)$ behind $(\pi; \infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

The closed supergroups of $Aut(\mathbb{Q}; <)$ are precisely:

■ Aut(Q; <)</p>

Let \leftrightarrow be any permutation of $\mathbb Q$ which reverses the order.

Let \bigcirc be any permutation of \mathbb{Q} which for some irrational π puts $(-\infty; \pi)$ behind $(\pi; \infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

- Aut(Q; <)</p>
- $\blacksquare \langle \{\leftrightarrow\} \cup \mathsf{Aut}(\mathbb{Q}; <) \rangle$

Let \leftrightarrow be any permutation of $\mathbb Q$ which reverses the order.

Let \bigcirc be any permutation of \mathbb{Q} which for some irrational π puts $(-\infty; \pi)$ behind $(\pi; \infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

- Aut(Q; <)</p>
- $\blacksquare \langle \{\leftrightarrow\} \cup \mathsf{Aut}(\mathbb{Q}; <) \rangle$
- $\blacksquare \langle \{ \circlearrowleft \} \cup \mathsf{Aut}(\mathbb{Q}; <) \rangle$

Let \leftrightarrow be any permutation of $\mathbb Q$ which reverses the order.

Let \bigcirc be any permutation of \mathbb{Q} which for some irrational π puts $(-\infty; \pi)$ behind $(\pi; \infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

- Aut(Q; <)</p>
- $\blacksquare \langle \{\leftrightarrow\} \cup \mathsf{Aut}(\mathbb{Q}; <) \rangle$
- $\blacksquare \langle \{ \circlearrowleft \} \cup \mathsf{Aut}(\mathbb{Q}; <) \rangle$
- $\blacksquare \langle \{\leftrightarrow, \circlearrowleft\} \cup \mathsf{Aut}(\mathbb{Q}; <) \rangle$

Let \leftrightarrow be any permutation of $\mathbb Q$ which reverses the order.

Let \bigcirc be any permutation of \mathbb{Q} which for some irrational π puts $(-\infty; \pi)$ behind $(\pi; \infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

The closed supergroups of $Aut(\mathbb{Q}; <)$ are precisely:

- Aut(Q; <)</p>
- $\blacksquare \langle \{\leftrightarrow\} \cup \mathsf{Aut}(\mathbb{Q}; <) \rangle$
- ({⁽)} ∪ Aut(⁽Q; <)))</p>
- $\blacksquare \langle \{\leftrightarrow, \circlearrowleft\} \cup \mathsf{Aut}(\mathbb{Q}; <) \rangle$

Let \leftrightarrow be any permutation of $\mathbb Q$ which reverses the order.

Let \bigcirc be any permutation of \mathbb{Q} which for some irrational π puts $(-\infty; \pi)$ behind $(\pi; \infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

The closed supergroups of $Aut(\mathbb{Q}; <)$ are precisely:

$$\langle \{\leftrightarrow\} \cup \operatorname{Aut}(\mathbb{Q}; <) \rangle = \operatorname{Aut}(\mathbb{Q}; \operatorname{Between}(x, y, z))$$

- ({) + (C) +
- $\blacksquare \langle \{\leftrightarrow, \circlearrowleft\} \cup \mathsf{Aut}(\mathbb{Q}; <) \rangle$

Let \leftrightarrow be any permutation of $\mathbb Q$ which reverses the order.

Let \bigcirc be any permutation of \mathbb{Q} which for some irrational π puts $(-\infty; \pi)$ behind $(\pi; \infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

The closed supergroups of $Aut(\mathbb{Q}; <)$ are precisely:

 $\blacksquare \langle \{\leftrightarrow\} \cup \operatorname{Aut}(\mathbb{Q}; <) \rangle = \operatorname{Aut}(\mathbb{Q}; \operatorname{Between}(x, y, z))$

- $\blacksquare \langle \{ \circlearrowleft \} \cup \mathsf{Aut}(\mathbb{Q}; <) \rangle = \mathsf{Aut}(\mathbb{Q}; \mathsf{Cyclic}(x, y, z))$
- $\blacksquare \langle \{\leftrightarrow, \circlearrowleft\} \cup \mathsf{Aut}(\mathbb{Q}; <) \rangle$

Let \leftrightarrow be any permutation of $\mathbb Q$ which reverses the order.

Let \bigcirc be any permutation of \mathbb{Q} which for some irrational π puts $(-\infty; \pi)$ behind $(\pi; \infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

The closed supergroups of $Aut(\mathbb{Q}; <)$ are precisely:

 $\blacksquare \langle \{\leftrightarrow\} \cup \mathsf{Aut}(\mathbb{Q}; <) \rangle = \mathsf{Aut}(\mathbb{Q}; \mathsf{Between}(x, y, z))$

- $\blacksquare \langle \{ \circlearrowleft \} \cup \mathsf{Aut}(\mathbb{Q}; <) \rangle = \mathsf{Aut}(\mathbb{Q}; \mathsf{Cyclic}(x, y, z))$

Let - be any permutation of V which switches edges and non-edges.

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

The closed supergroups of Aut(V; E) are precisely:

■ Aut(*V*; *E*)

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

- Aut(*V*;*E*)
- ({sw} ∪ Aut(V; E))
- ({-} ∪ Aut(V; E))

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

- Aut(V; E)
- ({sw} ∪ Aut(V; E))
- ({-} ∪ Aut(*V*; *E*))
- $\blacksquare \langle \{-, \mathsf{sw}\} \cup \mathsf{Aut}(V; E) \rangle$

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

- Aut(V; E)
- ({sw} ∪ Aut(*V*; *E*))
- $\blacksquare \langle \{-\} \cup \operatorname{Aut}(V; E) \rangle$
- $\blacksquare \langle \{-, \mathsf{sw}\} \cup \mathsf{Aut}(V; E) \rangle$
- Sym(*V*)

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

The closed supergroups of Aut(V; E) are precisely:

- Aut(V; E)
- ({sw} ∪ Aut(V; E))

$$\blacksquare \langle \{-, \mathsf{sw}\} \cup \mathsf{Aut}(V; E) \rangle$$

■ Sym(*V*)

For $k \ge 1$, let $\mathbb{R}^{(k)}$ consist of the *k*-tuples of distinct elements of *V* which induce an odd number of edges.

Michael Pinsker

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

The closed supergroups of Aut(V; E) are precisely:

$$\langle \{ sw \} \cup Aut(V; E) \rangle = Aut(V; R^{(3)})$$

$$\blacksquare \langle \{-\} \cup \operatorname{Aut}(V; E) \rangle$$

$$\blacksquare \langle \{-, \mathsf{sw}\} \cup \mathsf{Aut}(V; E) \rangle$$

■ Sym(*V*)

For $k \ge 1$, let $\mathbb{R}^{(k)}$ consist of the *k*-tuples of distinct elements of *V* which induce an odd number of edges.

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

The closed supergroups of Aut(V; E) are precisely:

$$\langle \{ sw \} \cup Aut(V; E) \rangle = Aut(V; R^{(3)})$$

$$\langle \{-\} \cup \operatorname{Aut}(V; E) \rangle = \operatorname{Aut}(V; R^{(4)})$$

$$\land \langle \{-, \mathsf{sw}\} \cup \mathsf{Aut}(V; E) \rangle$$

■ Sym(*V*)

For $k \ge 1$, let $\mathbb{R}^{(k)}$ consist of the *k*-tuples of distinct elements of *V* which induce an odd number of edges.

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

The closed supergroups of Aut(V; E) are precisely:

$$\langle \{ sw \} \cup Aut(V; E) \rangle = Aut(V; R^{(3)})$$

$$\langle \{-\} \cup \operatorname{Aut}(V; E) \rangle = \operatorname{Aut}(V; R^{(4)})$$

$$\langle \{-, \mathsf{sw}\} \cup \mathsf{Aut}(V; E) \rangle = \mathsf{Aut}(V; R^{(5)})$$

■ Sym(*V*)

For $k \ge 1$, let $\mathbb{R}^{(k)}$ consist of the *k*-tuples of distinct elements of *V* which induce an odd number of edges.

Michael Pinsker

Part II: The 42 reducts of the random ordered graph

The random ordered graph

Definition

The random ordered graph (D; <, E) is

the unique countable linearly ordered graph which

- contains all finite linearly ordered graphs
- is homogeneous.

The random ordered graph

Definition

The random ordered graph (D; <, E) is

the unique countable linearly ordered graph which

- contains all finite linearly ordered graphs
- is homogeneous.

Observation

- \blacksquare (*D*; <) is the order of the rationals
- \blacksquare (*D*; *E*) is the random graph

The random ordered graph

Definition

The random ordered graph (D; <, E) is

the unique countable linearly ordered graph which

- contains all finite linearly ordered graphs
- is homogeneous.

Observation

- \blacksquare (*D*; <) is the order of the rationals
- \blacksquare (*D*; *E*) is the random graph

This is because the two structures are superposed freely, i.e., in all possible ways.

Strong amalgamation

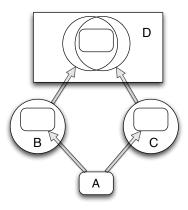
Strong amalgamation

Definition

A class C has strong amalgamation : \leftrightarrow

it has amalgamation and

the amalgamation can be done without identifying elements outside A.



Mixing

Let $\mathbb{C}_1,\mathbb{C}_2$ Fraïssé classes in those languages, Δ_1,Δ_2 be their limits.

Let $\mathbb{C}_1,\mathbb{C}_2$ Fraïssé classes in those languages, Δ_1,Δ_2 be their limits.

Free superposition

Assume that $\mathcal{C}_1, \mathcal{C}_2$ have strong amalgamation.

Let $\mathbb{C}_1,\mathbb{C}_2$ Fraïssé classes in those languages, Δ_1,Δ_2 be their limits.

Free superposition

Assume that $\mathcal{C}_1, \mathcal{C}_2$ have strong amalgamation.

Then the class \mathcal{C} of $\tau_1 \cup \tau_2$ -structures whose τ_i -reduct is in \mathcal{C}_i

Let $\mathbb{C}_1,\mathbb{C}_2$ Fraïssé classes in those languages, Δ_1,Δ_2 be their limits.

Free superposition

Assume that $\mathcal{C}_1, \mathcal{C}_2$ have strong amalgamation.

Then the class \mathcal{C} of $\tau_1 \cup \tau_2$ -structures whose τ_i -reduct is in \mathcal{C}_i

- is a Fraïssé class and
- the τ_i -reduct of its limit is isomorphic to Δ_i .

Trivial reducts of the random ordered graph

Michael Pinsker

Every reduct of (D; <) is a reduct of the random ordered graph.

Every reduct of (D; <) is a reduct of the random ordered graph.

Every reduct of (D; E) is a reduct of the random ordered graph.

- Every reduct of (D; <) is a reduct of the random ordered graph.
- Every reduct of (D; E) is a reduct of the random ordered graph.
- If (D; R) is a reduct of (D; <) and (D; S) is a reduct of (D; E) then (D; R, S) is a reduct of the random ordered graph.

- Every reduct of (D; <) is a reduct of the random ordered graph.
- Every reduct of (D; E) is a reduct of the random ordered graph.
- If (D; R) is a reduct of (D; <) and (D; S) is a reduct of (D; E) then (D; R, S) is a reduct of the random ordered graph.

Corresponds to $Aut(D; R) \cap Aut(D; S)$.

- Every reduct of (D; <) is a reduct of the random ordered graph.
- Every reduct of (D; E) is a reduct of the random ordered graph.
- If (D; R) is a reduct of (D; <) and (D; S) is a reduct of (D; E) then (D; R, S) is a reduct of the random ordered graph.

Corresponds to $Aut(D; R) \cap Aut(D; S)$.

Yields distinct reducts because of free superposition.

- Every reduct of (D; <) is a reduct of the random ordered graph.
- Every reduct of (D; E) is a reduct of the random ordered graph.
- If (D; R) is a reduct of (D; <) and (D; S) is a reduct of (D; E) then (D; R, S) is a reduct of the random ordered graph.

Corresponds to $Aut(D; R) \cap Aut(D; S)$.

Yields distinct reducts because of free superposition.

Examples

- Every reduct of (D; <) is a reduct of the random ordered graph.
- Every reduct of (D; E) is a reduct of the random ordered graph.
- If (D; R) is a reduct of (D; <) and (D; S) is a reduct of (D; E) then (D; R, S) is a reduct of the random ordered graph.

Corresponds to $Aut(D; R) \cap Aut(D; S)$.

Yields distinct reducts because of free superposition.

Examples

• Keeping the order while flipping the graph relation.

- Every reduct of (D; <) is a reduct of the random ordered graph.
- Every reduct of (D; E) is a reduct of the random ordered graph.
- If (D; R) is a reduct of (D; <) and (D; S) is a reduct of (D; E) then (D; R, S) is a reduct of the random ordered graph.

Corresponds to $Aut(D; R) \cap Aut(D; S)$.

Yields distinct reducts because of free superposition.

Examples

- Keeping the order while flipping the graph relation.
- Reversing the order while keeping the graph relation.

- Every reduct of (D; <) is a reduct of the random ordered graph.
- Every reduct of (D; E) is a reduct of the random ordered graph.
- If (D; R) is a reduct of (D; <) and (D; S) is a reduct of (D; E) then (D; R, S) is a reduct of the random ordered graph.

Corresponds to $Aut(D; R) \cap Aut(D; S)$.

Yields distinct reducts because of free superposition.

Examples

- Keeping the order while flipping the graph relation.
- Reversing the order while keeping the graph relation.

Lemma

The random ordered graph has at least 25 reducts.

Michael Pinsker

The following permutations yield new non-trivial reducts.

The following permutations yield new non-trivial reducts.

reversing the order and simultaneously flipping the graph relation

The following permutations yield new non-trivial reducts.

- reversing the order and simultaneously flipping the graph relation
- for an irrational π , put $(-\infty, \pi)$ behind (π, ∞) whilst flipping the graph relation between these parts.

The following permutations yield new non-trivial reducts.

- reversing the order and simultaneously flipping the graph relation
- for an irrational π, put (-∞, π) behind (π,∞) whilst flipping the graph relation between these parts.

No other combination of this kind!

The following permutations yield new non-trivial reducts.

- reversing the order and simultaneously flipping the graph relation
- for an irrational π , put $(-\infty, \pi)$ behind (π, ∞) whilst flipping the graph relation between these parts.

No other combination of this kind!

Lemma

The random ordered graph has at least 27 reducts.

Definition

A tournament is a digraph with precisely one edge between any two vertices.

Definition

A tournament is a digraph with precisely one edge between any two vertices.

Theorem (Bennett '97)

The random tournament has 5 reducts.

Definition

A tournament is a digraph with precisely one edge between any two vertices.

Theorem (Bennett '97)

The random tournament has 5 reducts.

Observation

Set T(x, y) iff $x < y \land E(x, y)$ or $x > y \land N(x, y)$.

Then (D; T) is the random tournament.

Definition

A tournament is a digraph with precisely one edge between any two vertices.

Theorem (Bennett '97)

The random tournament has 5 reducts.

Observation

```
Set T(x, y) iff x < y \land E(x, y) or x > y \land N(x, y).
```

Then (D; T) is the random tournament.

Lemma

The random ordered graph has at least 27+5-1=31 reducts.

Finally, some asymmetry

Finally, some asymmetry

The following permutations yield new non-trivial reducts.

preserving the order whilst flipping the graph relation below some irrational.

- preserving the order whilst flipping the graph relation below some irrational.
- preserving the order whilst flipping the graph relation above some irrational.

- preserving the order whilst flipping the graph relation below some irrational.
- preserving the order whilst flipping the graph relation above some irrational.

There are no "dual" permutations of these.

- preserving the order whilst flipping the graph relation below some irrational.
- preserving the order whilst flipping the graph relation above some irrational.

There are no "dual" permutations of these.

Lemma

The random ordered graph has at least 31+2=33 reducts.

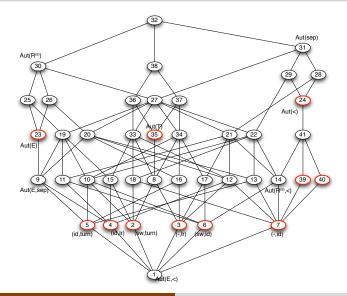
Michael Pinsker

Theorem (Bodirsky+MP+Pongrácz '13)

The random ordered graph has 41 reducts.

Theorem (Bodirsky+MP+Pongrácz '13)

The random ordered graph has 41 reducts.



Michael Pinsker

Part III: Discussion of The Answer

We have learnt from the result:

We have learnt from the result:

■ similarities between the symmetries of the order and the graph

We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry

We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry
- we cannot calculate the reducts of a superposed structure from its factors

We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry
- we cannot calculate the reducts of a superposed structure from its factors

On a technical level:

Discussion

We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry
- we cannot calculate the reducts of a superposed structure from its factors

On a technical level:

 our Ramsey-theoretic method is quite efficient (first classification of free superposition)

Discussion

We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry
- we cannot calculate the reducts of a superposed structure from its factors

On a technical level:

- our Ramsey-theoretic method is quite efficient (first classification of free superposition)
- improved it to reduce work to the join irreducible elements

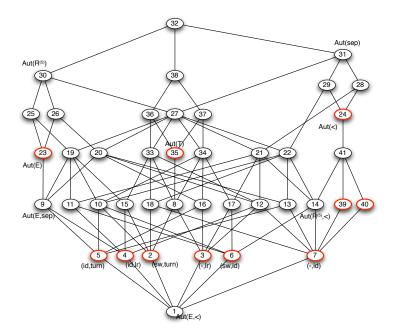
Discussion

We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry
- we cannot calculate the reducts of a superposed structure from its factors

On a technical level:

- our Ramsey-theoretic method is quite efficient (first classification of free superposition)
- improved it to reduce work to the join irreducible elements
- our method is not sporadic (same for order, graph, tournament)



Michael Pinsker

Definition (Ramsey structure Δ)

Definition (Ramsey structure Δ)

For all finite substructures P, H of Δ : Whenever we color the copies of P in Δ with 2 colors then there is a monochromatic copy of H in Δ .

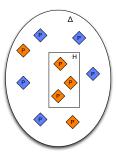
Definition (Ramsey structure Δ)

For all finite substructures P, H of Δ : Whenever we color the copies of P in Δ with 2 colors then there is a monochromatic copy of H in Δ .



Definition (Ramsey structure Δ)

For all finite substructures P, H of Δ : Whenever we color the copies of P in Δ with 2 colors then there is a monochromatic copy of H in Δ .



Theorem (Nešetřil-Rödl)

The random ordered graph is Ramsey.

Definition

Let Δ, Λ be structures.

 $f : \Delta \to \Lambda$ is canonical iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ .

Definition

Let Δ, Λ be structures.

 $f : \Delta \to \Lambda$ is canonical iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ .

Definition

Let Δ , Λ be structures.

 $f : \Delta \to \Lambda$ is canonical iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ .

Examples on (D; <, E)

self-embeddings

Definition

Let Δ, Λ be structures.

 $f : \Delta \to \Lambda$ is canonical iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ .

- self-embeddings
- reversing <, preserving edges and non-edges

Definition

Let Δ, Λ be structures.

 $f : \Delta \to \Lambda$ is canonical iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ .

- self-embeddings
- reversing <, preserving edges and non-edges</p>
- preserving <, flipping edges and non-edges</p>

Definition

Let Δ, Λ be structures.

 $f : \Delta \to \Lambda$ is canonical iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ .

- self-embeddings
- reversing <, preserving edges and non-edges</p>
- preserving <, flipping edges and non-edges
- preserving <, send to clique

Magical proposition (Bodirsky+MP+Tsankov '11)

Let

- \blacksquare \triangle is ordered Ramsey homogeneous finite language
- $\blacksquare f: \Delta \to \Delta$
- $\blacksquare c_1,\ldots,c_n\in\Delta.$

Magical proposition (Bodirsky+MP+Tsankov '11)

Let

 \blacksquare \triangle is ordered Ramsey homogeneous finite language

$$\bullet f: \Delta \to \Delta$$

 $\blacksquare c_1,\ldots,c_n\in\Delta.$

Then the closed monoid generated by $\{f\} \cup Aut(\Delta)$ contains a function g which

Magical proposition (Bodirsky+MP+Tsankov '11)

Let

- \blacksquare \triangle is ordered Ramsey homogeneous finite language
- $\blacksquare f: \Delta \to \Delta$
- $\blacksquare c_1, \ldots, c_n \in \Delta.$

Then the closed monoid generated by $\{f\} \cup Aut(\Delta)$ contains a function *g* which

- is canonical as a function from $(\Delta, c_1, ..., c_n)$ to Δ
- agrees with f on $\{c_1, \ldots, c_n\}$.

Magical proposition (Bodirsky+MP+Tsankov '11)

Let

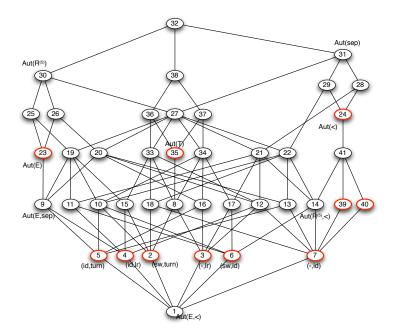
- \blacksquare \triangle is ordered Ramsey homogeneous finite language
- $\blacksquare f: \Delta \to \Delta$
- $\blacksquare c_1, \ldots, c_n \in \Delta.$

Then the closed monoid generated by $\{f\} \cup Aut(\Delta)$ contains a function *g* which

- is canonical as a function from $(\Delta, c_1, \dots, c_n)$ to Δ
- agrees with f on $\{c_1, \ldots, c_n\}$.

Note:

- only finitely many different behaviors of canonical functions.
- g, g' same behavior \rightarrow generate one another (with Aut(Δ)).



Michael Pinsker

Boolean algebras

 \checkmark

 \checkmark

 \checkmark

- Lattices
- Universal Algebra
- Set theory
- Topology

Boolean algebras

 \checkmark

 \checkmark

 \checkmark

 \checkmark

- Lattices
- Universal Algebra
- Set theory
- Topology

Part IV: The Question to The Answer

The Question

Problem

Suppose that Δ_1, Δ_2 have finitely many reducts.

Does their free superposition have finitely many reducts?

Problem

Suppose that Δ_1, Δ_2 have finitely many reducts.

Does their free superposition have finitely many reducts?

(Example: random permutation (D; <, \prec))

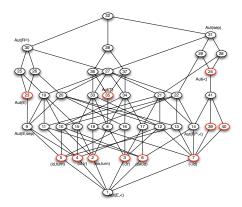
Problem

Suppose that Δ_1, Δ_2 have finitely many reducts. Does their free superposition have finitely many reducts? (Example: random permutation ($D; <, \prec$))

Problem

Suppose that Δ is homogeneous in a finite relational language. Does it have a finite homogeneous extension which is Ramsey?

Thank you!



"The Answer to the Great Question... Of Life, the Universe and Everything...Is...Forty-two," said Deep Thought, with infinite majesty and calm.

Douglas Adams