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Homogeneous structures

Let ∆ be a structure.

Definition
∆ is homogeneous :↔
every isomorphism between finitely generated substructures of ∆

extends to an automorphism of ∆.

Examples

Order of the rationals (Q;<)

Random graph (V ; E)

Free Boolean algebra with ℵ0 generators
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Fraïssé limits

Let C be a class of finitely generated structures
in a countable language, closed under isomorphism.

Theorem (Fraïssé)
Assume C

is closed under substructures

has joint embeddings:
for all B,C ∈ C there is D ∈ C containing isomorphic copies of B,C

has amalgamation:
for all A,B,C ∈ C and embeddings e : A→ B and e′ : A→ C
there is D ∈ C and embeddings f : B → D and f ′ : C → D
such that f ◦ e = f ′ ◦ e′.

Then there exists a unique countable homogeneous structure ∆
whose age (=substructures up to iso) equals C.

42 Michael Pinsker



Fraïssé limits

Let C be a class of finitely generated structures
in a countable language, closed under isomorphism.

Theorem (Fraïssé)
Assume C

is closed under substructures

has joint embeddings:
for all B,C ∈ C there is D ∈ C containing isomorphic copies of B,C

has amalgamation:
for all A,B,C ∈ C and embeddings e : A→ B and e′ : A→ C
there is D ∈ C and embeddings f : B → D and f ′ : C → D
such that f ◦ e = f ′ ◦ e′.

Then there exists a unique countable homogeneous structure ∆
whose age (=substructures up to iso) equals C.

42 Michael Pinsker



Fraïssé limits

Let C be a class of finitely generated structures
in a countable language, closed under isomorphism.

Theorem (Fraïssé)
Assume C

is closed under substructures

has joint embeddings:
for all B,C ∈ C there is D ∈ C containing isomorphic copies of B,C

has amalgamation:
for all A,B,C ∈ C and embeddings e : A→ B and e′ : A→ C
there is D ∈ C and embeddings f : B → D and f ′ : C → D
such that f ◦ e = f ′ ◦ e′.

Then there exists a unique countable homogeneous structure ∆
whose age (=substructures up to iso) equals C.

42 Michael Pinsker



Fraïssé limits

Let C be a class of finitely generated structures
in a countable language, closed under isomorphism.

Theorem (Fraïssé)
Assume C

is closed under substructures

has joint embeddings:
for all B,C ∈ C there is D ∈ C containing isomorphic copies of B,C

has amalgamation:
for all A,B,C ∈ C and embeddings e : A→ B and e′ : A→ C
there is D ∈ C and embeddings f : B → D and f ′ : C → D
such that f ◦ e = f ′ ◦ e′.

Then there exists a unique countable homogeneous structure ∆
whose age (=substructures up to iso) equals C.

42 Michael Pinsker



Fraïssé limits

Let C be a class of finitely generated structures
in a countable language, closed under isomorphism.

Theorem (Fraïssé)
Assume C

is closed under substructures

has joint embeddings:
for all B,C ∈ C there is D ∈ C containing isomorphic copies of B,C

has amalgamation:
for all A,B,C ∈ C and embeddings e : A→ B and e′ : A→ C
there is D ∈ C and embeddings f : B → D and f ′ : C → D
such that f ◦ e = f ′ ◦ e′.

Then there exists a unique countable homogeneous structure ∆
whose age (=substructures up to iso) equals C.

42 Michael Pinsker



Fraïssé limits

Let C be a class of finitely generated structures
in a countable language, closed under isomorphism.

Theorem (Fraïssé)
Assume C

is closed under substructures

has joint embeddings:
for all B,C ∈ C there is D ∈ C containing isomorphic copies of B,C

has amalgamation:
for all A,B,C ∈ C and embeddings e : A→ B and e′ : A→ C
there is D ∈ C and embeddings f : B → D and f ′ : C → D
such that f ◦ e = f ′ ◦ e′.

Then there exists a unique countable homogeneous structure ∆
whose age (=substructures up to iso) equals C.

42 Michael Pinsker



Fraïssé limits

Let C be a class of finitely generated structures
in a countable language, closed under isomorphism.

Theorem (Fraïssé)
Assume C

is closed under substructures

has joint embeddings:
for all B,C ∈ C there is D ∈ C containing isomorphic copies of B,C

has amalgamation:
for all A,B,C ∈ C and embeddings e : A→ B and e′ : A→ C
there is D ∈ C and embeddings f : B → D and f ′ : C → D
such that f ◦ e = f ′ ◦ e′.

Then there exists a unique countable homogeneous structure ∆
whose age (=substructures up to iso) equals C.

42 Michael Pinsker



Amalgamation

A

D

CB
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Examples

(Finite) linear orders↔ (Q;<)

Undirected graphs↔ random graph (V ; E)

Boolean algebras↔ random (= free) Boolean algebra

Lattices↔ random lattice

Distributive lattices↔ random distributive lattice

Partial orders↔ random partial order

Tournaments↔ random tournament

Linearly ordered graphs↔ random ordered graph (D;<,E)
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Reducts

Let ∆ be a structure.

Definition
A reduct of ∆ is a structure on the same domain
whose relations and functions are first-order definable in ∆
(without parameters).

Examples
(Q;<): reduct (Q; Between(x , y , z))

(Q;<): reduct (Q;>)

random graph (V ; E): reduct (V ; K3(x , y , z))

random poset (P;≤): reduct (P;⊥(x , y))

Problem
Understand the reducts of homogeneous structures.
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Motivation

Why reducts?

Understand ∆ itself:

– its first-order theory

– its symmetries (via connection with permutation groups)

Understand the age C of ∆:

– uniform group actions on C

(via permutation groups - combinatorics of C)

– Constraint Satisfaction Problems related to C:
Graph-SAT, Poset-SAT,. . .
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Reducts up to first-order equivalence

For reducts Γ, Γ′ of ∆ set Γ ≤ Γ′ iff Γ is a reduct of Γ′.

Quasiorder.

Consider reducts Γ, Γ′ equivalent iff Γ ≤ Γ′ and Γ′ ≤ Γ.

Factoring out yields a complete lattice.

Multiple choice: Equivalent or not?

(Q;<) and (Q;>)

(Q;<) and (Q; Between(x , y , z))

random poset (P;≤) and (P;⊥(x , y))

random graph (V ; E) and (V ; K3(x , y , z))

Question
How many inequivalent reducts?
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Examples

(Q;<): 5 (Cameron ’76)

random graph (V ; E): 5 (Thomas ’91)

random k-hypergraph: 2k + 1 (Thomas ’96)

random tournament: 5 (Bennett ’97)

(Q;<,0): 116 (Junker+Ziegler ’08)

random partial order: 5 (Pach+MP+Pongrácz+Szabó ’11)

Conjecture (Thomas ’91)
Homogeneous structures in finite relational language
have finitely many reducts.
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Permutation groups

A permutation group is closed :↔
it contains all permutations which it can interpolate on finite subsets.

Theorem (Corollary of Ryll-Nardzewski, Engeler, Svenonius)

Let ∆ be homogeneous in a finite relational language.

Then the mapping
Γ 7→ Aut(Γ)

is an anti-isomorphism
from the lattice of reducts
to the lattice of closed supergroups of Aut(∆).
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BLAST

Boolean algebras

Lattices

Universal Algebra

Set theory

Topology
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The rationals (Q;<)

Let↔ be any permutation of Q which reverses the order.

Let 	 be any permutation of Q which for some irrational π
puts (−∞;π) behind (π;∞) and preserves the order otherwise.

Theorem (Cameron ’76)

The closed supergroups of Aut(Q;<) are precisely:

Aut(Q;<)

〈{↔} ∪ Aut(Q;<)〉 = Aut(Q; Between(x , y , z))

〈{	} ∪ Aut(Q;<)〉 = Aut(Q; Cyclic(x , y , z))

〈{↔,	} ∪ Aut(Q;<)〉 = Aut(Q; Separate(x , y ,u, v))

Sym(Q)
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The random graph (V ;E)

Let − be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite A ⊆ V
switches edges and non-edges between A and V \ A
and preserves the graph relation on A and V \ A.

Theorem (Thomas ’91)

The closed supergroups of Aut(V ; E) are precisely:

Aut(V ; E)

〈{sw} ∪ Aut(V ; E)〉 = Aut(V ; R(3))

〈{−} ∪ Aut(V ; E)〉 = Aut(V ; R(4))

〈{−, sw} ∪ Aut(V ; E)〉 = Aut(V ; R(5))

Sym(V )

For k ≥ 1, let R(k) consist of the k -tuples of distinct elements of V
which induce an odd number of edges.
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Part II: The 42 reducts of the random ordered graph
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The random ordered graph

Definition
The random ordered graph (D;<,E) is
the unique countable linearly ordered graph which

contains all finite linearly ordered graphs
is homogeneous.

Observation
(D;<) is the order of the rationals
(D; E) is the random graph

This is because the two structures are superposed freely, i.e.,
in all possible ways.
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Strong amalgamation

Definition
A class C has strong amalgamation :↔
it has amalgamation and
the amalgamation can be done without identifying elements outside A.

A

D

CB
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Mixing

Let τ1, τ2 be disjoint languages.
Let C1,C2 Fraïssé classes in those languages, ∆1,∆2 be their limits.

Free superposition
Assume that C1,C2 have strong amalgamation.
Then the class C of τ1 ∪ τ2-structures whose τi -reduct is in Ci

is a Fraïssé class and
the τi -reduct of its limit is isomorphic to ∆i .
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Trivial reducts of the random ordered graph

Every reduct of (D;<) is a reduct of the random ordered graph.
Every reduct of (D; E) is a reduct of the random ordered graph.
If (D; R) is a reduct of (D;<)
and (D; S) is a reduct of (D; E)
then (D; R,S) is a reduct of the random ordered graph.

Corresponds to Aut(D; R) ∩ Aut(D; S).

Yields distinct reducts because of free superposition.

Examples

Keeping the order while flipping the graph relation.
Reversing the order while keeping the graph relation.

Lemma
The random ordered graph has at least 25 reducts.
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Similarities between the order and the graph reducts

The following permutations yield new non-trivial reducts.

reversing the order and simultaneously flipping the graph relation
for an irrational π, put (−∞, π) behind (π,∞) whilst flipping the
graph relation between these parts.

No other combination of this kind!

Lemma
The random ordered graph has at least 27 reducts.
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Hello random tournament!

Definition
A tournament is a digraph with precisely one edge between any two
vertices.

Theorem (Bennett ’97)
The random tournament has 5 reducts.

Observation
Set T (x , y) iff x < y ∧ E(x , y) or x > y ∧ N(x , y).
Then (D; T ) is the random tournament.

Lemma
The random ordered graph has at least 27+5-1=31 reducts.
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Finally, some asymmetry

The following permutations yield new non-trivial reducts.

preserving the order
whilst flipping the graph relation below some irrational.
preserving the order
whilst flipping the graph relation above some irrational.

There are no “dual” permutations of these.

Lemma
The random ordered graph has at least 31+2=33 reducts.
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Theorem (Bodirsky+MP+Pongrácz ’13)
The random ordered graph has 41 reducts.
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Part III: Discussion of The Answer

42 Michael Pinsker



Discussion

We have learnt from the result:

similarities between the symmetries of the order and the graph

nonetheless their combination yields an asymmetry

we cannot calculate the reducts of a superposed structure
from its factors

On a technical level:

our Ramsey-theoretic method is quite efficient
(first classification of free superposition)

improved it to reduce work to the join irreducible elements

our method is not sporadic (same for order, graph, tournament)
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Ramsey structures

Definition (Ramsey structure ∆)
For all finite substructures P,H of ∆:
Whenever we color the copies of P in ∆ with 2 colors
then there is a monochromatic copy of H in ∆.

P

P

Δ

H

P

P

P

P

P

P

P P

Theorem (Nešetřil-Rödl)
The random ordered graph is Ramsey.
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Canonical functions

Definition
Let ∆,Λ be structures.

f : ∆→ Λ is canonical iff
for all tuples (x1, . . . , xn), (y1, . . . , yn) of the same type in ∆

(f (x1), . . . , f (xn)) and (f (y1), . . . , f (yn)) have the same type in Λ.

Examples on (D;<,E)

self-embeddings
reversing <, preserving edges and non-edges
preserving <, flipping edges and non-edges
preserving <, send to clique
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Canonizing functions on Ramsey structures

Magical proposition (Bodirsky+MP+Tsankov ’11)

Let
∆ is ordered Ramsey homogeneous finite language
f : ∆→ ∆

c1, . . . , cn ∈ ∆.

Then the closed monoid generated by {f} ∪ Aut(∆) contains
a function g which

is canonical as a function from (∆, c1, . . . , cn) to ∆

agrees with f on {c1, . . . , cn}.

Note:
only finitely many different behaviors of canonical functions.
g,g′ same behavior→ generate one another (with Aut(∆)).
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BLAST

Boolean algebras

Lattices

Universal Algebra

Set theory

Topology
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Part IV: The Question to The Answer
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The Question

Problem
Suppose that ∆1,∆2 have finitely many reducts.
Does their free superposition have finitely many reducts?
(Example: random permutation (D;<,≺))

Problem
Suppose that ∆ is homogeneous in a finite relational language.
Does it have a finite homogeneous extension which is Ramsey?
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Thank you!
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“The Answer to the Great Question. . .
Of Life, the Universe and Everything. . . Is. . . Forty-two,”
said Deep Thought, with infinite majesty and calm.

Douglas Adams
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