Reconstructing the topology of clones

Michael Pinsker

Technische Universität Wien / Université Diderot - Paris 7 Funded by FWF grant I836-N23 Joint work with Manuel Bodirsky and András Pongrácz

> Workshop on Homogeneous Structures HIM, 2013

Part I: Reconstructing structures from their automorphism groups and polymorphism clones

- Part I: Reconstructing structures from their automorphism groups and polymorphism clones
- Part II: The topology of algebras

- Part I: Reconstructing structures from their automorphism groups and polymorphism clones
- Part II: The topology of algebras
- Part III: Reconstruction notions

- Part I: Reconstructing structures from their automorphism groups and polymorphism clones
- Part II: The topology of algebras
- Part III: Reconstruction notions
- Part IV: Negative results

- Part I: Reconstructing structures from their automorphism groups and polymorphism clones
- Part II: The topology of algebras
- Part III: Reconstruction notions
- Part IV: Negative results
- Part V: Positive results

- Part I: Reconstructing structures from their automorphism groups and polymorphism clones
- Part II: The topology of algebras
- Part III: Reconstruction notions
- Part IV: Negative results
- Part V: Positive results
- Part VI: Perspectives & Open problems

Part I

Reconstructing structures from their automorphism groups and polymorphism clones

countable

Reconstructing the topology of clones

countable, ω -categorical

Reconstructing the topology of clones

Reconstructing the topology of clones

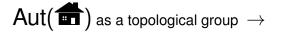
Reconstructing the topology of clones

Theorem (Ryll-Nardzewski)

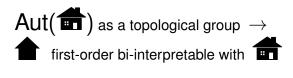
Theorem (Ryll-Nardzewski)



Theorem (Ryll-Nardzewski)

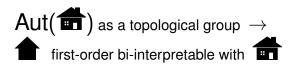


Theorem (Ryll-Nardzewski)



Theorem (Ryll-Nardzewski)

Let Δ , Γ be ω -categorical structures on the same domain. Then Aut(Δ) = Aut(Γ) iff Δ , Γ are first-order interdefinable.



Theorem (Ahlbrandt + Ziegler '86)

Let Δ, Γ be ω -categorical structures. Then Aut $(\Delta) \cong^{T}$ Aut (Γ) iff Δ, Γ are first-order bi-interpretable.

 $\mathsf{Aut}(\blacksquare)$ as an abstract group o ?

$$\mathsf{Aut}(oldsymbol{fm})$$
 as an abstract group $ightarrow$?

Can we reconstruct an ω-categorical structure Δ from the algebraic group structure of Aut(Δ)?

$$\mathsf{Aut}(m{ extsf{m}})$$
 as an abstract group $ightarrow$?

- Can we reconstruct an ω-categorical structure Δ from the algebraic group structure of Aut(Δ)?
- Can we reconstruct the topological structure of Aut(Δ) from its algebraic structure?

$$\mathsf{Aut}(oldsymbol{fm})$$
 as an abstract group $ightarrow$?

- Can we reconstruct an ω-categorical structure Δ from the algebraic group structure of Aut(Δ)?
- Can we reconstruct the topological structure of Aut(Δ) from its algebraic structure?

The automorphism groups of ω -categorical structures are precisely the closed permutation groups which are oligomorphic:

$$\mathsf{Aut}(oldsymbol{fm})$$
 as an abstract group $ightarrow$?

- Can we reconstruct an ω-categorical structure Δ from the algebraic group structure of Aut(Δ)?
- Can we reconstruct the topological structure of Aut(Δ) from its algebraic structure?

The automorphism groups of ω -categorical structures are precisely the closed permutation groups which are oligomorphic: their coordinatewise action on *n*-tuples has finitely many orbits for all $n \ge 1$.

 $\mathsf{Aut}(\textcircled{1})$ as an abstract group o ?

- Can we reconstruct an ω-categorical structure Δ from the algebraic group structure of Aut(Δ)?
- Can we reconstruct the topological structure of Aut(Δ) from its algebraic structure?

The automorphism groups of ω -categorical structures are precisely the closed permutation groups which are oligomorphic: their coordinatewise action on *n*-tuples has finitely many orbits for all $n \ge 1$.

Can we reconstruct the topological structure of closed oligomorphic permutation groups from their algebraic structure?

Reconstructing the topology of clones

Let Δ be a structure.

Let Δ be a structure.

• $\operatorname{Aut}(\Delta)$... automorphism group of Δ

Let Δ be a structure.

- $Aut(\Delta)...automorphism group of \Delta$
- \blacksquare End(Δ)... endomorphism monoid of Δ

Let Δ be a structure.

- $Aut(\Delta)...automorphism group of \Delta$
- $End(\Delta)...endomorphism$ monoid of Δ
- $Pol(\Delta)...polymorphism clone of \Delta$

Let Δ be a structure.

- $Aut(\Delta)...automorphism group of \Delta$
- $\blacksquare \ {\rm End}(\Delta).\,.\,.\,{\rm endomorphism}$ monoid of Δ
- $Pol(\Delta)...polymorphism clone of \Delta$

 $End(\Delta)$ consists of all homomorphisms $f: \Delta \rightarrow \Delta$.

Let Δ be a structure.

- $Aut(\Delta)...automorphism group of \Delta$
- $End(\Delta)...endomorphism monoid of \Delta$
- $Pol(\Delta)...polymorphism clone of \Delta$

 $End(\Delta)$ consists of all homomorphisms $f: \Delta \rightarrow \Delta$.

 $Pol(\Delta)$ consists of all homomorphisms $f: \Delta^n \to \Delta$, where $1 \le n < \omega$.

Let Δ be a structure.

- $Aut(\Delta)...automorphism group of \Delta$
- $End(\Delta)...endomorphism$ monoid of Δ
- $Pol(\Delta)...polymorphism clone of \Delta$

 $End(\Delta)$ consists of all homomorphisms $f: \Delta \rightarrow \Delta$.

 $Pol(\Delta)$ consists of all homomorphisms $f: \Delta^n \to \Delta$, where $1 \le n < \omega$.

 $Pol(\Delta)$ is a function clone:

- closed under composition
- contains projections.

Let Δ be a structure.

- $Aut(\Delta)...automorphism group of \Delta$
- $End(\Delta)...endomorphism monoid of \Delta$
- $Pol(\Delta)...polymorphism clone of \Delta$

 $End(\Delta)$ consists of all homomorphisms $f: \Delta \rightarrow \Delta$.

 $Pol(\Delta)$ consists of all homomorphisms $f: \Delta^n \to \Delta$, where $1 \le n < \omega$.

 $Pol(\Delta)$ is a function clone:

- closed under composition
- contains projections.

Observe: $Pol(\Delta) \supseteq End(\Delta) \supseteq Aut(\Delta)$.

Reconstructing the topology of clones

Michael Pinsker

$$\mathsf{Pol}(\textcircled{1}) \to ?$$

Theorem (Bodirsky + Nešetřil '03)

Let Δ , Γ be ω -categorical structures on the same domain. Then: Pol(Δ) = Pol(Γ) iff Δ , Γ are primitive positive interdefinable.

$$\mathsf{Pol}(\textcircled{1}) \to ?$$

Theorem (Bodirsky + Nešetřil '03)

Let Δ , Γ be ω -categorical structures on the same domain. Then: Pol(Δ) = Pol(Γ) iff Δ , Γ are primitive positive interdefinable.

Why primitive positive definitions?

$$\mathsf{Pol}(\textcircled{1}) \to ?$$

Theorem (Bodirsky + Nešetřil '03)

Let Δ , Γ be ω -categorical structures on the same domain. Then: Pol(Δ) = Pol(Γ) iff Δ , Γ are primitive positive interdefinable.

Why primitive positive definitions?

Applications in theoretical computer science: Primitive positive interdefinable structures have polynomial-time equivalent CSPs.

$$\mathsf{Pol}(\textcircled{1}) \to ?$$

Theorem (Bodirsky + Nešetřil '03)

Let Δ , Γ be ω -categorical structures on the same domain. Then: Pol(Δ) = Pol(Γ) iff Δ , Γ are primitive positive interdefinable.

Why primitive positive definitions?

Applications in theoretical computer science: Primitive positive interdefinable structures have polynomial-time equivalent CSPs.

Confer Manuel Bodirsky's talk.

Reconstructing the topology of clones

Michael Pinsker

Function clones carry:

Function clones carry:

■ topological structure (pointwise convergence)

Function clones carry:

- topological structure (pointwise convergence)
- algebraic structure (laws of composition): multi-sorted algebra

Function clones carry:

- topological structure (pointwise convergence)
- algebraic structure (laws of composition): multi-sorted algebra

Let **C**, **D** be function clones.

 $\xi\colon \mathbf{C}\to\mathbf{D}$ is a (clone) homomorphism iff

Function clones carry:

- topological structure (pointwise convergence)
- algebraic structure (laws of composition): multi-sorted algebra

Let **C**, **D** be function clones.

- $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff
 - it preserves arities;

Function clones carry:

- topological structure (pointwise convergence)
- algebraic structure (laws of composition): multi-sorted algebra

Let \mathbf{C}, \mathbf{D} be function clones.

- $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff
 - it preserves arities;
 - sends every projection in C to the corresponding projection in D;

Function clones carry:

- topological structure (pointwise convergence)
- algebraic structure (laws of composition): multi-sorted algebra

Let \mathbf{C}, \mathbf{D} be function clones.

- $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff
 - it preserves arities;
 - sends every projection in **C** to the corresponding projection in **D**;
 - $\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$ for all $f,g_1,\ldots,g_n \in \mathbb{C}$.

Function clones carry:

- topological structure (pointwise convergence)
- algebraic structure (laws of composition): multi-sorted algebra

Let \mathbf{C}, \mathbf{D} be function clones.

- $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff
 - it preserves arities;
 - sends every projection in C to the corresponding projection in D;
 - $\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$ for all $f,g_1,\ldots,g_n \in \mathbb{C}$.

Topological clones can be formalized like topological groups.

Function clones carry:

- topological structure (pointwise convergence)
- algebraic structure (laws of composition): multi-sorted algebra

Let $\boldsymbol{C},\boldsymbol{D}$ be function clones.

- $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff
 - it preserves arities;
 - sends every projection in **C** to the corresponding projection in **D**;
 - $\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$ for all $f,g_1,\ldots,g_n \in \mathbb{C}$.

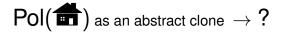
Topological clones can be formalized like topological groups.

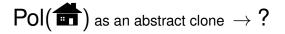
Theorem (Bodirsky + MP '12)

Let Δ , Γ be ω -categorical structures. Then: Pol(Δ) \cong^{τ} Pol(Γ) iff Δ , Γ are primitive positive bi-interpretable.

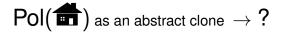
Reconstructing the topology of clones

Michael Pinsker

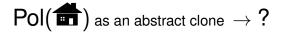




Can we reconstruct an ω-categorical structure Δ from the algebraic clone structure of Pol(Δ)?



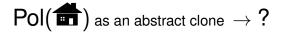
- Can we reconstruct an ω-categorical structure Δ from the algebraic clone structure of Pol(Δ)?
- Can we reconstruct the topological structure of Pol(Δ) from its algebraic structure?



- Can we reconstruct an ω-categorical structure Δ from the algebraic clone structure of Pol(Δ)?
- Can we reconstruct the topological structure of Pol(Δ) from its algebraic structure?

The polymorphism clones of ω -categorical structures are precisely the closed oligomorphic function clones:

they contain an oligomorphic permutation group.



- Can we reconstruct an ω-categorical structure Δ from the algebraic clone structure of Pol(Δ)?
- Can we reconstruct the topological structure of Pol(Δ) from its algebraic structure?

The polymorphism clones of ω -categorical structures are precisely the closed oligomorphic function clones:

they contain an oligomorphic permutation group.

Can we reconstruct the topological structure of closed oligomorphic function clones from their algebraic structure?

Part II

The topology of algebras

Reconstructing the topology of clones

Michael Pinsker

Reconstructing the topology of clones

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Every abstract τ -term *t* induces a finitary term function $t^{\mathfrak{A}}$ on *A*.

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Every abstract τ -term *t* induces a finitary term function $t^{\mathfrak{A}}$ on *A*.

The term functions of \mathfrak{A} form a function clone $Clo(\mathfrak{A})$.

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Every abstract τ -term *t* induces a finitary term function $t^{\mathfrak{A}}$ on *A*.

The term functions of \mathfrak{A} form a function clone $Clo(\mathfrak{A})$.

Many properties of \mathfrak{A} depend only on $Clo(\mathfrak{A})$: e.g., subalgebras, congruence relations.

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Every abstract τ -term *t* induces a finitary term function $t^{\mathfrak{A}}$ on *A*.

The term functions of \mathfrak{A} form a function clone $Clo(\mathfrak{A})$.

Many properties of \mathfrak{A} depend only on $Clo(\mathfrak{A})$: e.g., subalgebras, congruence relations.

Algebraic structure of $Clo(\mathfrak{A})$: "Varieties" Which equations hold in $Clo(\mathfrak{A})$?

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Every abstract τ -term *t* induces a finitary term function $t^{\mathfrak{A}}$ on *A*.

The term functions of \mathfrak{A} form a function clone $Clo(\mathfrak{A})$.

Many properties of \mathfrak{A} depend only on $Clo(\mathfrak{A})$: e.g., subalgebras, congruence relations.

Algebraic structure of $Clo(\mathfrak{A})$: "Varieties" Which equations hold in $Clo(\mathfrak{A})$?

Structural conclusions about *finite* \mathfrak{A} from variety of \mathfrak{A} (i.e., from abstract clone $Clo(\mathfrak{A})$).

Reconstructing the topology of clones

Michael Pinsker

For an algebra \mathfrak{A} , write HSP^{fin}(\mathfrak{A}) for the algebras obtained by taking

For an algebra 𝔅, write HSP^{fin}(𝔅) for the algebras obtained by taking ■ Homomorphic images

For an algebra ${\mathfrak A},$ write ${\sf HSP}^{\sf fin}({\mathfrak A})$ for the algebras obtained by taking

- Homomorphic images
- Subalgebras

- For an algebra \mathfrak{A} , write HSP^{fin}(\mathfrak{A}) for the algebras obtained by taking
 - Homomorphic images
 - Subalgebras
 - finite Powers.

- For an algebra \mathfrak{A} , write HSP^{fin}(\mathfrak{A}) for the algebras obtained by taking
 - Homomorphic images
 - Subalgebras
 - finite Powers.
- Let $\mathfrak{A}, \mathfrak{B}$ be τ -algebras.

- For an algebra \mathfrak{A} , write HSP^{fin}(\mathfrak{A}) for the algebras obtained by taking
 - Homomorphic images
 - Subalgebras
 - finite Powers.

Let $\mathfrak{A}, \mathfrak{B}$ be τ -algebras. If the mapping

 $t^{\mathfrak{A}}\mapsto t^{\mathfrak{B}}$

is well-defined,

- For an algebra ${\mathfrak A},$ write ${\sf HSP}^{\sf fin}({\mathfrak A})$ for the algebras obtained by taking
 - Homomorphic images
 - Subalgebras
 - finite Powers.

Let $\mathfrak{A}, \mathfrak{B}$ be τ -algebras. If the mapping

 $t^{\mathfrak{A}}\mapsto t^{\mathfrak{B}}$

is well-defined, then it is a clone homomorphism

 $\xi \colon \operatorname{Clo}(\mathfrak{A}) \to \operatorname{Clo}(\mathfrak{B})$

- For an algebra \mathfrak{A} , write HSP^{fin}(\mathfrak{A}) for the algebras obtained by taking
 - Homomorphic images
 - Subalgebras
 - finite Powers.

Let $\mathfrak{A}, \mathfrak{B}$ be τ -algebras. If the mapping

 $t^{\mathfrak{A}}\mapsto t^{\mathfrak{B}}$

is well-defined, then it is a clone homomorphism

 $\xi \colon \operatorname{Clo}(\mathfrak{A}) \to \operatorname{Clo}(\mathfrak{B})$

called the natural homomorphism.

- For an algebra \mathfrak{A} , write HSP^{fin}(\mathfrak{A}) for the algebras obtained by taking
 - Homomorphic images
 - Subalgebras
 - finite Powers.

Let $\mathfrak{A},\mathfrak{B}$ be $\tau\text{-algebras.}$ If the mapping

 $t^{\mathfrak{A}}\mapsto t^{\mathfrak{B}}$

is well-defined, then it is a clone homomorphism

 $\xi \colon \operatorname{Clo}(\mathfrak{A}) \to \operatorname{Clo}(\mathfrak{B})$

called the natural homomorphism.

Theorem (Birkhoff 1935)

Let $\mathfrak{A}, \mathfrak{B}$ be finite.

 \mathfrak{B} is in HSP^{fin}(\mathfrak{A}) \leftrightarrow

the natural homomorphism from $Clo(\mathfrak{A})$ to $Clo(\mathfrak{B})$ exists.

Reconstructing the topology of clones

Michael Pinsker

Reconstructing the topology of clones

Michael Pinsker

For finite algebras \mathfrak{A} , the topology on $Clo(\mathfrak{A})$ is trivial.

For finite algebras \mathfrak{A} , the topology on $Clo(\mathfrak{A})$ is trivial.

Call a countable algebra \mathfrak{A} oligomorphic iff $\overline{Clo(\mathfrak{A})}$ is.

For finite algebras \mathfrak{A} , the topology on $\mathsf{Clo}(\mathfrak{A})$ is trivial.

Call a countable algebra \mathfrak{A} oligomorphic iff $\overline{Clo(\mathfrak{A})}$ is.

Theorem ('Topological Birkhoff'; Bodirsky + MP '12)

Let $\mathfrak{A}, \mathfrak{B}$ be oligomorphic or finite.

 \mathfrak{B} is in HSP^{fin}(\mathfrak{A}) \leftrightarrow the natural homomorphism from $\overline{Clo(\mathfrak{A})}$ to $\overline{Clo(\mathfrak{B})}$ exists and is continuous.

For finite algebras \mathfrak{A} , the topology on $Clo(\mathfrak{A})$ is trivial.

Call a countable algebra \mathfrak{A} oligomorphic iff $\overline{Clo(\mathfrak{A})}$ is.

Theorem ('Topological Birkhoff'; Bodirsky + MP '12)

Let $\mathfrak{A}, \mathfrak{B}$ be oligomorphic or finite.

 \mathfrak{B} is in HSP^{fin}(\mathfrak{A}) \leftrightarrow the natural homomorphism from $\overline{Clo(\mathfrak{A})}$ to $\overline{Clo(\mathfrak{B})}$ exists and is continuous.

Problem.

For finite algebras \mathfrak{A} , the topology on $Clo(\mathfrak{A})$ is trivial.

Call a countable algebra \mathfrak{A} oligomorphic iff $\overline{Clo(\mathfrak{A})}$ is.

Theorem ('Topological Birkhoff'; Bodirsky + MP '12)

Let $\mathfrak{A}, \mathfrak{B}$ be oligomorphic or finite.

 \mathfrak{B} is in HSP^{fin}(\mathfrak{A}) \leftrightarrow the natural homomorphism from $\overline{Clo(\mathfrak{A})}$ to $\overline{Clo(\mathfrak{B})}$ exists and is continuous.

Problem.

When can we drop the continuity condition?

For finite algebras \mathfrak{A} , the topology on $\mathsf{Clo}(\mathfrak{A})$ is trivial.

Call a countable algebra \mathfrak{A} oligomorphic iff $\overline{Clo(\mathfrak{A})}$ is.

Theorem ('Topological Birkhoff'; Bodirsky + MP '12)

Let $\mathfrak{A}, \mathfrak{B}$ be oligomorphic or finite.

 \mathfrak{B} is in HSP^{fin}(\mathfrak{A}) \leftrightarrow the natural homomorphism from $\overline{Clo(\mathfrak{A})}$ to $\overline{Clo(\mathfrak{B})}$ exists and is continuous.

Problem.

- When can we drop the continuity condition?
- Can we reconstruct the topological structure of closed oligomorphic function clones from their algebraic structure?

Part III

Reconstruction notions

Reconstructing the topology of clones

Michael Pinsker

Reconstructing the topology of clones

Michael Pinsker

Let

S $_{\infty}$ be the symmetric group on ω

Let

- \blacksquare \mathbf{S}_{∞} be the symmetric group on ω
- \blacksquare $\mathbf{O}^{(1)}$ be the full transformation monoid ω^{ω}

Let

- **S** $_{\infty}$ be the symmetric group on ω
- \blacksquare $\mathbf{O}^{(1)}$ be the full transformation monoid ω^{ω}
- O be the largest function clone on ω : $\bigcup_{n\geq 1} \omega^{\omega^n}$

Let

- **S** $_{\infty}$ be the symmetric group on ω
- \blacksquare $\mathbf{O}^{(1)}$ be the full transformation monoid ω^{ω}
- **O** be the largest function clone on ω : $\bigcup_{n>1} \omega^{\omega^n}$

Definition

Let C be a closed subclone of O.

Let

- **S** $_{\infty}$ be the symmetric group on ω
- **O**⁽¹⁾ be the full transformation monoid ω^{ω}
- O be the largest function clone on ω : $\bigcup_{n \ge 1} \omega^{\omega^n}$

Definition

Let C be a closed subclone of O.

• C has reconstruction iff $C \cong D$ implies $C \cong^T D$ for all closed subclones D of O;

Let

- **S** $_{\infty}$ be the symmetric group on ω
- **O**⁽¹⁾ be the full transformation monoid ω^{ω}
- O be the largest function clone on ω : $\bigcup_{n \ge 1} \omega^{\omega^n}$

Definition

Let C be a closed subclone of O.

- C has reconstruction iff $C \cong D$ implies $C \cong^T D$ for all closed subclones D of O;
- C has automatic homeomorphicity iff every clone isomorphism between C and a closed subclone of O is a homeomorphism;

Let

- **S** $_{\infty}$ be the symmetric group on ω
- **O**⁽¹⁾ be the full transformation monoid ω^{ω}
- O be the largest function clone on ω : $\bigcup_{n \ge 1} \omega^{\omega^n}$

Definition

Let C be a closed subclone of O.

- C has reconstruction iff $C \cong D$ implies $C \cong^T D$ for all closed subclones D of O;
- C has automatic homeomorphicity iff every clone isomorphism between C and a closed subclone of O is a homeomorphism;
- C has automatic continuity iff every clone homomorphism from C into O is continuous.

Let

- **S** $_{\infty}$ be the symmetric group on ω
- **O**⁽¹⁾ be the full transformation monoid ω^{ω}
- O be the largest function clone on ω : $\bigcup_{n>1} \omega^{\omega^n}$

Definition

Let C be a closed subclone of O.

- C has reconstruction iff $C \cong D$ implies $C \cong^T D$ for all closed subclones D of O;
- C has automatic homeomorphicity iff every clone isomorphism between C and a closed subclone of O is a homeomorphism;
- C has automatic continuity iff every clone homomorphism from C into O is continuous.

Similarly for closed subgroups of \boldsymbol{S}_∞ and closed submonoids of $\boldsymbol{O}^{(1)}.$

Reconstructing the topology of clones

Michael Pinsker

Definition

- C has reconstruction iff $C \cong D$ implies $C \cong^T D$ for all closed subclones D of O;
- C has automatic homeomorphicity iff every clone isomorphism between C and a closed subclone of O is a homeomorphism;
- C has automatic continuity iff every clone homomorphism from C into O is continuous.

Definition

- C has reconstruction iff $C \cong D$ implies $C \cong^T D$ for all closed subclones D of O;
- C has automatic homeomorphicity iff every clone isomorphism between C and a closed subclone of O is a homeomorphism;
- C has automatic continuity iff every clone homomorphism from C into O is continuous.

Observation. Automatic homeomorphicity implies reconstruction.

Definition

- C has reconstruction iff $C \cong D$ implies $C \cong^T D$ for all closed subclones D of O;
- C has automatic homeomorphicity iff every clone isomorphism between C and a closed subclone of O is a homeomorphism;
- C has automatic continuity iff every clone homomorphism from C into O is continuous.

Observation. Automatic homeomorphicity implies reconstruction.

Fact. For groups automatic continuity implies automatic homeomorphicity.

Definition

- C has reconstruction iff $C \cong D$ implies $C \cong^T D$ for all closed subclones D of O;
- C has automatic homeomorphicity iff every clone isomorphism between C and a closed subclone of O is a homeomorphism;
- C has automatic continuity iff every clone homomorphism from C into O is continuous.

Observation. Automatic homeomorphicity implies reconstruction.

Fact. For groups automatic continuity implies automatic homeomorphicity.

Unclear for monoids and clones.

Reconstructing the topology of clones

Michael Pinsker

Definition

A structure Δ has the small index property iff every subgroup of Aut(Δ) of countable index is open.

Definition

A structure Δ has the small index property iff every subgroup of Aut(Δ) of countable index is open.

Equivalent to automatic continuity.

Definition

A structure Δ has the small index property iff every subgroup of Aut(Δ) of countable index is open.

Equivalent to automatic continuity.

Definition

A structure Δ has the small index property iff every subgroup of Aut(Δ) of countable index is open.

Equivalent to automatic continuity.

•
$$(\mathbb{N}; =)$$
 (Dixon+Neumann+Thomas'86)

Definition

A structure Δ has the small index property iff every subgroup of Aut(Δ) of countable index is open.

Equivalent to automatic continuity.

- $(\mathbb{N}; =)$ (Dixon+Neumann+Thomas'86)
- $(\mathbb{Q}; <)$ and the atomless Boolean algebra (Truss'89)

Definition

A structure Δ has the small index property iff every subgroup of Aut(Δ) of countable index is open.

Equivalent to automatic continuity.

- $(\mathbb{N}; =)$ (Dixon+Neumann+Thomas'86)
- $(\mathbb{Q}; <)$ and the atomless Boolean algebra (Truss'89)
- the random graph (Hodges+Hodkinson+Lascar+Shelah'93)

Definition

A structure Δ has the small index property iff every subgroup of Aut(Δ) of countable index is open.

Equivalent to automatic continuity.

- $(\mathbb{N}; =)$ (Dixon+Neumann+Thomas'86)
- $(\mathbb{Q}; <)$ and the atomless Boolean algebra (Truss'89)
- the random graph (Hodges+Hodkinson+Lascar+Shelah'93)
- the random K_n -free graphs (Herwig'98)

Definition

A structure Δ has the small index property iff every subgroup of Aut(Δ) of countable index is open.

Equivalent to automatic continuity.

- $(\mathbb{N}; =)$ (Dixon+Neumann+Thomas'86)
- $(\mathbb{Q}; <)$ and the atomless Boolean algebra (Truss'89)
- the random graph (Hodges+Hodkinson+Lascar+Shelah'93)
- the random K_n -free graphs (Herwig'98)
- ω-categorical ω-stable structures
 (Hodges+Hodkinson+Lascar+Shelah'93)

Groups: Rubin's forall-exists interpretations

Reconstructing the topology of clones

Michael Pinsker

Groups: Rubin's forall-exists interpretations

Method for proving automatic homeomorphicity.

Groups: Rubin's forall-exists interpretations

Method for proving automatic homeomorphicity.

the random graph
 (Q; <)
 all homogeneous countable graphs
 various ω-categorical semilinear orders
 the random partial order
 the random tournament
 (Rubin '94)

Groups: Rubin's forall-exists interpretations

Method for proving automatic homeomorphicity.

- the random graph
 (Q; <)
 all homogeneous countable graphs
 various ω-categorical semilinear orders
 the random partial order
 the random tournament
 (Rubin '94)
- the random k-hypergraphs the random K_n-free graphs the Henson digraphs (Barbina+MacPherson '07).

Part IV

Negative results

Reconstructing the topology of clones

Reconstructing the topology of clones

Not the right notion:

Not the right notion:

Observation

If Δ is ω -categorical and has no algebraicity, then End(Δ) does not have automatic continuity.

Not the right notion:

Observation

If Δ is ω -categorical and has no algebraicity, then End(Δ) does not have automatic continuity.

Thus concentrate on

■ isomorphisms (i.e., automatic homeomorphicity)

Not the right notion:

Observation

If Δ is ω -categorical and has no algebraicity, then End(Δ) does not have automatic continuity.

Thus concentrate on

- isomorphisms (i.e., automatic homeomorphicity)
- homomorphisms to special clones

Not the right notion:

Observation

If Δ is ω -categorical and has no algebraicity, then End(Δ) does not have automatic continuity.

Thus concentrate on

- isomorphisms (i.e., automatic homeomorphicity)
- homomorphisms to special clones in particular to the projection clone 1

Not the right notion:

Observation

If Δ is ω -categorical and has no algebraicity, then End(Δ) does not have automatic continuity.

Thus concentrate on

- isomorphisms (i.e., automatic homeomorphicity)
- homomorphisms to special clones in particular to the projection clone 1

Recall: 1 is the clone of projections on a set of at least two elements.

Not the right notion:

Observation

If Δ is ω -categorical and has no algebraicity, then End(Δ) does not have automatic continuity.

Thus concentrate on

- isomorphisms (i.e., automatic homeomorphicity)
- homomorphisms to special clones in particular to the projection clone 1

Recall: 1 is the clone of projections on a set of at least two elements.

Important in constraint satisfaction:

"main reason" for NP-hardness of the CSP of a structure.

Automatic continuity to 1

Reconstructing the topology of clones

There exists an oligomorphic closed subclone of **O** with a discontinuous homomorphism to the projection clone **1**.

There exists an oligomorphic closed subclone of **O** with a discontinuous homomorphism to the projection clone **1**.

Inspired by example of Cherlin + Hrushovski: ω -categorical structure without the small index property.

There exists an oligomorphic closed subclone of **O** with a discontinuous homomorphism to the projection clone **1**.

Inspired by example of Cherlin + Hrushovski: ω -categorical structure without the small index property.

Involves non-principal ultrafilter: unfair

There exists an oligomorphic closed subclone of **O** with a discontinuous homomorphism to the projection clone **1**.

Inspired by example of Cherlin + Hrushovski: ω -categorical structure without the small index property.

Involves non-principal ultrafilter: unfair in the CSP context.

There exists an oligomorphic closed subclone of **O** with a discontinuous homomorphism to the projection clone **1**.

Inspired by example of Cherlin + Hrushovski: ω -categorical structure without the small index property.

Involves non-principal ultrafilter: unfair in the CSP context.

Moreover, this clone also has a continuous homomorphism to 1.

Automatic homeomorphicity

Reconstructing the topology of clones

Automatic homeomorphicity

Theorem (Bodirsky + MP + Pongrácz '13)

There exists an oligomorphic closed submonoid **M** of $O^{(1)}$ and $\xi: \mathbf{M} \to \mathbf{M}$ such that:

- ξ is an isomorphism;
- **\blacksquare** ξ fixes the invertibles of **M** pointwise;
- ξ is not continuous.

In particular **M** does not have automatic homeomorphicity.

Automatic homeomorphicity

Theorem (Bodirsky + MP + Pongrácz '13)

There exists an oligomorphic closed submonoid **M** of $O^{(1)}$ and $\xi: \mathbf{M} \to \mathbf{M}$ such that:

- ξ is an isomorphism;
- **\blacksquare** ξ fixes the invertibles of **M** pointwise;
- ξ is not continuous.

In particular M does not have automatic homeomorphicity.

Theorem (Evans + Hewitt '90)

There exists an oligomorphic closed subgroup ${\bm G}$ of ${\bm S}_\infty$ which does not have reconstruction.

Reconstruction

Reconstructing the topology of clones

Problem

Find an oligomorphic closed subclone of ${\bf O}$ without reconstruction.

Reconstructing the topology of clones

Part V Positive results

Reconstructing the topology of clones

Let **C** be a closed subclone of **O** whose group \mathbf{G}_{C} of invertibles has reconstruction.

Let **C** be a closed subclone of **O**

whose group $\mathbf{G}_{\mathcal{C}}$ of invertibles has reconstruction.

■ Show that the monoid **C**⁽¹⁾ of unary functions of **C** has reconstruction;

Let **C** be a closed subclone of **O**

whose group \mathbf{G}_{C} of invertibles has reconstruction.

- Show that the monoid **C**⁽¹⁾ of unary functions of **C** has reconstruction;
- then show that **C** has reconstruction.

Let **C** be a closed subclone of **O**

whose group \mathbf{G}_{C} of invertibles has reconstruction.

- Show that the monoid **C**⁽¹⁾ of unary functions of **C** has reconstruction;
- then show that **C** has reconstruction.

For constraint satisfaction:

Can assume that **C** is a model-complete core: G_C is dense in $C^{(1)}$.

Reconstructing the topology of clones

Theorem (Bodirsky + MP + Pongrácz '13)

Let Δ be homogeneous in a finite relational language without algebraicity (\leftrightarrow strong amalgamation).

If Aut(Δ) has automatic continuity, then its closure in **O**⁽¹⁾ has automatic homeomorphicity.

Theorem (Bodirsky + MP + Pongrácz '13)

Let Δ be homogeneous in a finite relational language without algebraicity (\leftrightarrow strong amalgamation).

If $Aut(\Delta)$ has automatic continuity, then its closure in $\mathbf{O}^{(1)}$ has automatic homeomorphicity.

Theorem (Bodirsky + MP + Pongrácz '13)

Let Δ be homogeneous in a finite relational language without algebraicity (\leftrightarrow strong amalgamation).

If $Aut(\Delta)$ has automatic continuity, then its closure in $\mathbf{O}^{(1)}$ has automatic homeomorphicity.

Theorem (Bodirsky + MP + Pongrácz '13)

Let Δ be homogeneous in a finite relational language without algebraicity (\leftrightarrow strong amalgamation).

If $Aut(\Delta)$ has automatic continuity, then its closure in $\mathbf{O}^{(1)}$ has automatic homeomorphicity.

Theorem (Bodirsky + MP + Pongrácz '13)

Let Δ be homogeneous in a finite relational language without algebraicity (\leftrightarrow strong amalgamation).

If $Aut(\Delta)$ has automatic continuity, then its closure in $\mathbf{O}^{(1)}$ has automatic homeomorphicity.

Examples:

■ (N;=)

■ (ℚ; <)

the random graph

Theorem (Bodirsky + MP + Pongrácz '13)

Let Δ be homogeneous in a finite relational language without algebraicity (\leftrightarrow strong amalgamation).

If $Aut(\Delta)$ has automatic continuity, then its closure in $\mathbf{O}^{(1)}$ has automatic homeomorphicity.

- (N;=)
- (ℚ; <)
- the random graph
- the universal homogeneous K_n -free graphs

Theorem (Bodirsky + MP + Pongrácz '13)

Let Δ be homogeneous in a finite relational language without algebraicity (\leftrightarrow strong amalgamation).

If $Aut(\Delta)$ has automatic continuity, then its closure in $\mathbf{O}^{(1)}$ has automatic homeomorphicity.

- (N;=)
- (ℚ; <)
- the random graph
- the universal homogeneous K_n -free graphs !

Reconstructing the topology of clones

Michael Pinsker

Let **H** be the closed clone generated by

Let ${\bf H}$ be the closed clone generated by

∎ S_∞

Let ${\bf H}$ be the closed clone generated by

- ∎ S_∞
- a binary injection $f: \omega^2 \to \omega$.

Let H be the closed clone generated by

∎ S_∞

• a binary injection $f: \omega^2 \to \omega$.

H consists of all injections $\omega^n \rightarrow \omega$

Let H be the closed clone generated by

∎ S_∞

• a binary injection $f: \omega^2 \to \omega$.

H consists of all injections $\omega^n \rightarrow \omega$ (almost...)

Let ${\bf H}$ be the closed clone generated by

∎ S_∞

• a binary injection $f: \omega^2 \to \omega$.

H consists of all injections $\omega^n \rightarrow \omega$ (almost...)

H is a minimal tractable function clone above $\mathbf{S}_{\infty} = \operatorname{Aut}(\omega; =)$.

Let H be the closed clone generated by

∎ S_∞

• a binary injection $f: \omega^2 \to \omega$.

H consists of all injections $\omega^n \rightarrow \omega$ (almost...)

H is a minimal tractable function clone above $\mathbf{S}_{\infty} = \operatorname{Aut}(\omega; =)$. Its unary part $\mathbf{H}^{(1)}$ has automatic homeomorphicity.

Let H be the closed clone generated by

∎ S_∞

• a binary injection $f: \omega^2 \to \omega$.

H consists of all injections $\omega^n \rightarrow \omega$ (almost...)

H is a minimal tractable function clone above $\mathbf{S}_{\infty} = \operatorname{Aut}(\omega; =)$. Its unary part $\mathbf{H}^{(1)}$ has automatic homeomorphicity.

If $g: \omega^2 \to \omega$ is bijective, then any binary $h \in \mathbf{H}$ is of the form $\alpha(f(x, y))$.

Let H be the closed clone generated by

∎ S_∞

• a binary injection $f: \omega^2 \to \omega$.

H consists of all injections $\omega^n \rightarrow \omega$ (almost...)

H is a minimal tractable function clone above $\mathbf{S}_{\infty} = \operatorname{Aut}(\omega; =)$. Its unary part $\mathbf{H}^{(1)}$ has automatic homeomorphicity. If $g: \omega^2 \to \omega$ is bijective, then any binary $h \in \mathbf{H}$ is of the form $\alpha(f(x, y))$. Sequences $(h_n(x, y))_{n \in \omega}$ are sequences $(\alpha_n(g(x, y)))_{n \in \omega}$.

Let H be the closed clone generated by

∎ S_∞

• a binary injection $f: \omega^2 \to \omega$.

H consists of all injections $\omega^n \rightarrow \omega$ (almost...)

H is a minimal tractable function clone above $\mathbf{S}_{\infty} = \operatorname{Aut}(\omega; =)$. Its unary part $\mathbf{H}^{(1)}$ has automatic homeomorphicity. If $g: \omega^2 \to \omega$ is bijective, then any binary $h \in \mathbf{H}$ is of the form $\alpha(f(x, y))$. Sequences $(h_n(x, y))_{n \in \omega}$ are sequences $(\alpha_n(g(x, y)))_{n \in \omega}$.

Proposition

H has automatic homeomorphicity.

Let H be the closed clone generated by

∎ S_∞

• a binary injection $f: \omega^2 \to \omega$.

H consists of all injections $\omega^n \rightarrow \omega$ (almost...)

H is a minimal tractable function clone above $\mathbf{S}_{\infty} = \operatorname{Aut}(\omega; =)$. Its unary part $\mathbf{H}^{(1)}$ has automatic homeomorphicity. If $g: \omega^2 \to \omega$ is bijective, then any binary $h \in \mathbf{H}$ is of the form $\alpha(f(x, y))$. Sequences $(h_n(x, y))_{n \in \omega}$ are sequences $(\alpha_n(g(x, y)))_{n \in \omega}$.

Proposition

H has automatic homeomorphicity.

Really?

Reconstructing the topology of clones

Michael Pinsker

Proposition

Let ${\bf C}$ be a closed subclone of ${\bf O}$ whose

- unary part has automatic homeomorphicity;
- group of invertibles acts transitively.

Proposition

Let ${\bf C}$ be a closed subclone of ${\bf O}$ whose

- unary part has automatic homeomorphicity;
- group of invertibles acts transitively.

Then any isomorphism to another closed subclone of **O** is open.

Proposition

Let ${\bf C}$ be a closed subclone of ${\bf O}$ whose

- unary part has automatic homeomorphicity;
- group of invertibles acts transitively.

Then any isomorphism to another closed subclone of **O** is open.

Fact

There are closed oligomorphic subclones of **O** without transitive action.

Reconstructing the topology of clones

Michael Pinsker

Definition

A gate covering of a topological clone C consists of

Definition

A gate covering of a topological clone C consists of

- **a**n open covering \mathcal{U} of **C**;
- for every $U \in \mathcal{U}$ a function $f_U \in U$;

Definition

A gate covering of a topological clone C consists of

- **a**n open covering \mathcal{U} of **C**;
- for every $U \in \mathcal{U}$ a function $f_U \in U$;

such that for all converging sequences $(g^i)_{i\in\omega}$ in **C** (say in some $U \in \mathcal{U}$, and say of arity *n*)

Definition

A gate covering of a topological clone C consists of

- **a**n open covering \mathcal{U} of **C**;
- for every $U \in \mathcal{U}$ a function $f_U \in U$;

such that for all converging sequences $(g^i)_{i\in\omega}$ in **C** (say in some $U \in U$, and say of arity *n*) there exist unary $(\alpha^i)_{i\in\omega}$ and $(\beta_1^i)_{i\in I}, \ldots, (\beta_n^i)_{i\in\omega}$ in **C** with

■
$$g^i(x_1,...,x_n) = \alpha^i(f_U(\beta^i(x_1),...,\beta^i(x_n)))$$
 and
■ $(\alpha^i)_{i\in\omega}$ and $(\beta^i_1)_{i\in I},...,(\beta^i_n)_{i\in\omega}$ converge.

Reconstructing the topology of clones

Michael Pinsker

Theorem (Bodirsky + MP + Pongrácz '13)

If ${\boldsymbol C}$ is a closed subclone of ${\boldsymbol O}$ such that

Theorem (Bodirsky + MP + Pongrácz '13)

If ${\boldsymbol C}$ is a closed subclone of ${\boldsymbol O}$ such that

C acts transitively;

Theorem (Bodirsky + MP + Pongrácz '13)

If ${\boldsymbol C}$ is a closed subclone of ${\boldsymbol O}$ such that

- C acts transitively;
- **C**⁽¹⁾ has automatic homeomorphicity;

Theorem (Bodirsky + MP + Pongrácz '13)

If ${\boldsymbol C}$ is a closed subclone of ${\boldsymbol O}$ such that

- **C** acts transitively;
- **C**⁽¹⁾ has automatic homeomorphicity;
- **C** has a gate covering;

Theorem (Bodirsky + MP + Pongrácz '13)

If C is a closed subclone of O such that

- **C** acts transitively;
- **C**⁽¹⁾ has automatic homeomorphicity;
- **C** has a gate covering;

Then C has automatic homeomorphicity.

Theorem (Bodirsky + MP + Pongrácz '13)

If C is a closed subclone of O such that

- **C** acts transitively;
- **C**⁽¹⁾ has automatic homeomorphicity;
- **C** has a gate covering;

Then C has automatic homeomorphicity.

In (\mathbb{Q} ; <), let Betw(x, y, z) be defined by (x < y < z) \lor (z < y < x).

Theorem (Bodirsky + MP + Pongrácz '13)

If C is a closed subclone of O such that

- C acts transitively;
- **C**⁽¹⁾ has automatic homeomorphicity;
- **C** has a gate covering;

Then C has automatic homeomorphicity.

In (\mathbb{Q} ; <), let Betw(x, y, z) be defined by (x < y < z) \lor (z < y < x).

Examples.

Theorem (Bodirsky + MP + Pongrácz '13)

If C is a closed subclone of O such that

- **C** acts transitively;
- **C**⁽¹⁾ has automatic homeomorphicity;
- **C** has a gate covering;

Then C has automatic homeomorphicity.

In (\mathbb{Q} ; <), let Betw(x, y, z) be defined by (x < y < z) \lor (z < y < x).

Examples.

■ Pol(Q; Betw(x, y, z))

Theorem (Bodirsky + MP + Pongrácz '13)

If C is a closed subclone of O such that

- **C** acts transitively;
- **C**⁽¹⁾ has automatic homeomorphicity;
- **C** has a gate covering;

Then C has automatic homeomorphicity.

In (\mathbb{Q} ; <), let Betw(x, y, z) be defined by (x < y < z) \lor (z < y < x).

Examples.

- $\blacksquare \operatorname{Pol}(\mathbb{Q}; \operatorname{Betw}(x, y, z))$
- $Pol(\mathbb{Q}; Betw(x, y, z), \leq)$

Theorem (Bodirsky + MP + Pongrácz '13)

If C is a closed subclone of O such that

- **C** acts transitively;
- **C**⁽¹⁾ has automatic homeomorphicity;
- **C** has a gate covering;

Then C has automatic homeomorphicity.

In (\mathbb{Q} ; <), let Betw(x, y, z) be defined by (x < y < z) \lor (z < y < x).

Examples.

- $\blacksquare \operatorname{Pol}(\mathbb{Q}; \operatorname{Betw}(x, y, z))$
- $Pol(\mathbb{Q}; Betw(x, y, z), \leq)$

H

Theorem (Bodirsky + MP + Pongrácz '13)

If C is a closed subclone of O such that

- **C** acts transitively;
- **C**⁽¹⁾ has automatic homeomorphicity;
- **C** has a gate covering;

Then C has automatic homeomorphicity.

In (\mathbb{Q} ; <), let Betw(x, y, z) be defined by (x < y < z) \lor (z < y < x).

Examples.

- $\blacksquare \operatorname{Pol}(\mathbb{Q}; \operatorname{Betw}(x, y, z))$
- $Pol(\mathbb{Q}; Betw(x, y, z), \leq)$

H H

Many more...?

Reconstructing the topology of clones

Part VI

Perspectives & Open problems

Reconstructing the topology of clones

Michael Pinsker

Perspectives

Reconstructing the topology of clones

Michael Pinsker

Perspectives

Interesting for constraint satisfaction:

Interesting for constraint satisfaction:

Maximal NP-hard function clones;

Interesting for constraint satisfaction:

- Maximal NP-hard function clones;
- Minimal tractable function clones.

Interesting for constraint satisfaction:

- Maximal NP-hard function clones;
- Minimal tractable function clones.

First group:

have continuous homomorphism to the projection clone **1**. Hence, partition into clopen sets given.

Interesting for constraint satisfaction:

- Maximal NP-hard function clones;
- Minimal tractable function clones.

First group:

have continuous homomorphism to the projection clone **1**. Hence, partition into clopen sets given.

Second group:

generated by canonical functions (in the Ramsey context). Finitely many different types of functions in each clone.

Interesting for constraint satisfaction:

- Maximal NP-hard function clones;
- Minimal tractable function clones.

First group:

have continuous homomorphism to the projection clone **1**. Hence, partition into clopen sets given.

Second group:

generated by canonical functions (in the Ramsey context). Finitely many different types of functions in each clone.

Gate covering?

Reconstructing the topology of clones

Michael Pinsker

Which topological clones are closed subclones of O?

- Which topological clones are closed subclones of O?
- Is O reconstructible?

- Which topological clones are closed subclones of O?
- Is **O** reconstructible?
- Is **O**⁽¹⁾ reconstructible?

- Which topological clones are closed subclones of O?
- Is **O** reconstructible?
- Is **O**⁽¹⁾ reconstructible?
- Is there an oligomorphic closed subclone of O which does not have reconstruction?

- Which topological clones are closed subclones of O?
- Is **O** reconstructible?
- Is **O**⁽¹⁾ reconstructible?
- Is there an oligomorphic closed subclone of O which does not have reconstruction?
- Is there an oligomorphic closed subclone of O which has a homomorphism to the projection clone 1, but no continuous one?

- Which topological clones are closed subclones of O?
- Is O reconstructible?
- Is **O**⁽¹⁾ reconstructible?
- Is there an oligomorphic closed subclone of O which does not have reconstruction?
- Is there an oligomorphic closed subclone of O which has a homomorphism to the projection clone 1, but no continuous one?
- Is there a model of ZF where all homomorphisms from oligomorphic closed subclones of O to the projection clone 1 are continuous?

Michael Pinsker

Thank you!

Reconstructing the topology of clones

Michael Pinsker