The 42 reducts of the random ordered graph

Michael Pinsker

Technische Universität Wien / Université Diderot - Paris 7

4th Novi Sad Algebraic Conference, 2013
Part I: The setting of The Answer

Part II: The 42 reducts of the random ordered graph

Part III: The effect of The Answer

Part IV: The question to The Answer
Part I: The setting of The Answer
Homogeneous structures

Let Δ be a countable structure.
Let Δ be a countable structure.

Definition

Δ is **homogeneous** \iff

every isomorphism between finitely generated substructures of Δ
extends to an automorphism of Δ.

Examples

- Order of the rationals $(\mathbb{Q}; <)$
- Random graph $(V; E)$
- Free Boolean algebra with \aleph_0 generators
Homogeneous structures

Let Δ be a countable structure.

Definition

Δ is **homogeneous** if

- every isomorphism between finitely generated substructures of Δ extends to an automorphism of Δ.

Examples

- Order of the rationals $(\mathbb{Q}; <)$
- Random graph $(V; E)$
- Free Boolean algebra with \aleph_0 generators
Homogeneous structures

Let Δ be a countable structure.

Definition

Δ is homogeneous \iff

every isomorphism between finitely generated substructures of Δ
extends to an automorphism of Δ.

Examples

- Order of the rationals $(\mathbb{Q}; <)$
Homogeneous structures

Let Δ be a countable structure.

Definition

Δ is **homogeneous** \iff

every isomorphism between finitely generated substructures of Δ
extends to an automorphism of Δ.

Examples

- Order of the rationals $(\mathbb{Q}; <)$
- Random graph $(V; E)$
Homogeneous structures

Let Δ be a countable structure.

Definition

Δ is **homogeneous** \iff
every isomorphism between finitely generated substructures of Δ
extends to an automorphism of Δ.

Examples

- Order of the rationals $(\mathbb{Q}; <)$
- Random graph $(V; E)$
- Free Boolean algebra with \aleph_0 generators
Fraïssé limits

Let C be a class of finitely generated structures in a countable language, closed under isomorphism.

Theorem (Fraïssé)

Assume C is closed under substructures has joint embeddings:

for all $B, C \in C$ there is $D \in C$ containing isomorphic copies of B, C has amalgamation:

for all $A, B, C \in C$ and embeddings $e_B: A \to B$ and $e_C: A \to C$ there is $D \in C$ and embeddings $f_B: B \to D$ and $f_C: C \to D$ such that $f_B \circ e_B = f_C \circ e_C$.

Then there exists a unique countable homogeneous structure Δ whose age (=substructures up to iso) equals C.

Michael Pinsker
Fraïssé limits

Let \mathcal{C} be a class of finitely generated structures in a countable language, closed under isomorphism.
Fraïssé limits

Let \mathcal{C} be a class of finitely generated structures in a countable language, closed under isomorphism.

Theorem (Fraïssé)

Assume \mathcal{C}

- **has joint embeddings:** for all $B, C \in \mathcal{C}$ there is $D \in \mathcal{C}$ containing isomorphic copies of B, C.
- **has amalgamation:** for all $A, B, C \in \mathcal{C}$ and embeddings $e_B: A \to B$ and $e_C: A \to C$ there is $D \in \mathcal{C}$ and embeddings $f_B: B \to D$ and $f_C: C \to D$ such that $f_B \circ e_B = f_C \circ e_C$.

Then there exists a unique countable homogeneous structure Δ whose age (substructures up to iso) equals \mathcal{C}.
Fraïssé limits

Let \mathcal{C} be a class of finitely generated structures in a countable language, closed under isomorphism.

Theorem (Fraïssé)

Assume \mathcal{C}

- is closed under substructures
Fraïssé limits

Let \mathcal{C} be a class of finitely generated structures in a countable language, closed under isomorphism.

Theorem (Fraïssé)

Assume \mathcal{C}

- is closed under substructures
- has joint embeddings:

 for all $B, C \in \mathcal{C}$ there is $D \in \mathcal{C}$ containing isomorphic copies of B, C
Fraïssé limits

Let \mathcal{C} be a class of finitely generated structures in a countable language, closed under isomorphism.

Theorem (Fraïssé)

Assume \mathcal{C}

- is closed under substructures
- has joint embeddings:
 for all $B, C \in \mathcal{C}$ there is $D \in \mathcal{C}$ containing isomorphic copies of B, C
- has amalgamation:
 for all $A, B, C \in \mathcal{C}$ and embeddings $e_B : A \to B$ and $e_C : A \to C$
 there is $D \in \mathcal{C}$ and embeddings $f_B : B \to D$ and $f_C : C \to D$
 such that $f_B \circ e_B = f_C \circ e_C$.

Then there exists a unique countable homogeneous structure Δ whose age (substructures up to iso) equals \mathcal{C}.

Michael Pinsker
Fraïssé limits

Let \mathcal{C} be a class of finitely generated structures in a countable language, closed under isomorphism.

Theorem (Fraïssé)

Assume \mathcal{C}

- is closed under substructures
- has joint embeddings:
 for all $B, C \in \mathcal{C}$ there is $D \in \mathcal{C}$ containing isomorphic copies of B, C
- has amalgamation:
 for all $A, B, C \in \mathcal{C}$ and embeddings $e_B : A \to B$ and $e_C : A \to C$
 there is $D \in \mathcal{C}$ and embeddings $f_B : B \to D$ and $f_C : C \to D$
 such that $f_B \circ e_B = f_C \circ e_C$.

Then there exists a unique countable homogeneous structure Δ whose age (=substructures up to iso) equals \mathcal{C}.
Examples

- (Finite) linear orders $\leftrightarrow (\mathbb{Q}; <)$
- Undirected graphs \leftrightarrow random graph $(V; E)$
- Boolean algebras \leftrightarrow random (= free) Boolean algebra
- Lattices \leftrightarrow random lattice
- Distributive lattices \leftrightarrow random distributive lattice
- Partial orders \leftrightarrow random partial order
- Tournaments \leftrightarrow random tournament
- Linearly ordered graphs \leftrightarrow random ordered graph $(D; <, E)$
Examples

- (Finite) linear orders $\leftrightarrow (\mathbb{Q}; <)$
Examples

- (Finite) linear orders $\leftrightarrow (\mathbb{Q}; <)$
- Undirected graphs \leftrightarrow random graph $(V; E)$
Examples

- (Finite) linear orders $\leftrightarrow (\mathbb{Q}; <)$
- Undirected graphs \leftrightarrow random graph $(V; E)$
- Boolean algebras \leftrightarrow random (= free) Boolean algebra
Examples

- (Finite) linear orders $\leftrightarrow (\mathbb{Q}; <)$
- Undirected graphs \leftrightarrow random graph $(V; E)$
- Boolean algebras \leftrightarrow random (= free) Boolean algebra
- Lattices \leftrightarrow random lattice
Examples

- (Finite) linear orders $\leftrightarrow (\mathbb{Q}; <)$
- Undirected graphs \leftrightarrow random graph $(V; E)$
- Boolean algebras \leftrightarrow random (= free) Boolean algebra
- Lattices \leftrightarrow random lattice
- Distributive lattices \leftrightarrow random distributive lattice
Examples

- (Finite) linear orders $\leftrightarrow (\mathbb{Q}; <)$
- Undirected graphs \leftrightarrow random graph $(V; E)$
- Boolean algebras \leftrightarrow random (= free) Boolean algebra
- Lattices \leftrightarrow random lattice
- Distributive lattices \leftrightarrow random distributive lattice
- Partial orders \leftrightarrow random partial order
Examples

- (Finite) linear orders $\leftrightarrow (\mathbb{Q}; <)$
- Undirected graphs \leftrightarrow random graph $(V; E)$
- Boolean algebras \leftrightarrow random (= free) Boolean algebra
- Lattices \leftrightarrow random lattice
- Distributive lattices \leftrightarrow random distributive lattice
- Partial orders \leftrightarrow random partial order
- Tournaments \leftrightarrow random tournament
Examples

- (Finite) linear orders $\leftrightarrow (\mathbb{Q}; <)$
- Undirected graphs \leftrightarrow random graph $(V; E)$
- Boolean algebras \leftrightarrow random (= free) Boolean algebra
- Lattices \leftrightarrow random lattice
- Distributive lattices \leftrightarrow random distributive lattice
- Partial orders \leftrightarrow random partial order
- Tournaments \leftrightarrow random tournament
- Linearly ordered graphs \leftrightarrow random ordered graph $(D; <, E)$
Reducts

Let Δ be a structure.

Definition
A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Examples
- $\left(\mathbb{Q}; <\right)$: reduct $\left(\mathbb{Q}; \text{Between}(x, y, z)\right)$
- Random graph $\left(V; E\right)$: reduct $\left(V; K_3(x, y, z)\right)$
- Random poset $\left(P; \leq\right)$: reduct $\left(P; \bot(x, y)\right)$

Problem
Understand the reducts of homogeneous structures.
Reducts

Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Examples

- $(\mathbb{Q}; <)$: reduct
- $(\mathbb{Q}; <)$: reduct
- $(\mathbb{Q}; >)$: reduct
- Random graph $(V; E)$: reduct
- Random poset $(P; \leq)$: reduct

Problem

Understand the reducts of homogeneous structures.
Let Δ be a structure.

Definition

A *reduct* of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).
Reducts

Let Δ be a structure.

Definition

A *reduct* of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Examples
Reducts

Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Examples

- $(\mathbb{Q}; <)$: reduct $(\mathbb{Q}; \text{Between}(x, y, z))$
Reducts

Let Δ be a structure.

Definition

A **reduct** of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Examples

- $(\mathbb{Q}; <)$: reduct $(\mathbb{Q}; \text{Between}(x, y, z))$
- $(\mathbb{Q}; <)$: reduct $(\mathbb{Q}; >)$
Reducts

Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Examples

- $(\mathbb{Q}; <)$: reduct $(\mathbb{Q}; \text{Between}(x, y, z))$
- $(\mathbb{Q}; <)$: reduct $(\mathbb{Q}; >)$
- random graph $(V; E)$: reduct $(V; K_3(x, y, z))$
Reducts

Let Δ be a structure.

Definition

A **reduct** of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Examples

- $(\mathbb{Q}; <)$: reduct $(\mathbb{Q}; \text{Between}(x, y, z))$
- $(\mathbb{Q}; <)$: reduct $(\mathbb{Q}; >)$
- random graph $(V; E)$: reduct $(V; K_3(x, y, z))$
- random poset $(P; \leq)$: reduct $(P; \bot(x, y))$
Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Examples

- $(\mathbb{Q}; <)$: reduct $(\mathbb{Q}; \text{Between}(x, y, z))$
- $(\mathbb{Q}; <)$: reduct $(\mathbb{Q}; >)$
- Random graph $(V; E)$: reduct $(V; K_3(x, y, z))$
- Random poset $(P; \leq)$: reduct $(P; \perp(x, y))$

Problem

Understand the reducts of homogeneous structures.
Motivation

Why reducts?

Understand it itself:
- its first-order theory
- its symmetries (via connection with permutation groups)

Understand the age C of Δ:
- uniform group actions on C (via permutation groups - combinatorics of C)
- Constraint Satisfaction Problems related to C: Graph-SAT, Poset-SAT, ...
Motivation

Why reducts?

Understand \(\Delta \) itself:
- its first-order theory
- its symmetries (via connection with permutation groups)

Understand the age \(C \) of \(\Delta \):
- uniform group actions on \(C \) (via permutation groups - combinatorics of \(C \))
- Constraint Satisfaction Problems related to \(C \):
 - Graph-SAT, Poset-SAT, . . .
Motivation

Why reducts?

- Understand Δ itself:
 - $\text{Understand} \; \Delta \; \text{itself}$:
Motivation

Why reducts?

- Understand Δ itself:
 - its first-order theory
Motivation

Why reducts?

- Understand Δ itself:
 - its first-order theory
 - its symmetries (via connection with permutation groups)
Motivation

Why reducts?

- Understand Δ itself:
 - its first-order theory
 - its symmetries (via connection with permutation groups)

- Understand the age \mathcal{C} of Δ:
Motivation

Why reducts?

- Understand Δ itself:
 - its first-order theory
 - its symmetries (via connection with permutation groups)

- Understand the age \mathcal{C} of Δ:
 - uniform group actions on \mathcal{C}
 (via permutation groups - combinatorics of \mathcal{C})
Motivation

Why reducts?

- *Understand Δ itself:*
 - its first-order theory
 - its symmetries (via connection with permutation groups)

- *Understand the age C of Δ:*
 - uniform group actions on C
 (via permutation groups - combinatorics of C)
 - Constraint Satisfaction Problems related to C: Graph-SAT, Poset-SAT, . . .
Reducts up to first-order equivalence

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ'.

Quasiorder.

Consider reducts Γ, Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out we get a complete lattice.

Multiple choice: Equivalent or not?

$\left(\mathbb{Q}; \prec \right)$ and $\left(\mathbb{Q}; \succ \right)$

$\left(\mathbb{Q}; \prec \right)$ and $\left(\mathbb{Q}; \succ \right)$ Between (x, y, z)

random poset $\left(\mathcal{P}; \leq \right)$ and $\left(\mathcal{P}; \perp \right)$

random graph $\left(\mathcal{V}; E \right)$ and $\left(\mathcal{V}; K_3 \right)$

Question How many inequivalent reducts? 42

Michael Pinsker
Reducts up to first-order equivalence

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ'.
Reducts up to first-order equivalence

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ'. Quasiorder.

Factoring out we get a complete lattice.

Multiple choice: Equivalent or not? $(\mathbb{Q}; <)$ and $(\mathbb{Q}; >)$

Between (x, y, z) random poset $(\mathbb{P}; \leq)$ and $(\mathbb{P}; \perp)$

random graph $(\mathbb{V}; E)$ and $(\mathbb{V}; K_3(x, y, z))$

Question: How many inequivalent reducts?
Reducts up to first-order equivalence

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ'.

Quasiorder.

Consider reducts Γ, Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Question: How many inequivalent reducts?
Reducts up to first-order equivalence

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ'.

Quasiorder.

Consider reducts Γ, Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out we get a complete lattice.
Reducts up to first-order equivalence

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ'.

Quasiorder.

Consider reducts Γ, Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out we get a complete lattice.

Multiple choice: Equivalent or not?
Reducts up to first-order equivalence

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ'.

Quasiorder.

Consider reducts Γ, Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out we get a complete lattice.

Multiple choice: Equivalent or not?

- $(\mathbb{Q}; <)$ and $(\mathbb{Q}; >)$
Reducts up to first-order equivalence

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ'.

Quasiorder.

Consider reducts Γ, Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out we get a complete lattice.

Multiple choice: Equivalent or not?

- $(\mathbb{Q}; <)$ and $(\mathbb{Q}; >)$
- $(\mathbb{Q}; <)$ and $(\mathbb{Q}; \text{Between}(x, y, z))$
Reducts up to first-order equivalence

For reducts \(\Gamma, \Gamma' \) of \(\Delta \) set \(\Gamma \leq \Gamma' \) iff \(\Gamma \) is a reduct of \(\Gamma' \).

Quasiorder.

Consider reducts \(\Gamma, \Gamma' \) equivalent iff \(\Gamma \leq \Gamma' \) and \(\Gamma' \leq \Gamma \).

Factoring out we get a complete lattice.

Multiple choice: Equivalent or not?

- \((\mathbb{Q}; <)\) and \((\mathbb{Q}; >)\)
- \((\mathbb{Q}; <)\) and \((\mathbb{Q}; \text{Between}(x, y, z))\)
- random poset \((P; \leq)\) and \((P; \perp(x, y))\)
Reducts up to first-order equivalence

For reducts \(\Gamma, \Gamma' \) of \(\Delta \) set \(\Gamma \leq \Gamma' \) iff \(\Gamma \) is a reduct of \(\Gamma' \).

Quasiorder.

Consider reducts \(\Gamma, \Gamma' \) equivalent iff \(\Gamma \leq \Gamma' \) and \(\Gamma' \leq \Gamma \).

Factoring out we get a complete lattice.

Multiple choice: Equivalent or not?

- \((\mathbb{Q}; <)\) and \((\mathbb{Q}; >)\)
- \((\mathbb{Q}; <)\) and \((\mathbb{Q}; \text{Between}(x, y, z))\)
- random poset \((P; \leq)\) and \((P; \perp(x, y))\)
- random graph \((V; E)\) and \((V; K_3(x, y, z))\)
Reducts up to first-order equivalence

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ'.

Quasiorder.

Consider reducts Γ, Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out we get a complete lattice.

Multiple choice: Equivalent or not?

- $(\mathbb{Q}; <)$ and $(\mathbb{Q}; >)$
- $(\mathbb{Q}; <)$ and $(\mathbb{Q}; \text{Between}(x, y, z))$
- random poset $(P; \leq)$ and $(P; \perp(x, y))$
- random graph $(V; E)$ and $(V; K_3(x, y, z))$

Question

How many inequivalent reducts?
Examples

- \(Q; < \) : 5 (Cameron '76)
- Random graph \((V; E)\) : 5 (Thomas '91)
- Random \(k \)-hypergraph: \(k + 1 \) (Thomas '96)
- Random tournament: 5 (Bennett '97)
- \(Q; <, 0 \) : 116 (Junker+Ziegler '08)
- Random partial order: 5 (Pach+MP+Pongrácz+Szabó '11)

Conjecture (Thomas '91)

Homogeneous structures in finite relational language have finitely many reducts.
Examples

- \((\mathbb{Q}; <)\): 5 (Cameron '76)
Examples

- $(\mathbb{Q}; <)$: 5 (Cameron ’76)
- random graph $(V; E)$: 5 (Thomas ’91)
Examples

- $(\mathbb{Q}; <)$: 5 (Cameron ’76)
- random graph $(V; E)$: 5 (Thomas ’91)
- random k-hypergraph: $2^k + 1$ (Thomas ’96)
Examples

- $(\mathbb{Q}; <)$: 5 (Cameron ’76)
- random graph $(V; E)$: 5 (Thomas ’91)
- random k-hypergraph: $2^k + 1$ (Thomas ’96)
- random tournament: 5 (Bennett ’97)
Examples

- \((\mathbb{Q}; <)\): 5 (Cameron ’76)
- random graph \((V; E)\): 5 (Thomas ’91)
- random k-hypergraph: \(2^k + 1\) (Thomas ’96)
- random tournament: 5 (Bennett ’97)
- \((\mathbb{Q}; <, 0)\): 116 (Junker+Ziegler ’08)
Examples

- $(\mathbb{Q}; <)$: 5 (Cameron ’76)
- random graph $(V; E)$: 5 (Thomas ’91)
- random k-hypergraph: $2^k + 1$ (Thomas ’96)
- random tournament: 5 (Bennett ’97)
- $(\mathbb{Q}; <, 0)$: 116 (Junker+Ziegler ’08)
- random partial order: 5 (Pach+MP+Pongrácz+Szabó ’11)
Examples

- $(\mathbb{Q}; <)$: 5 (Cameron ’76)
- random graph $(V; E)$: 5 (Thomas ’91)
- random k-hypergraph: $2^k + 1$ (Thomas ’96)
- random tournament: 5 (Bennett ’97)
- $(\mathbb{Q}; <, 0)$: 116 (Junker+Ziegler ’08)
- random partial order: 5 (Pach+MP+Pongrácz+Szabó ’11)

Conjecture (Thomas ’91)

Homogeneous structures in finite relational language have finitely many reducts.
Permutation groups

A permutation group is closed:

it contains all permutations which it can interpolate on finite subsets.

Theorem (Corollary of Ryll-Nardzewski, Engeler, Svenonius)

Let Δ be homogeneous in a finite relational language.

Then the mapping $\Gamma \mapsto \text{Aut}(\Gamma)$ is an anti-isomorphism from the lattice of reducts to the lattice of closed supergroups of $\text{Aut}(\Delta)$.
Permutation groups

A permutation group is \textbf{closed} :\leftrightarrow
it contains all permutations which it can interpolate on finite subsets.
Permutation groups

A permutation group is closed \iff it contains all permutations which it can interpolate on finite subsets.

Theorem (Corollary of Ryll-Nardzewski, Engeler, Svenonius)

Let Δ be homogeneous in a finite relational language.

Then the mapping

$$\Gamma \mapsto \text{Aut}(\Gamma)$$
A permutation group is closed if it contains all permutations which it can interpolate on finite subsets.

Theorem (Corollary of Ryll-Nardzewski, Engeler, Svenonius)

Let Δ be homogeneous in a finite relational language. Then the mapping

$$\Gamma \mapsto \text{Aut}(\Gamma)$$

is an anti-isomorphism from the lattice of reducts to the lattice of closed supergroups of $\text{Aut}(\Delta)$.

Michael Pinsker
The rationals \((\mathbb{Q}; <)\)
The rationals \((\mathbb{Q}; <)\)

Let \(\leftrightarrow\) be any permutation of \(\mathbb{Q}\) which reverses the order.
The rationals \((\mathbb{Q}; <)\)

Let \(\leftrightarrow\) be any permutation of \(\mathbb{Q}\) which reverses the order.

Let \(\circ\) be any permutation of \(\mathbb{Q}\) which for some irrational \(\pi\) puts \((-\infty; \pi)\) behind \((\pi; \infty)\) and preserves the order otherwise.
The rationals \((\mathbb{Q}; <)\)

Let \(\leftrightarrow\) be any permutation of \(\mathbb{Q}\) which reverses the order.

Let \(\bigcirc\) be any permutation of \(\mathbb{Q}\) which for some irrational \(\pi\) puts \((-\infty; \pi)\) behind \((\pi; \infty)\) and preserves the order otherwise.

Theorem (Cameron ’76)

The closed supergroups of \(\text{Aut}(\mathbb{Q}; <)\) are precisely:
The rationals \((\mathbb{Q}; <)\)

Let \(\leftrightarrow\) be any permutation of \(\mathbb{Q}\) which reverses the order.

Let \(\bigcirc\) be any permutation of \(\mathbb{Q}\) which for some irrational \(\pi\) puts \((−\infty; \pi)\) behind \((\pi; \infty)\) and preserves the order otherwise.

Theorem (Cameron ’76)

The closed supergroups of \(\text{Aut}(\mathbb{Q}; <)\) are precisely:

- \(\text{Aut}(\mathbb{Q}; <)\)
The rationals \((\mathbb{Q}; <)\)

Let \(\leftrightarrow\) be any permutation of \(\mathbb{Q}\) which reverses the order.

Let \(\circ\) be any permutation of \(\mathbb{Q}\) which for some irrational \(\pi\) puts \((-\infty; \pi)\) behind \((\pi; \infty)\) and preserves the order otherwise.

Theorem (Cameron ’76)

The closed supergroups of \(\text{Aut}(\mathbb{Q}; <)\) are precisely:

- \(\text{Aut}(\mathbb{Q}; <)\)
- \(\langle \{\leftrightarrow\} \cup \text{Aut}(\mathbb{Q}; <) \rangle\)
The rationals \((\mathbb{Q}; <)\)

Let \(\leftrightarrow\) be any permutation of \(\mathbb{Q}\) which reverses the order.

Let \(\circlearrowleft\) be any permutation of \(\mathbb{Q}\) which for some irrational \(\pi\) puts \((-\infty; \pi)\) behind \((\pi; \infty)\) and preserves the order otherwise.

Theorem (Cameron ’76)

The closed supergroups of \(\text{Aut}(\mathbb{Q}; <)\) are precisely:

- \(\text{Aut}(\mathbb{Q}; <)\)
- \(\langle\{\leftrightarrow\} \cup \text{Aut}(\mathbb{Q}; <)\rangle\)
- \(\langle\{\circlearrowleft\} \cup \text{Aut}(\mathbb{Q}; <)\rangle\)
- \(\text{Sym}(\mathbb{Q})\)
The rationals \((\mathbb{Q}; <)\)

Let \(\leftrightarrow\) be any permutation of \(\mathbb{Q}\) which reverses the order.

Let \(\circ\) be any permutation of \(\mathbb{Q}\) which for some irrational \(\pi\) puts \((-\infty; \pi)\) behind \((\pi; \infty)\) and preserves the order otherwise.

Theorem (Cameron ’76)

The closed supergroups of \(\text{Aut}(\mathbb{Q}; <)\) are precisely:

- \(\text{Aut}(\mathbb{Q}; <)\)
- \(\{\leftrightarrow\} \cup \text{Aut}(\mathbb{Q}; <)\)
- \(\{\circ\} \cup \text{Aut}(\mathbb{Q}; <)\)
- \(\{\leftrightarrow, \circ\} \cup \text{Aut}(\mathbb{Q}; <)\)
The rationals \((\mathbb{Q}; <)\)

Let \(\leftrightarrow\) be any permutation of \(\mathbb{Q}\) which reverses the order.

Let \(\circ\) be any permutation of \(\mathbb{Q}\) which for some irrational \(\pi\) puts \((-\infty; \pi)\) behind \((\pi; \infty)\) and preserves the order otherwise.

Theorem (Cameron ’76)

The closed supergroups of \(\text{Aut}(\mathbb{Q}; <)\) are precisely:

- \(\text{Aut}(\mathbb{Q}; <)\)
- \(\langle\{\leftrightarrow\} \cup \text{Aut}(\mathbb{Q}; <)\rangle\)
- \(\langle\{\circ\} \cup \text{Aut}(\mathbb{Q}; <)\rangle\)
- \(\langle\{\leftrightarrow, \circ\} \cup \text{Aut}(\mathbb{Q}; <)\rangle\)
- \(\text{Sym}(\mathbb{Q})\)
The rationals \((\mathbb{Q}; <) \)

Let \(\leftrightarrow \) be any permutation of \(\mathbb{Q} \) which reverses the order.

Let \(\circ \) be any permutation of \(\mathbb{Q} \) which for some irrational \(\pi \) puts \((-\infty; \pi)\) behind \((\pi; \infty)\) and preserves the order otherwise.

Theorem (Cameron ’76)

The closed supergroups of \(\text{Aut}(\mathbb{Q}; <) \) are precisely:

- \(\text{Aut}(\mathbb{Q}; <) \)
- \(\langle \{\leftrightarrow\} \cup \text{Aut}(\mathbb{Q}; <) \rangle = \text{Aut}(\mathbb{Q}; \text{Between}(x, y, z)) \)
- \(\langle \{\circ\} \cup \text{Aut}(\mathbb{Q}; <) \rangle \)
- \(\langle \{\leftrightarrow, \circ\} \cup \text{Aut}(\mathbb{Q}; <) \rangle \)
- \(\text{Sym}(\mathbb{Q}) \)
The rationals \((\mathbb{Q}; <)\)

Let \(\leftrightarrow\) be any permutation of \(\mathbb{Q}\) which reverses the order.

Let \(\circlearrowleft\) be any permutation of \(\mathbb{Q}\) which for some irrational \(\pi\) puts \((-\infty; \pi)\) behind \((\pi; \infty)\) and preserves the order otherwise.

Theorem (Cameron ’76)

The closed supergroups of \(\text{Aut}(\mathbb{Q}; <)\) are precisely:

- \(\text{Aut}(\mathbb{Q}; <)\)
- \(\langle\{\leftrightarrow\} \cup \text{Aut}(\mathbb{Q}; <)\rangle = \text{Aut}(\mathbb{Q}; \text{Between}(x, y, z))\)
- \(\langle\{\circlearrowleft\} \cup \text{Aut}(\mathbb{Q}; <)\rangle = \text{Aut}(\mathbb{Q}; \text{Cyclic}(x, y, z))\)
- \(\langle\{\leftrightarrow, \circlearrowleft\} \cup \text{Aut}(\mathbb{Q}; <)\rangle\)
- \(\text{Sym}(\mathbb{Q})\)
The rationals \((\mathbb{Q}; <)\)

Let \(\leftrightarrow\) be any permutation of \(\mathbb{Q}\) which reverses the order.

Let \(\bigcirc\) be any permutation of \(\mathbb{Q}\) which for some irrational \(\pi\) puts \((-\infty; \pi)\) behind \((\pi; \infty)\) and preserves the order otherwise.

Theorem (Cameron ’76)

The closed supergroups of \(\text{Aut}(\mathbb{Q}; <)\) are precisely:

- \(\text{Aut}(\mathbb{Q}; <)\)
- \(\langle \{\leftrightarrow\} \cup \text{Aut}(\mathbb{Q}; <) \rangle = \text{Aut}(\mathbb{Q}; \text{Between}(x, y, z))\)
- \(\langle \{\bigcirc\} \cup \text{Aut}(\mathbb{Q}; <) \rangle = \text{Aut}(\mathbb{Q}; \text{Cyclic}(x, y, z))\)
- \(\langle \{\leftrightarrow, \bigcirc\} \cup \text{Aut}(\mathbb{Q}; <) \rangle = \text{Aut}(\mathbb{Q}; \text{Separate}(x, y, u, v))\)
- \(\text{Sym}(\mathbb{Q})\)
The random graph \((V; E)\)

Let \(-\) be any permutation of \(V\) which switches edges and non-edges.

Let \(\text{sw}\) be any permutation which for some finite \(A \subseteq V\) switches edges and non-edges between \(A\) and \(V \setminus A\) and preserves the graph relation on \(A\) and \(V \setminus A\).

Theorem (Thomas '91)
The closed supergroups of \(\text{Aut}(V; E)\) are precisely:

\[
\text{Aut}(V; E) \langle \{\text{sw}\} \cup \text{Aut}(V; E) \rangle = \text{Aut}(V; R(3)) \\
\text{Aut}(V; E) \langle \{-\} \cup \text{Aut}(V; E) \rangle = \text{Aut}(V; R(4)) \\
\text{Aut}(V; E) \langle \{-, \text{sw}\} \cup \text{Aut}(V; E) \rangle = \text{Aut}(V; R(5))
\]

For \(k \geq 1\), let \(R(k)\) consist of the \(k\)-tuples of distinct elements of \(V\) which induce an odd number of edges.

42 Michael Pinsker
The random graph \((V; E)\)

Let \(\sigma\) be any permutation of \(V\) which switches edges and non-edges.
The random graph \((V; E)\)

Let \(\sigma\) be any permutation of \(V\) which switches edges and non-edges.

Let \(sw\) be any permutation which for some finite \(A \subseteq V\) switches edges and non-edges between \(A\) and \(V \setminus A\) and preserves the graph relation on \(A\) and \(V \setminus A\).
The random graph \((V; E)\)

Let \(\pi\) be any permutation of \(V\) which switches edges and non-edges.

Let \(sw\) be any permutation which for some finite \(A \subseteq V\) switches edges and non-edges between \(A\) and \(V \setminus A\) and preserves the graph relation on \(A\) and \(V \setminus A\).

Theorem (Thomas ’91)

The closed supergroups of \(\text{Aut}(V; E)\) are precisely:

\[
\langle \{sw\} \cup \text{Aut}(V; E) \rangle = \text{Aut}(V; R(3))
\]

\[
\langle \{-\} \cup \text{Aut}(V; E) \rangle = \text{Aut}(V; R(4))
\]

\[
\langle \{-, sw\} \cup \text{Aut}(V; E) \rangle = \text{Aut}(V; R(5))
\]

\[
\text{Sym}(V)
\]

For \(k \geq 1\), let \(R(k)\) consist of the \(k\)-tuples of distinct elements of \(V\) which induce an odd number of edges.
The random graph \((V; E)\)

Let \(\pi\) be any permutation of \(V\) which switches edges and non-edges.

Let \(sw\) be any permutation which for some finite \(A \subseteq V\) switches edges and non-edges between \(A\) and \(V \setminus A\) and preserves the graph relation on \(A\) and \(V \setminus A\).

Theorem (Thomas ’91)

The closed supergroups of \(\text{Aut}(V; E)\) are precisely:

- \(\text{Aut}(V; E)\)
The random graph \((V; E)\)

Let \(\sigma\) be any permutation of \(V\) which switches edges and non-edges.

Let \(\text{sw}\) be any permutation which for some finite \(A \subseteq V\) switches edges and non-edges between \(A\) and \(V \setminus A\) and preserves the graph relation on \(A\) and \(V \setminus A\).

Theorem (Thomas ’91)

The closed supergroups of \(\text{Aut}(V; E)\) are precisely:

- \(\text{Aut}(V; E)\)
- \(\langle \{\text{sw}\} \cup \text{Aut}(V; E) \rangle\)
The random graph \((V; E)\)

Let \(\) be any permutation of \(V\) which switches edges and non-edges.

Let \(\text{sw}\) be any permutation which for some finite \(A \subseteq V\) switches edges and non-edges between \(A\) and \(V \setminus A\) and preserves the graph relation on \(A\) and \(V \setminus A\).

Theorem (Thomas ’91)

The closed supergroups of \(\text{Aut}(V; E)\) are precisely:

- \(\text{Aut}(V; E)\)
- \(\langle \{\text{sw}\} \cup \text{Aut}(V; E) \rangle\)
- \(\langle \{\) \(-\)\(\} \cup \text{Aut}(V; E) \rangle\)
- \(\text{Sym}(V)\)

For \(k \geq 1\), let \(\text{R}(k)\) consist of the \(k\)-tuples of distinct elements of \(V\) which induce an odd number of edges.
The random graph \((V; E)\)

Let \(\pi\) be any permutation of \(V\) which switches edges and non-edges.

Let \(sw\) be any permutation which for some finite \(A \subseteq V\) switches edges and non-edges between \(A\) and \(V \setminus A\) and preserves the graph relation on \(A\) and \(V \setminus A\).

Theorem (Thomas ’91)

The closed supergroups of \(\text{Aut}(V; E)\) are precisely:

- \(\text{Aut}(V; E)\)
- \(\langle \{sw\} \cup \text{Aut}(V; E) \rangle\)
- \(\langle \{-\} \cup \text{Aut}(V; E) \rangle\)
- \(\langle \{-, sw\} \cup \text{Aut}(V; E) \rangle\)
The random graph \((V; E)\)

Let \(\sigma\) be any permutation of \(V\) which switches edges and non-edges.

Let \(sw\) be any permutation which for some finite \(A \subseteq V\) switches edges and non-edges between \(A\) and \(V \setminus A\) and preserves the graph relation on \(A\) and \(V \setminus A\).

Theorem (Thomas ’91)

The closed supergroups of \(\text{Aut}(V; E)\) are precisely:

- \(\text{Aut}(V; E)\)
- \(\langle \{sw\} \cup \text{Aut}(V; E) \rangle\)
- \(\langle \{\sigma\} \cup \text{Aut}(V; E) \rangle\)
- \(\langle \{\sigma, sw\} \cup \text{Aut}(V; E) \rangle\)
- \(\text{Sym}(V)\)
Let σ be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas ’91)

The closed supergroups of $\text{Aut}(V; E)$ are precisely:

- $\text{Aut}(V; E)$
- $\langle \{sw\} \cup \text{Aut}(V; E) \rangle$
- $\langle \{-\} \cup \text{Aut}(V; E) \rangle$
- $\langle \{-, sw\} \cup \text{Aut}(V; E) \rangle$
- $\text{Sym}(V)$

For $k \geq 1$, let $R^{(k)}$ consist of the k-tuples of distinct elements of V which induce an odd number of edges.
The random graph \((V; E)\)

Let \(\sigma\) be any permutation of \(V\) which switches edges and non-edges.

Let \(sw\) be any permutation which for some finite \(A \subseteq V\) switches edges and non-edges between \(A\) and \(V \setminus A\) and preserves the graph relation on \(A\) and \(V \setminus A\).

Theorem (Thomas ’91)

The closed supergroups of \(\text{Aut}(V; E)\) are precisely:

- \(\text{Aut}(V; E)\)
- \(\langle \{sw\} \cup \text{Aut}(V; E) \rangle = \text{Aut}(V; R^{(3)})\)
- \(\langle \{-\} \cup \text{Aut}(V; E) \rangle\)
- \(\langle \{-, sw\} \cup \text{Aut}(V; E) \rangle\)
- \(\text{Sym}(V)\)

For \(k \geq 1\), let \(R^{(k)}\) consist of the \(k\)-tuples of distinct elements of \(V\) which induce an odd number of edges.
The random graph \((V; E)\)

Let \(\pi\) be any permutation of \(V\) which switches edges and non-edges.

Let \(sw\) be any permutation which for some finite \(A \subseteq V\) switches edges and non-edges between \(A\) and \(V \setminus A\) and preserves the graph relation on \(A\) and \(V \setminus A\).

Theorem (Thomas ’91)

The closed supergroups of \(\text{Aut}(V; E)\) are precisely:

- \(\text{Aut}(V; E)\)
- \(\langle \{sw\} \cup \text{Aut}(V; E) \rangle = \text{Aut}(V; R^{(3)})\)
- \(\langle \{-\} \cup \text{Aut}(V; E) \rangle = \text{Aut}(V; R^{(4)})\)
- \(\langle \{-, sw\} \cup \text{Aut}(V; E) \rangle\)
- \(\text{Sym}(V)\)

For \(k \geq 1\), let \(R^{(k)}\) consist of the \(k\)-tuples of distinct elements of \(V\) which induce an odd number of edges.
The random graph $(V; E)$

Let $-$ be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas ’91)

The closed supergroups of $\text{Aut}(V; E)$ are precisely:

- $\text{Aut}(V; E)$
- $\langle \{sw\} \cup \text{Aut}(V; E) \rangle = \text{Aut}(V; R^{(3)})$
- $\langle \{-\} \cup \text{Aut}(V; E) \rangle = \text{Aut}(V; R^{(4)})$
- $\langle \{-, sw\} \cup \text{Aut}(V; E) \rangle = \text{Aut}(V; R^{(5)})$
- $\text{Sym}(V)$

For $k \geq 1$, let $R^{(k)}$ consist of the k-tuples of distinct elements of V which induce an odd number of edges.
Part II: The 42 reducts of the random ordered graph
The random ordered graph

Definition

The random ordered graph \((D; <, E)\) is the unique countable linearly ordered graph which
- contains all finite linearly ordered graphs
- is homogeneous.
The random ordered graph

Definition
The random ordered graph $(D; <, E)$ is the unique countable linearly ordered graph which
- contains all finite linearly ordered graphs
- is homogeneous.

Observation
- $(D; <)$ is the order of the rationals
- $(D; E)$ is the random graph
The random ordered graph

Definition

The random ordered graph \((D; <, E)\) is the unique countable linearly ordered graph which
- contains all finite linearly ordered graphs
- is homogeneous.

Observation

- \((D; <)\) is the order of the rationals
- \((D; E)\) is the random graph

This is because the two structures are superposed *freely*, i.e., in all possible ways.
Strong amalgamation

A class \(C \) has strong amalgamation if for all \(A, B, C \in C \) and embeddings \(e_B: A \to B \) and \(e_C: A \to C \), there is \(D \in C \) and embeddings \(f_B: B \to D \) and \(f_C: C \to D \) such that
\[
f_B \circ e_B = f_C \circ e_C
\]
and
\[
f_B[B] \cap f_C[C] = f_B[e_B[A]].
\]
Strong amalgamation

Definition

A class \mathcal{C} has strong amalgamation \iff
for all $A, B, C \in \mathcal{C}$ and embeddings $e_B : A \to B$ and $e_C : A \to C$
there is $D \in \mathcal{C}$ and embeddings $f_B : B \to D$ and $f_C : C \to D$
such that $f_B \circ e_B = f_C \circ e_C$
and $f_B[B] \cap f_C[C] = f_B \circ e_B[A]$.
Mixing

Let τ_1, τ_2 be disjoint languages. Let C_1, C_2 be Fraïssé classes in those languages, Δ_1, Δ_2 be their limits.

Free superposition

Assume that C_1, C_2 have strong amalgamation. Then the class C_1 of $\tau_1 \cup \tau_2$-structures whose τ_i-reduct is in C_i is a Fraïssé class and the τ_i-reduct of its limit is isomorphic to Δ_i.
Let τ_1, τ_2 be disjoint languages.
Let $\mathcal{C}_1, \mathcal{C}_2$ Fraïssé classes in those languages, Δ_1, Δ_2 be their limits.
Mixing

Let τ_1, τ_2 be disjoint languages.
Let $\mathcal{C}_1, \mathcal{C}_2$ Fraïssé classes in those languages, Δ_1, Δ_2 be their limits.

Free superposition

Assume that $\mathcal{C}_1, \mathcal{C}_2$ have strong amalgamation.
Let τ_1, τ_2 be disjoint languages.
Let $\mathcal{C}_1, \mathcal{C}_2$ Fraïssé classes in those languages, Δ_1, Δ_2 be their limits.

Free superposition

Assume that $\mathcal{C}_1, \mathcal{C}_2$ have strong amalgamation.
Then the class \mathcal{C} of $\tau_1 \cup \tau_2$-structures whose τ_i-reduct is in \mathcal{C}_i
Let τ_1, τ_2 be disjoint languages.
Let $\mathcal{C}_1, \mathcal{C}_2$ Fraïssé classes in those languages, Δ_1, Δ_2 be their limits.

Free superposition

Assume that $\mathcal{C}_1, \mathcal{C}_2$ have strong amalgamation.
Then the class \mathcal{C} of $\tau_1 \cup \tau_2$-structures whose τ_i-reduct is in \mathcal{C}_i
- is a Fraïssé class and
- the τ_i-reduct of its limit is isomorphic to Δ_i.
Every reduct of \((D;\prec)\) is a reduct of the random ordered graph.

Every reduct of \((D;E)\) is a reduct of the random ordered graph.

If \((D;R)\) is a reduct of \((D;\prec)\) and \((D;S)\) is a reduct of \((D;E)\) then \((D;R,S)\) is a reduct of the random ordered graph.

Corresponds to intersecting the groups \(\text{Aut}(D;R)\) and \(\text{Aut}(D;S)\).

Yields distinct reducts because of free superposition.

Examples
- Keeping the order while flipping the graph relation.
- Reversing the order while keeping the graph relation.

Lemma The random ordered graph has at least 25 reducts.
Every reduct of \((D; <)\) is a reduct of the random ordered graph.
Trivial reducts of the random ordered graph

- Every reduct of \((D; <)\) is a reduct of the random ordered graph.
- Every reduct of \((D; E)\) is a reduct of the random ordered graph.
Every reduct of \((D; <)\) is a reduct of the random ordered graph.

Every reduct of \((D; E)\) is a reduct of the random ordered graph.

If \((D; R)\) is a reduct of \((D; <)\) and \((D; S)\) is a reduct of \((D; E)\) then \((D; R, S)\) is a reduct of the random ordered graph.
Every reduct of $(D; <)$ is a reduct of the random ordered graph.

Every reduct of $(D; E)$ is a reduct of the random ordered graph.

If $(D; R)$ is a reduct of $(D; <)$
and $(D; S)$ is a reduct of $(D; E)$
then $(D; R, S)$ is a reduct of the random ordered graph.

Corresponds to intersecting the groups $\text{Aut}(D; R)$ and $\text{Aut}(D; S)$.
Trivial reducts of the random ordered graph

- Every reduct of \((D; <)\) is a reduct of the random ordered graph.
- Every reduct of \((D; E)\) is a reduct of the random ordered graph.
- If \((D; R)\) is a reduct of \((D; <)\)
 and \((D; S)\) is a reduct of \((D; E)\)
 then \((D; R, S)\) is a reduct of the random ordered graph.

Corresponds to intersecting the groups \(\text{Aut}(D; R)\) and \(\text{Aut}(D; S)\).

Yields distinct reducts because of free superposition.
Trivial reducts of the random ordered graph

- Every reduct of \((D; <)\) is a reduct of the random ordered graph.
- Every reduct of \((D; E)\) is a reduct of the random ordered graph.
- If \((D; R)\) is a reduct of \((D; <)\) and \((D; S)\) is a reduct of \((D; E)\) then \((D; R, S)\) is a reduct of the random ordered graph.

Corresponds to intersecting the groups \(\text{Aut}(D; R)\) and \(\text{Aut}(D; S)\).

Yields distinct reducts because of free superposition.

Examples
Trivial reducts of the random ordered graph

- Every reduct of \((D; <)\) is a reduct of the random ordered graph.
- Every reduct of \((D; E)\) is a reduct of the random ordered graph.
- If \((D; R)\) is a reduct of \((D; <)\) and \((D; S)\) is a reduct of \((D; E)\) then \((D; R, S)\) is a reduct of the random ordered graph.

Corresponds to intersecting the groups \(\text{Aut}(D; R)\) and \(\text{Aut}(D; S)\). Yields distinct reducts because of free superposition.

Examples

- Keeping the order while flipping the graph relation.
Trivial reducts of the random ordered graph

- Every reduct of \((D; <)\) is a reduct of the random ordered graph.
- Every reduct of \((D; E)\) is a reduct of the random ordered graph.
- If \((D; R)\) is a reduct of \((D; <)\) and \((D; S)\) is a reduct of \((D; E)\) then \((D; R, S)\) is a reduct of the random ordered graph.

Corresponds to intersecting the groups \(\text{Aut}(D; R)\) and \(\text{Aut}(D; S)\).

Yields distinct reducts because of free superposition.

Examples

- Keeping the order while flipping the graph relation.
- Reversing the order while keeping the graph relation.
Trivial reducts of the random ordered graph

- Every reduct of $(D; <)$ is a reduct of the random ordered graph.
- Every reduct of $(D; E)$ is a reduct of the random ordered graph.
- If $(D; R)$ is a reduct of $(D; <)$
 and $(D; S)$ is a reduct of $(D; E)$
 then $(D; R, S)$ is a reduct of the random ordered graph.

Corresponds to intersecting the groups $\text{Aut}(D; R)$ and $\text{Aut}(D; S)$.

Yields distinct reducts because of free superposition.

Examples

- Keeping the order while flipping the graph relation.
- Reversing the order while keeping the graph relation.

Lemma

The random ordered graph has at least 25 reducts.
Similarities between the order and the graph reducts

The following permutations yield new non-trivial reducts. Reversing the order and simultaneously flipping the graph relation for an irrational \(\pi \), put \((−\infty, \pi)\) behind \((\pi, \infty)\) whilst flipping the graph relation between these parts.

No other combination of this kind!

Lemma

The random ordered graph has at least 27 reducts.
The following permutations yield new non-trivial reducts.
Similarities between the order and the graph reducts

The following permutations yield new non-trivial reducts.

- reversing the order and simultaneously flipping the graph relation

No other combination of this kind!
The following permutations yield new non-trivial reducts.

- reversing the order and simultaneously flipping the graph relation
- for an irrational π, put $(-\infty, \pi)$ behind (π, ∞) whilst flipping the graph relation between these parts.
The following permutations yield new non-trivial reducts.

- reversing the order and simultaneously flipping the graph relation
- for an irrational π, put $(-\infty, \pi)$ behind (π, ∞) whilst flipping the graph relation between these parts.

No other combination of this kind!
The following permutations yield new non-trivial reducts.

- reversing the order and simultaneously flipping the graph relation
- for an irrational \(\pi \), put \((-\infty, \pi)\) behind \((\pi, \infty)\) whilst flipping the graph relation between these parts.

No other combination of this kind!

Lemma
The random ordered graph has at least 27 reducts.
Hello random tournament!

Definition
A tournament is a digraph with precisely one edge between any two vertices.

Theorem (Bennett '97)
The random tournament has 5 reducts.

Observation
Set $T(x, y)$ iff $x < y \land E(x, y)$ or $x > y \land N(x, y)$.

Then $(D; T)$ is the random tournament.

Lemma
The random ordered graph has at least 32 reducts.
Hello random tournament!

Definition

A tournament is a digraph with precisely one edge between any two vertices.

<table>
<thead>
<tr>
<th>Theorem (Bennett '97)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The random tournament has 5 reducts.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{T}(x, y) \iff x < y \land E(x, y) \lor x > y \land N(x, y)$</td>
</tr>
</tbody>
</table>

Then $(D; T)$ is the random tournament.

Lemma

The random ordered graph has at least 32 reducts.
Hello random tournament!

Definition

A **tournament** is a digraph with precisely one edge between any two vertices.

Theorem (Bennett ’97)

The random tournament has 5 reducts.
Definition
A tournament is a digraph with precisely one edge between any two vertices.

Theorem (Bennett ’97)
The random tournament has 5 reducts.

Observation
Set $T(x, y)$ iff $x < y \land E(x, y)$ or $x > y \land N(x, y)$. Then $(D; T)$ is the random tournament.
Hello random tournament!

Definition
A **tournament** is a digraph with precisely one edge between any two vertices.

Theorem (Bennett ’97)
The random tournament has 5 reducts.

Observation
Set \(T(x, y) \) iff \(x < y \land E(x, y) \) or \(x > y \land N(x, y) \).
Then \((D; T) \) is the random tournament.

Lemma
The random ordered graph has at least 32 reducts.
Finally, some asymmetry

The following permutations yield new non-trivial reducts.

preserving the order whilst flipping the graph relation below some irrational.

There are no "dual" permutations of these.

Lemma

The random ordered graph has at least 32 reducts.
Finally, some asymmetry

The following permutations yield new non-trivial reducts.
Finally, some asymmetry

The following permutations yield new non-trivial reducts.

- preserving the order
 whilst flipping the graph relation below some irrational.

Lemma
The random ordered graph has at least 32 reducts.
Finally, some asymmetry

The following permutations yield new non-trivial reducts.

- preserving the order
 whilst flipping the graph relation below some irrational.
- preserving the order
 whilst flipping the graph relation above some irrational.
Finally, some asymmetry

The following permutations yield new non-trivial reducts.

- preserving the order
 whilst flipping the graph relation below some irrational.
- preserving the order
 whilst flipping the graph relation above some irrational.

There are no “dual” permutations of these.
Finally, some asymmetry

The following permutations yield new non-trivial reducts.

- preserving the order
 whilst flipping the graph relation below some irrational.
- preserving the order
 whilst flipping the graph relation above some irrational.

There are no “dual” permutations of these.

Lemma

The random ordered graph has at least 32 reducts.
Theorem (Bodirsky+MP+Pongrácz ‘13)

The random ordered graph has 41 reducts.
Theorem (Bodirsky+MP+Pongrácz ’13)
The random ordered graph has 41 reducts.
Theorem (Bodirsky+MP+Pongrácz ’13)
The random ordered graph has 41 reducts.
Part III: The effect of The Answer
Discussion

We have learnt from the result: similarities between the symmetries of the order and the graph nonetheless their combination yields an asymmetry we cannot calculate the reducts of a superposed structure from its factors.

On a technical level: our Ramsey-theoretic method is quite efficient (first classification of free superposition) improved it to reduce work to the join irreducible elements our method is not sporadic (same for order, graph, tournament)
We have learnt from the result:
Discussion

We have learnt from the result:

- similarities between the symmetries of the order and the graph.
Discussion

We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry
We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry
- we cannot calculate the reducts of a superposed structure from its factors
Discussion

We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry
- we cannot calculate the reducts of a superposed structure from its factors

On a technical level:
Discussion

We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry
- we cannot calculate the reducts of a superposed structure from its factors

On a technical level:

- our Ramsey-theoretic method is quite efficient (first classification of free superposition)
Discussion

We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry
- we cannot calculate the reducts of a superposed structure from its factors

On a technical level:

- our Ramsey-theoretic method is quite efficient (first classification of free superposition)
- improved it to reduce work to the join irreducible elements
Discussion

We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry
- we cannot calculate the reducts of a superposed structure from its factors

On a technical level:

- our Ramsey-theoretic method is quite efficient (first classification of free superposition)
- improved it to reduce work to the join irreducible elements
- our method is not sporadic (same for order, graph, tournament)
Ramsey structures

Definition (Ramsey structure Δ)

For all finite substructures P, H of Δ:

Whenever we color the copies of P in Δ with 2 colors then there is a monochromatic copy of H in Δ.

Theorem (Nešetřil-Rödl)

The random ordered graph is Ramsey.
Ramsey structures

Definition (Ramsey structure Δ)

For all finite substructures P, H of Δ:
Whenever we color the copies of P in Δ with 2 colors then there is a monochromatic copy of H in Δ.

Theorem (Nešetřil-Rödl)
The random ordered graph is Ramsey.
Ramsey structures

Definition (Ramsey structure Δ)

For all finite substructures P, H of Δ:
Whenever we color the copies of P in Δ with 2 colors then there is a monochromatic copy of H in Δ.

Theorem (Nešetřil-Rödl)
The random ordered graph is Ramsey.

Michael Pinsker
Ramsey structures

Definition (Ramsey structure Δ)

For all finite substructures P, H of Δ:
Whenever we color the copies of P in Δ with 2 colors
then there is a monochromatic copy of H in Δ.

Theorem (Nešetřil-Rödl)
The random ordered graph is Ramsey.
Ramsey structures

Definition (Ramsey structure Δ)
For all finite substructures P, H of Δ:
Whenever we color the copies of P in Δ with 2 colors then there is a monochromatic copy of H in Δ.

Theorem (Nešetřil-Rödl)
The random ordered graph is Ramsey.
Canonical functions

Definition

Let Δ, Λ be structures. $f: \Delta \to \Lambda$ is canonical iff for all tuples (x_1, \ldots, x_n), (y_1, \ldots, y_n) of the same type in Δ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ.

Examples on $(D; <, E)$

- self-embeddings reversing $<$, preserving edges and non-edges
- preserving $<$, flipping edges and non-edges
- preserving $<$, send to clique
Canonical functions

Definition

Let Δ, Λ be structures.

$f : \Delta \rightarrow \Lambda$ is canonical iff

for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ

$(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ.

Examples on $(D; <, E)$:

- Self-embeddings reversing $<$, preserving edges and non-edges
- Preserving $<$, flipping edges and non-edges
- Preserving $<$, send to clique
Canonical functions

Definition
Let Δ, Λ be structures.

$f : \Delta \rightarrow \Lambda$ is canonical iff

for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ

$(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ.

Examples on $(D; <, E)$
Canonical functions

Definition
Let Δ, Λ be structures.

$f : \Delta \rightarrow \Lambda$ is **canonical** iff

for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ

$(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ.

Examples on $(D; <, E)$
- self-embeddings
Definition

Let Δ, Λ be structures.

$f : \Delta \rightarrow \Lambda$ is canonical iff

for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ

$(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ.

Examples on $(D; <, E)$

- self-embeddings
- reversing $<$, preserving edges and non-edges
Canonical functions

Definition

Let Δ, Λ be structures.

$f : \Delta \to \Lambda$ is canonical iff

for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ

$(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ.

Examples on $(D; <, E)$

- self-embeddings
- reversing $<$, preserving edges and non-edges
- preserving $<$, flipping edges and non-edges
Canonical functions

Definition
Let Δ, Λ be structures.

$f : \Delta \to \Lambda$ is **canonical** iff

for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ

$(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ.

Examples on $(D; <, E)$

- self-embeddings
- reversing $<$, preserving edges and non-edges
- preserving $<$, flipping edges and non-edges
- preserving $<$, send to clique
Magical proposition (Bodirsky+MP+Tsankov '11)

Let \(\Delta \) is ordered Ramsey homogeneous finite language \(f: \Delta \to \Delta \) and \(c_1, \ldots, c_n \in \Delta \). Then the closed monoid generated by \(\{f\} \cup \text{Aut}(\Delta) \) contains a function \(g \) which is canonical as a function from \((\Delta, c_1, \ldots, c_n)\) to \(\Delta \) is identical with \(f \) on \(\{c_1, \ldots, c_n\} \).

Note: only finitely many different behaviors of canonical functions. \(g, g' \) same behavior \(\rightarrow \) generate one another (with \(\text{Aut}(\Delta) \)).
Magical proposition (Bodirsky+MP+Tsankov ’11)

Let

- Δ is ordered Ramsey homogeneous finite language
- $f : \Delta \to \Delta$
- $c_1, \ldots, c_n \in \Delta$.

Note: only finitely many different behaviors of canonical functions. g, g' same behavior \rightarrow generate one another (with $\text{Aut}(\Delta)$).
Magical proposition (Bodirsky+MP+Tsankov ’11)

Let
- Δ is ordered Ramsey homogeneous finite language
- $f : \Delta \to \Delta$
- $c_1, \ldots, c_n \in \Delta$.

Then the closed monoid generated by $\{f\} \cup \text{Aut}(\Delta)$ contains a function g which
Magical proposition (Bodirsky+MP+Tsankov ’11)

Let

- Δ is ordered Ramsey homogeneous finite language
- $f : \Delta \rightarrow \Delta$
- $c_1, \ldots, c_n \in \Delta$.

Then the closed monoid generated by $\{f\} \cup \text{Aut}(\Delta)$ contains a function g which

- is canonical as a function from $(\Delta, c_1, \ldots, c_n)$ to Δ
- is identical with f on $\{c_1, \ldots, c_n\}$.

Note: only finitely many different behaviors of canonical functions g, g' same behavior \rightarrow generate one another (with $\text{Aut}(\Delta)$).
Canonizing functions on Ramsey structures

Magical proposition (Bodirsky+MP+Tsankov ’11)

Let
- Δ is ordered Ramsey homogeneous finite language
- $f : \Delta \rightarrow \Delta$
- $c_1, \ldots, c_n \in \Delta$.

Then the closed monoid generated by $\{f\} \cup \text{Aut}(\Delta)$ contains a function g which
- is canonical as a function from $(\Delta, c_1, \ldots, c_n)$ to Δ
- is identical with f on $\{c_1, \ldots, c_n\}$.

Note:
- only finitely many different behaviors of canonical functions.
- g, g' same behavior \rightarrow generate one another (with $\text{Aut}(\Delta)$).
\begin{align*}
\text{Aut}(E, <) & \quad \text{(sw, turn)} \\
\text{Aut}(E, \text{sep}) & \quad \text{Aut}(E) \\
\text{Aut}(<) & \quad \text{Aut}(\text{sep}) \\
\text{Aut}(R(5)) & \quad \text{Aut}(R(5), <) \\
\text{Aut}(T) & \quad (\text{id, turn}) \\
\text{Aut}(E, <) & \quad (\text{id, lr}) \\
\text{Aut}(E, \text{sep}) & \quad (\text{sw, turn}) \\
\text{Aut}(E) & \quad (\text{sw, id}) \\
\text{Aut}(<) & \quad (\text{id, id}) \\
\end{align*}
Part IV: The Question to The Answer
The Question

Problem

Suppose that Δ_1, Δ_2 have finitely many reducts. Does their free superposition have finitely many reducts?

Problem

Suppose that Δ is homogeneous in a finite relational language. Does it have a finite homogeneous extension which is Ramsey?
The Question

Problem

Suppose that Δ_1, Δ_2 have finitely many reducts.
Does their free superposition have finitely many reducts?
The Question

Problem
Suppose that Δ_1, Δ_2 have finitely many reducts. Does their free superposition have finitely many reducts?

Problem
Suppose that Δ is homogeneous in a finite relational language. Does it have a finite homogeneous extension which is Ramsey?
“The Answer to the Great Question . . .
Of Life, the Universe and Everything . . . Is . . . Forty-two,”
said Deep Thought, with infinite majesty and calm.

Douglas Adams