The 42 reducts of the random ordered graph

Michael Pinsker

Technische Universität Wien / Université Diderot - Paris 7

4th Novi Sad Algebraic Conference, 2013

Outline

■ Part I: The setting of The Answer

■ Part II: The 42 reducts of the random ordered graph

■ Part III: The effect of The Answer

Part IV: The question to The Answer

Part I: The setting of The Answer

Let Δ be a countable structure.

Let Δ be a countable structure.

Definition

 Δ is homogeneous : \leftrightarrow

every isomorphism between finitely generated substructures of Δ extends to an automorphism of Δ .

Let Δ be a countable structure.

Definition

 Δ is homogeneous : \leftrightarrow

every isomorphism between finitely generated substructures of Δ extends to an automorphism of Δ .

Examples

Let Δ be a countable structure.

Definition

 Δ is homogeneous : \leftrightarrow

every isomorphism between finitely generated substructures of Δ extends to an automorphism of Δ .

Examples

■ Order of the rationals (\mathbb{Q} ; <)

Let Δ be a countable structure.

Definition

 Δ is homogeneous : \leftrightarrow

every isomorphism between finitely generated substructures of Δ extends to an automorphism of Δ .

Examples

- Order of the rationals (\mathbb{Q} ; <)
- Random graph (*V*; *E*)

Let Δ be a countable structure.

Definition

 Δ is homogeneous : \leftrightarrow

every isomorphism between finitely generated substructures of Δ extends to an automorphism of Δ .

Examples

- Order of the rationals (\mathbb{Q} ; <)
- Random graph (*V*; *E*)
- Free Boolean algebra with ℵ₀ generators

Let \mathcal{C} be a class of finitely generated structures in a countable language, closed under isomorphism.

Let \mathcal{C} be a class of finitely generated structures in a countable language, closed under isomorphism.

Theorem (Fraïssé)

Assume C

Let \mathcal{C} be a class of finitely generated structures in a countable language, closed under isomorphism.

Theorem (Fraïssé)

Assume ^ℂ

■ is closed under substructures

Let \mathcal{C} be a class of finitely generated structures in a countable language, closed under isomorphism.

Theorem (Fraïssé)

Assume C

- is closed under substructures
- has joint embeddings: for all $B, C \in \mathcal{C}$ there is $D \in \mathcal{C}$ containing isomorphic copies of B, C

Let \mathcal{C} be a class of finitely generated structures in a countable language, closed under isomorphism.

Theorem (Fraïssé)

Assume C

- is closed under substructures
- has joint embeddings: for all $B, C \in \mathcal{C}$ there is $D \in \mathcal{C}$ containing isomorphic copies of B, C
- has amalgamation: for all $A, B, C \in \mathcal{C}$ and embeddings $e_B : A \to B$ and $e_C : A \to C$ there is $D \in \mathcal{C}$ and embeddings $f_B : B \to D$ and $f_C : C \to D$ such that $f_B \circ e_B = f_C \circ e_C$.

Let $\mathcal C$ be a class of finitely generated structures in a countable language, closed under isomorphism.

Theorem (Fraïssé)

Assume €

- is closed under substructures
- has joint embeddings: for all $B, C \in \mathcal{C}$ there is $D \in \mathcal{C}$ containing isomorphic copies of B, C
- has amalgamation: for all $A, B, C \in \mathcal{C}$ and embeddings $e_B : A \to B$ and $e_C : A \to C$ there is $D \in \mathcal{C}$ and embeddings $f_B : B \to D$ and $f_C : C \to D$ such that $f_B \circ e_B = f_C \circ e_C$.

Then there exists a unique countable homogeneous structure Δ whose age (=substructures up to iso) equals C.

Amalgamation

■ (Finite) linear orders \leftrightarrow (\mathbb{Q} ; <)

- (Finite) linear orders \leftrightarrow (\mathbb{Q} ; <)
- Undirected graphs \leftrightarrow random graph (V; E)

- (Finite) linear orders \leftrightarrow (\mathbb{Q} ; <)
- Undirected graphs \leftrightarrow random graph (V; E)
- Boolean algebras ↔ random (= free) Boolean algebra

- (Finite) linear orders \leftrightarrow (\mathbb{Q} ; <)
- Undirected graphs \leftrightarrow random graph (V; E)
- Boolean algebras ↔ random (= free) Boolean algebra
- Lattices ↔ random lattice

- (Finite) linear orders \leftrightarrow (\mathbb{Q} ; <)
- Undirected graphs \leftrightarrow random graph (V; E)
- Boolean algebras ↔ random (= free) Boolean algebra
- Lattices ↔ random lattice
- Distributive lattices ↔ random distributive lattice

- (Finite) linear orders \leftrightarrow (\mathbb{Q} ; <)
- Undirected graphs \leftrightarrow random graph (V; E)
- Boolean algebras ↔ random (= free) Boolean algebra
- Lattices ↔ random lattice
- Distributive lattices ↔ random distributive lattice
- Partial orders ↔ random partial order

- (Finite) linear orders \leftrightarrow (\mathbb{Q} ; <)
- Undirected graphs \leftrightarrow random graph (V; E)
- Boolean algebras ↔ random (= free) Boolean algebra
- Lattices ↔ random lattice
- Distributive lattices ↔ random distributive lattice
- Partial orders ↔ random partial order
- Tournaments ↔ random tournament

- (Finite) linear orders \leftrightarrow (\mathbb{Q} ; <)
- Undirected graphs \leftrightarrow random graph (V; E)
- Boolean algebras ↔ random (= free) Boolean algebra
- Lattices ↔ random lattice
- Distributive lattices ↔ random distributive lattice
- Partial orders ↔ random partial order
- Tournaments ↔ random tournament
- Linearly ordered graphs \leftrightarrow random ordered graph (D; <, E)

Let Δ be a structure.

Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Examples

Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Examples

■ (\mathbb{Q} ; <): reduct (\mathbb{Q} ; Between(x, y, z))

Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Examples

■ (\mathbb{Q} ; <): reduct (\mathbb{Q} ; Between(x, y, z))

 \blacksquare (\mathbb{Q} ; <): reduct (\mathbb{Q} ; >)

Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Examples

```
■ (\mathbb{Q}; <): reduct (\mathbb{Q}; Between(x, y, z))
```

```
\blacksquare (\mathbb{Q}; <): reduct (\mathbb{Q}; >)
```

■ random graph
$$(V; E)$$
: reduct $(V; K_3(x, y, z))$

Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Examples

```
■ (\mathbb{Q}; <): reduct (\mathbb{Q}; Between(x, y, z))
```

$$\blacksquare$$
 (\mathbb{Q} ; <): reduct (\mathbb{Q} ; >)

■ random graph
$$(V; E)$$
: reduct $(V; K_3(x, y, z))$

■ random poset
$$(P; \leq)$$
: reduct $(P; \perp(x, y))$

Let Δ be a structure.

Definition

A reduct of Δ is a structure on the same domain whose relations and functions are first-order definable in Δ (without parameters).

Examples

```
■ (\mathbb{Q}; <): reduct (\mathbb{Q}; Between(x, y, z))
```

$$\blacksquare$$
 (\mathbb{Q} ; <): reduct (\mathbb{Q} ; >)

■ random graph
$$(V; E)$$
: reduct $(V; K_3(x, y, z))$

■ random poset
$$(P; \leq)$$
: reduct $(P; \perp(x, y))$

Problem

Understand the reducts of homogeneous structures.

Motivation

Why reducts?

Why reducts?

■ Understand △ itself:

Why reducts?

- Understand △ itself:
 - its first-order theory

Why reducts?

- Understand △ itself:
 - its first-order theory
 - its symmetries (via connection with permutation groups)

Why reducts?

- Understand △ itself:
 - its first-order theory
 - its symmetries (via connection with permutation groups)

■ Understand the age \mathbb{C} of Δ :

Why reducts?

- Understand \(\Delta \) itself:
 - its first-order theory
 - its symmetries (via connection with permutation groups)
- Understand the age \mathbb{C} of Δ :
 - uniform group actions on C
 (via permutation groups combinatorics of C)

Why reducts?

- Understand △ itself:
 - its first-order theory
 - its symmetries (via connection with permutation groups)
- Understand the age \mathbb{C} of Δ :
 - uniform group actions on C
 (via permutation groups combinatorics of C)
 - Constraint Satisfaction Problems related to C: Graph-SAT, Poset-SAT,...

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' .

For reducts Γ , Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' . Quasiorder.

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' .

Quasiorder.

Consider reducts Γ , Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

For reducts Γ , Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' .

Quasiorder.

Consider reducts Γ , Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out we get a complete lattice.

For reducts Γ , Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' .

Quasiorder.

Consider reducts Γ , Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out we get a complete lattice.

Multiple choice: Equivalent or not?

For reducts Γ , Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' .

Quasiorder.

Consider reducts Γ, Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out we get a complete lattice.

Multiple choice: Equivalent or not?

 \blacksquare (\mathbb{Q} ; <) and (\mathbb{Q} ; >)

For reducts Γ , Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' .

Quasiorder.

Consider reducts Γ, Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out we get a complete lattice.

Multiple choice: Equivalent or not?

- \blacksquare (\mathbb{Q} ; <) and (\mathbb{Q} ; >)
- \blacksquare (\mathbb{Q} ; <) and (\mathbb{Q} ; Between(x, y, z))

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' .

Quasiorder.

Consider reducts Γ, Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out we get a complete lattice.

Multiple choice: Equivalent or not?

- \blacksquare (\mathbb{Q} ; <) and (\mathbb{Q} ; >)
- \blacksquare (\mathbb{Q} ; <) and (\mathbb{Q} ; Between(x, y, z))
- random poset $(P; \leq)$ and $(P; \perp(x, y))$

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' .

Quasiorder.

Consider reducts Γ, Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out we get a complete lattice.

Multiple choice: Equivalent or not?

- \blacksquare (\mathbb{Q} ; <) and (\mathbb{Q} ; >)
- \blacksquare (\mathbb{Q} ; <) and (\mathbb{Q} ; Between(x, y, z))
- random poset $(P; \leq)$ and $(P; \perp(x, y))$
- random graph (V; E) and $(V; K_3(x, y, z))$

For reducts Γ, Γ' of Δ set $\Gamma \leq \Gamma'$ iff Γ is a reduct of Γ' .

Quasiorder.

Consider reducts Γ, Γ' equivalent iff $\Gamma \leq \Gamma'$ and $\Gamma' \leq \Gamma$.

Factoring out we get a complete lattice.

Multiple choice: Equivalent or not?

- \blacksquare (\mathbb{Q} ; <) and (\mathbb{Q} ; >)
- \blacksquare (\mathbb{Q} ; <) and (\mathbb{Q} ; Between(x, y, z))
- random poset $(P; \leq)$ and $(P; \perp(x, y))$
- random graph (V; E) and $(V; K_3(x, y, z))$

Question

How many inequivalent reducts?

■ (ℚ; <): 5 (Cameron '76)

- (ℚ; <): 5 (Cameron '76)
- random graph (V; E): 5 (Thomas '91)

- **■** (ℚ; <): 5 (Cameron '76)
- random graph (V; E): 5 (Thomas '91)
- random k-hypergraph: $2^k + 1$ (Thomas '96)

- **■** (ℚ; <): 5 (Cameron '76)
- random graph (V; E): 5 (Thomas '91)
- random k-hypergraph: $2^k + 1$ (Thomas '96)
- random tournament: 5 (Bennett '97)

- (ℚ; <): 5 (Cameron '76)
- random graph (V; E): 5 (Thomas '91)
- random k-hypergraph: $2^k + 1$ (Thomas '96)
- random tournament: 5 (Bennett '97)
- \blacksquare (\mathbb{Q} ; <, 0): 116 (Junker+Ziegler '08)

- (ℚ; <): 5 (Cameron '76)
- random graph (V; E): 5 (Thomas '91)
- random k-hypergraph: $2^k + 1$ (Thomas '96)
- random tournament: 5 (Bennett '97)
- \blacksquare (\mathbb{Q} ; <, 0): 116 (Junker+Ziegler '08)
- random partial order: 5 (Pach+MP+Pongrácz+Szabó '11)

- **■** (ℚ; <): 5 (Cameron '76)
- random graph (V; E): 5 (Thomas '91)
- random k-hypergraph: $2^k + 1$ (Thomas '96)
- random tournament: 5 (Bennett '97)
- \blacksquare (\mathbb{Q} ; <, 0): 116 (Junker+Ziegler '08)
- random partial order: 5 (Pach+MP+Pongrácz+Szabó '11)

Conjecture (Thomas '91)

Homogeneous structures in finite relational language have finitely many reducts.

A permutation group is closed : \leftrightarrow it contains all permutations which it can interpolate on finite subsets.

A permutation group is closed :↔ it contains all permutations which it can interpolate on finite subsets.

Theorem (Corollary of Ryll-Nardzewski, Engeler, Svenonius)

Let Δ be homogeneous in a finite relational language.

Then the mapping

 $\Gamma \mapsto \operatorname{\mathsf{Aut}}(\Gamma)$

A permutation group is closed :↔ it contains all permutations which it can interpolate on finite subsets.

Theorem (Corollary of Ryll-Nardzewski, Engeler, Svenonius)

Let Δ be homogeneous in a finite relational language.

Then the mapping

 $\Gamma \mapsto \mathsf{Aut}(\Gamma)$

is an anti-isomorphism from the lattice of reducts to the lattice of closed supergroups of $Aut(\Delta)$.

Let \leftrightarrow be any permutation of \mathbb{Q} which reverses the order.

Let \leftrightarrow be any permutation of $\mathbb Q$ which reverses the order.

Let \circlearrowleft be any permutation of \mathbb{Q} which for some irrational π puts $(-\infty; \pi)$ behind $(\pi; \infty)$ and preserves the order otherwise.

Let \leftrightarrow be any permutation of \mathbb{Q} which reverses the order.

Let \circlearrowleft be any permutation of \mathbb{Q} which for some irrational π puts $(-\infty; \pi)$ behind $(\pi; \infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

The closed supergroups of $Aut(\mathbb{Q}; <)$ are precisely:

Let \leftrightarrow be any permutation of \mathbb{Q} which reverses the order.

Let \circlearrowleft be any permutation of \mathbb{Q} which for some irrational π puts $(-\infty; \pi)$ behind $(\pi; \infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

The closed supergroups of $Aut(\mathbb{Q}; <)$ are precisely:

■ Aut(Q; <)</p>

Let \leftrightarrow be any permutation of $\mathbb Q$ which reverses the order.

Let \circlearrowleft be any permutation of \mathbb{Q} which for some irrational π puts $(-\infty; \pi)$ behind $(\pi; \infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

The closed supergroups of $Aut(\mathbb{Q}; <)$ are precisely:

- Aut(Q; <)</p>
- $\blacksquare \langle \{\leftrightarrow\} \cup \operatorname{Aut}(\mathbb{Q};<) \rangle$

Let \leftrightarrow be any permutation of $\mathbb Q$ which reverses the order.

Let \circlearrowleft be any permutation of $\mathbb Q$ which for some irrational π puts $(-\infty; \pi)$ behind $(\pi; \infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

The closed supergroups of $Aut(\mathbb{Q}; <)$ are precisely:

- Aut(Q; <)</p>
- $\blacksquare \langle \{\leftrightarrow\} \cup \operatorname{Aut}(\mathbb{Q};<) \rangle$
- $\blacksquare \langle \{\circlearrowleft\} \cup \operatorname{Aut}(\mathbb{Q}; <) \rangle$

Let \leftrightarrow be any permutation of $\mathbb Q$ which reverses the order.

Let \circlearrowleft be any permutation of $\mathbb Q$ which for some irrational π puts $(-\infty;\pi)$ behind $(\pi;\infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

The closed supergroups of $Aut(\mathbb{Q}; <)$ are precisely:

- Aut(Q; <)</p>
- $\blacksquare \langle \{\leftrightarrow\} \cup \operatorname{Aut}(\mathbb{Q};<) \rangle$
- $\blacksquare \langle \{\circlearrowleft\} \cup \operatorname{Aut}(\mathbb{Q}; <) \rangle$
- $\blacksquare \langle \{\leftrightarrow,\circlearrowleft\} \cup \operatorname{Aut}(\mathbb{Q};<) \rangle$

Let \leftrightarrow be any permutation of $\mathbb Q$ which reverses the order.

Let \circlearrowleft be any permutation of $\mathbb Q$ which for some irrational π puts $(-\infty;\pi)$ behind $(\pi;\infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

The closed supergroups of $Aut(\mathbb{Q}; <)$ are precisely:

- Aut(Q; <)</p>
- $\blacksquare \langle \{\leftrightarrow\} \cup \operatorname{Aut}(\mathbb{Q};<) \rangle$
- $\blacksquare \langle \{\circlearrowleft\} \cup \operatorname{Aut}(\mathbb{Q}; <) \rangle$
- $\blacksquare \langle \{\leftrightarrow,\circlearrowleft\} \cup \operatorname{Aut}(\mathbb{Q};<) \rangle$
- Sym(Q)

Let \leftrightarrow be any permutation of \mathbb{Q} which reverses the order.

Let \circlearrowleft be any permutation of $\mathbb Q$ which for some irrational π puts $(-\infty;\pi)$ behind $(\pi;\infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

The closed supergroups of $Aut(\mathbb{Q}; <)$ are precisely:

- Aut(Q; <)</p>
- $\blacksquare \langle \{\leftrightarrow\} \cup Aut(\mathbb{Q}; <) \rangle = Aut(\mathbb{Q}; Between(x, y, z))$
- $\blacksquare \langle \{\circlearrowleft\} \cup \operatorname{Aut}(\mathbb{Q}; <) \rangle$
- $\blacksquare \langle \{\leftrightarrow,\circlearrowleft\} \cup \operatorname{Aut}(\mathbb{Q};<) \rangle$
- Sym(Q)

Let \leftrightarrow be any permutation of \mathbb{Q} which reverses the order.

Let \circlearrowleft be any permutation of $\mathbb Q$ which for some irrational π puts $(-\infty;\pi)$ behind $(\pi;\infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

The closed supergroups of $Aut(\mathbb{Q}; <)$ are precisely:

- Aut(Q; <)</p>

- Sym(Q)

Let \leftrightarrow be any permutation of \mathbb{Q} which reverses the order.

Let \circlearrowleft be any permutation of $\mathbb Q$ which for some irrational π puts $(-\infty;\pi)$ behind $(\pi;\infty)$ and preserves the order otherwise.

Theorem (Cameron '76)

The closed supergroups of $Aut(\mathbb{Q}; <)$ are precisely:

- Aut(Q; <)</p>

- Sym(Q)

Let - be any permutation of V which switches edges and non-edges.

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

The closed supergroups of Aut(V; E) are precisely:

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

The closed supergroups of Aut(V; E) are precisely:

■ Aut(*V*; *E*)

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

The closed supergroups of Aut(V; E) are precisely:

- Aut(*V*; *E*)
- \blacksquare $\langle \{sw\} \cup Aut(V; E) \rangle$

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

The closed supergroups of Aut(V; E) are precisely:

- Aut(*V*; *E*)
- \blacksquare $\langle \{sw\} \cup Aut(V; E) \rangle$
- \blacksquare $\langle \{-\} \cup \operatorname{Aut}(V; E) \rangle$

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

The closed supergroups of Aut(V; E) are precisely:

- Aut(*V*; *E*)
- \blacksquare $\langle \{sw\} \cup Aut(V; E) \rangle$
- \blacksquare $\langle \{-\} \cup \operatorname{Aut}(V; E) \rangle$
- $\blacksquare \langle \{-, \mathsf{sw}\} \cup \mathsf{Aut}(\mathit{V}; \mathit{E}) \rangle$

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

The closed supergroups of Aut(V; E) are precisely:

- Aut(*V*; *E*)
- \blacksquare $\langle \{sw\} \cup Aut(V; E) \rangle$
- \blacksquare $\langle \{-\} \cup \operatorname{Aut}(V; E) \rangle$
- \blacksquare $\langle \{-, \mathsf{sw}\} \cup \mathsf{Aut}(V; E) \rangle$
- Sym(*V*)

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

The closed supergroups of Aut(V; E) are precisely:

- Aut(*V*; *E*)
- \blacksquare $\langle \{sw\} \cup Aut(V; E) \rangle$
- \blacksquare $\langle \{-\} \cup \operatorname{Aut}(V; E) \rangle$
- \blacksquare $\langle \{-, \mathsf{sw}\} \cup \mathsf{Aut}(V; E) \rangle$
- Sym(*V*)

For $k \ge 1$, let $\mathbb{R}^{(k)}$ consist of the k-tuples of distinct elements of V which induce an odd number of edges.

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

The closed supergroups of Aut(V; E) are precisely:

- Aut(*V*; *E*)
- \blacksquare $\langle \{-\} \cup \operatorname{Aut}(V; E) \rangle$
- \blacksquare $\langle \{-, \mathsf{sw}\} \cup \mathsf{Aut}(V; E) \rangle$
- Sym(*V*)

For $k \ge 1$, let $R^{(k)}$ consist of the k-tuples of distinct elements of V which induce an odd number of edges.

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

The closed supergroups of Aut(V; E) are precisely:

- Aut(*V*; *E*)

- \blacksquare $\langle \{-, \mathsf{sw}\} \cup \mathsf{Aut}(V; E) \rangle$
- Sym(*V*)

For $k \ge 1$, let $\mathbb{R}^{(k)}$ consist of the k-tuples of distinct elements of V which induce an odd number of edges.

Let - be any permutation of V which switches edges and non-edges.

Let sw be any permutation which for some finite $A \subseteq V$ switches edges and non-edges between A and $V \setminus A$ and preserves the graph relation on A and $V \setminus A$.

Theorem (Thomas '91)

The closed supergroups of Aut(V; E) are precisely:

- Aut(*V*; *E*)

- Sym(*V*)

For $k \ge 1$, let $\mathbb{R}^{(k)}$ consist of the k-tuples of distinct elements of V which induce an odd number of edges.

Part II: The 42 reducts of the random ordered graph

The random ordered graph

Definition

The random ordered graph (D; <, E) is the unique countable linearly ordered graph which

- contains all finite linearly ordered graphs
- is homogeneous.

The random ordered graph

Definition

The random ordered graph (D; <, E) is the unique countable linearly ordered graph which

- contains all finite linearly ordered graphs
- is homogeneous.

Observation

- \blacksquare (*D*; <) is the order of the rationals
- \blacksquare (D; E) is the random graph

The random ordered graph

Definition

The random ordered graph (D; <, E) is the unique countable linearly ordered graph which

- contains all finite linearly ordered graphs
- is homogeneous.

Observation

- \blacksquare (*D*; <) is the order of the rationals
- \blacksquare (*D*; *E*) is the random graph

This is because the two structures are superposed freely, i.e., in all possible ways.

Strong amalgamation

Strong amalgamation

Definition

A class \mathcal{C} has strong amalgamation : \leftrightarrow for all $A, B, C \in \mathcal{C}$ and embeddings $e_B : A \to B$ and $e_C : A \to C$ there is $D \in \mathcal{C}$ and embeddings $f_B : B \to D$ and $f_C : C \to D$ such that $f_B \circ e_B = f_C \circ e_C$ and $f_B[B] \cap f_C[C] = f_B \circ e_B[A]$.

Let τ_1, τ_2 be disjoint languages.

Let $\mathcal{C}_1,\mathcal{C}_2$ Fraïssé classes in those languages, Δ_1,Δ_2 be their limits.

Let τ_1, τ_2 be disjoint languages.

Let $\mathcal{C}_1,\mathcal{C}_2$ Fraïssé classes in those languages, Δ_1,Δ_2 be their limits.

Free superposition

Assume that $\mathcal{C}_1, \mathcal{C}_2$ have strong amalgamation.

Let τ_1, τ_2 be disjoint languages.

Let $\mathcal{C}_1,\mathcal{C}_2$ Fraïssé classes in those languages, Δ_1,Δ_2 be their limits.

Free superposition

Assume that $\mathcal{C}_1, \mathcal{C}_2$ have strong amalgamation.

Then the class \mathcal{C} of $\tau_1 \cup \tau_2$ -structures whose τ_i -reduct is in \mathcal{C}_i

Let τ_1, τ_2 be disjoint languages.

Let $\mathcal{C}_1,\mathcal{C}_2$ Fraïssé classes in those languages, Δ_1,Δ_2 be their limits.

Free superposition

Assume that $\mathcal{C}_1, \mathcal{C}_2$ have strong amalgamation.

Then the class \mathcal{C} of $\tau_1 \cup \tau_2$ -structures whose τ_i -reduct is in \mathcal{C}_i

- is a Fraïssé class and
- the τ_i -reduct of its limit is isomorphic to Δ_i .

■ Every reduct of (D; <) is a reduct of the random ordered graph.

- Every reduct of (D; <) is a reduct of the random ordered graph.
- Every reduct of (D; E) is a reduct of the random ordered graph.

- Every reduct of (D; <) is a reduct of the random ordered graph.
- \blacksquare Every reduct of (D; E) is a reduct of the random ordered graph.
- If (D; R) is a reduct of (D; <) and (D; S) is a reduct of (D; E) then (D; R, S) is a reduct of the random ordered graph.

- Every reduct of (D; <) is a reduct of the random ordered graph.
- Every reduct of (D; E) is a reduct of the random ordered graph.
- If (D; R) is a reduct of (D; <) and (D; S) is a reduct of (D; E) then (D; R, S) is a reduct of the random ordered graph.

Corresponds to intersecting the groups Aut(D; R) and Aut(D; S).

- Every reduct of (D; <) is a reduct of the random ordered graph.
- \blacksquare Every reduct of (D; E) is a reduct of the random ordered graph.
- If (D; R) is a reduct of (D; <) and (D; S) is a reduct of (D; E) then (D; R, S) is a reduct of the random ordered graph.

Corresponds to intersecting the groups Aut(D; R) and Aut(D; S).

Yields distinct reducts because of free superposition.

- Every reduct of (D; <) is a reduct of the random ordered graph.
- \blacksquare Every reduct of (D; E) is a reduct of the random ordered graph.
- If (D; R) is a reduct of (D; <) and (D; S) is a reduct of (D; E) then (D; R, S) is a reduct of the random ordered graph.

Corresponds to intersecting the groups Aut(D; R) and Aut(D; S).

Yields distinct reducts because of free superposition.

Examples

- Every reduct of (D; <) is a reduct of the random ordered graph.
- Every reduct of (D; E) is a reduct of the random ordered graph.
- If (D; R) is a reduct of (D; <) and (D; S) is a reduct of (D; E) then (D; R, S) is a reduct of the random ordered graph.

Corresponds to intersecting the groups Aut(D; R) and Aut(D; S).

Yields distinct reducts because of free superposition.

Examples

Keeping the order while flipping the graph relation.

- Every reduct of (D; <) is a reduct of the random ordered graph.
- \blacksquare Every reduct of (D; E) is a reduct of the random ordered graph.
- If (D; R) is a reduct of (D; <) and (D; S) is a reduct of (D; E) then (D; R, S) is a reduct of the random ordered graph.

Corresponds to intersecting the groups Aut(D; R) and Aut(D; S).

Yields distinct reducts because of free superposition.

Examples

- Keeping the order while flipping the graph relation.
- Reversing the order while keeping the graph relation.

- Every reduct of (D; <) is a reduct of the random ordered graph.
- Every reduct of (D; E) is a reduct of the random ordered graph.
- If (D; R) is a reduct of (D; <) and (D; S) is a reduct of (D; E) then (D; R, S) is a reduct of the random ordered graph.

Corresponds to intersecting the groups Aut(D; R) and Aut(D; S).

Yields distinct reducts because of free superposition.

Examples

- Keeping the order while flipping the graph relation.
- Reversing the order while keeping the graph relation.

Lemma

The random ordered graph has at least 25 reducts.

The following permutations yield new non-trivial reducts.

The following permutations yield new non-trivial reducts.

■ reversing the order and simultaneously flipping the graph relation

The following permutations yield new non-trivial reducts.

- reversing the order and simultaneously flipping the graph relation
- for an irrational π , put $(-\infty, \pi)$ behind (π, ∞) whilst flipping the graph relation between these parts.

The following permutations yield new non-trivial reducts.

- reversing the order and simultaneously flipping the graph relation
- for an irrational π , put $(-\infty, \pi)$ behind (π, ∞) whilst flipping the graph relation between these parts.

No other combination of this kind!

The following permutations yield new non-trivial reducts.

- reversing the order and simultaneously flipping the graph relation
- for an irrational π , put $(-\infty, \pi)$ behind (π, ∞) whilst flipping the graph relation between these parts.

No other combination of this kind!

Lemma

The random ordered graph has at least 27 reducts.

Definition

A tournament is a digraph with precisely one edge between any two vertices.

Definition

A tournament is a digraph with precisely one edge between any two vertices.

Theorem (Bennett '97)

The random tournament has 5 reducts.

Definition

A tournament is a digraph with precisely one edge between any two vertices.

Theorem (Bennett '97)

The random tournament has 5 reducts.

Observation

Set T(x, y) iff $x < y \land E(x, y)$ or $x > y \land N(x, y)$.

Then (D; T) is the random tournament.

Definition

A tournament is a digraph with precisely one edge between any two vertices.

Theorem (Bennett '97)

The random tournament has 5 reducts.

Observation

Set T(x, y) iff $x < y \land E(x, y)$ or $x > y \land N(x, y)$.

Then (D; T) is the random tournament.

Lemma

The random ordered graph has at least 32 reducts.

The following permutations yield new non-trivial reducts.

The following permutations yield new non-trivial reducts.

preserving the order whilst flipping the graph relation below some irrational.

The following permutations yield new non-trivial reducts.

- preserving the order whilst flipping the graph relation below some irrational.
- preserving the order whilst flipping the graph relation above some irrational.

The following permutations yield new non-trivial reducts.

- preserving the order whilst flipping the graph relation below some irrational.
- preserving the order whilst flipping the graph relation above some irrational.

There are no "dual" permutations of these.

The following permutations yield new non-trivial reducts.

- preserving the order whilst flipping the graph relation below some irrational.
- preserving the order whilst flipping the graph relation above some irrational.

There are no "dual" permutations of these.

Lemma

The random ordered graph has at least 32 reducts.

Theorem (Bodirsky+MP+Pongrácz '13)

The random ordered graph has 41 reducts.

Theorem (Bodirsky+MP+Pongrácz '13)

The random ordered graph has 41 reducts.

Part III: The effect of The Answer

We have learnt from the result:

We have learnt from the result:

■ similarities between the symmetries of the order and the graph

We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry

We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry
- we cannot calculate the reducts of a superposed structure from its factors

We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry
- we cannot calculate the reducts of a superposed structure from its factors

On a technical level:

We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry
- we cannot calculate the reducts of a superposed structure from its factors

On a technical level:

 our Ramsey-theoretic method is quite efficient (first classification of free superposition)

We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry
- we cannot calculate the reducts of a superposed structure from its factors

On a technical level:

- our Ramsey-theoretic method is quite efficient (first classification of free superposition)
- improved it to reduce work to the join irreducible elements

We have learnt from the result:

- similarities between the symmetries of the order and the graph
- nonetheless their combination yields an asymmetry
- we cannot calculate the reducts of a superposed structure from its factors

On a technical level:

- our Ramsey-theoretic method is quite efficient (first classification of free superposition)
- improved it to reduce work to the join irreducible elements
- our method is not sporadic (same for order, graph, tournament)

Ramsey structures

Ramsey structures

Definition (Ramsey structure Δ)

Ramsey structures

Definition (Ramsey structure Δ)

For all finite substructures P, H of Δ :

Whenever we color the copies of P in Δ with 2 colors then there is a monochromatic copy of H in Δ .

Ramsey structures

Definition (Ramsey structure Δ)

For all finite substructures P, H of Δ :

Whenever we color the copies of P in Δ with 2 colors then there is a monochromatic copy of H in Δ .

Ramsey structures

Definition (Ramsey structure Δ)

For all finite substructures P, H of Δ :

Whenever we color the copies of P in Δ with 2 colors then there is a monochromatic copy of H in Δ .

Theorem (Nešetřil-Rödl)

The random ordered graph is Ramsey.

Definition

Let Δ , Λ be structures.

 $f: \Delta \to \Lambda$ is canonical iff

for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ .

Definition

Let Δ , Λ be structures.

 $f: \Delta \to \Lambda$ is canonical iff

for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ .

Examples on (D; <, E)

Definition

Let Δ , Λ be structures.

 $f: \Delta \to \Lambda$ is canonical iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ .

Examples on (D; <, E)

self-embeddings

Definition

Let Δ , Λ be structures.

 $f: \Delta \to \Lambda$ is canonical iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ .

Examples on (D; <, E)

- self-embeddings
- reversing <, preserving edges and non-edges</p>

Definition

Let Δ , Λ be structures.

 $f: \Delta \to \Lambda$ is canonical iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ .

Examples on (D; <, E)

- self-embeddings
- reversing <, preserving edges and non-edges</p>
- preserving <, flipping edges and non-edges</p>

Definition

Let Δ , Λ be structures.

 $f: \Delta \to \Lambda$ is canonical iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Δ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Λ .

Examples on (D; <, E)

- self-embeddings
- reversing <, preserving edges and non-edges</p>
- preserving <, flipping edges and non-edges
- preserving <, send to clique</p>

Magical proposition (Bodirsky+MP+Tsankov '11)

Let

- lacktriangle Δ is ordered Ramsey homogeneous finite language
- $\blacksquare f: \Delta \rightarrow \Delta$
- lacksquare $c_1,\ldots,c_n\in\Delta.$

Magical proposition (Bodirsky+MP+Tsankov '11)

Let

- lacktriangle Δ is ordered Ramsey homogeneous finite language
- $\blacksquare f: \Delta \rightarrow \Delta$
- lacksquare $c_1,\ldots,c_n\in\Delta.$

Then the closed monoid generated by $\{f\} \cup \operatorname{Aut}(\Delta)$ contains a function g which

Magical proposition (Bodirsky+MP+Tsankov '11)

Let

- lacktriangle Δ is ordered Ramsey homogeneous finite language
- $\blacksquare f: \Delta \rightarrow \Delta$
- lacksquare $c_1,\ldots,c_n\in\Delta.$

Then the closed monoid generated by $\{f\} \cup \operatorname{Aut}(\Delta)$ contains a function g which

- is canonical as a function from $(\Delta, c_1, \dots, c_n)$ to Δ
- is identical with f on $\{c_1, \ldots, c_n\}$.

Magical proposition (Bodirsky+MP+Tsankov '11)

Let

- lacktriangle Δ is ordered Ramsey homogeneous finite language
- $f: \Delta \rightarrow \Delta$
- $\mathbf{c}_1,\ldots,\mathbf{c}_n\in\Delta.$

Then the closed monoid generated by $\{f\} \cup \operatorname{Aut}(\Delta)$ contains a function g which

- is canonical as a function from $(\Delta, c_1, \dots, c_n)$ to Δ
- is identical with f on $\{c_1, \ldots, c_n\}$.

Note:

- only finitely many different behaviors of canonical functions.
- g, g' same behavior \rightarrow generate one another (with Aut(Δ)).

Part IV: The Question to The Answer

The Question

The Question

Problem

Suppose that Δ_1, Δ_2 have finitely many reducts.

Does their free superposition have finitely many reducts?

The Question

Problem

Suppose that Δ_1, Δ_2 have finitely many reducts.

Does their free superposition have finitely many reducts?

Problem

Suppose that $\boldsymbol{\Delta}$ is homogeneous in a finite relational language.

Does it have a finite homogeneous extension which is Ramsey?

Thank you!

"The Answer to the Great Question...

Of Life, the Universe and Everything... Is... Forty-two," said Deep Thought, with infinite majesty and calm.

Douglas Adams