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The random permutation

Definition
The random permutation, Π = (D;<1, <2), is the unique (up to
isomorphism) countable structure with two linear orders which

I contains all finite permutations
I is homogeneous: isomorphisms between finite

substructures extend to automorphisms of Π

Equivalently,
I Π is the Fraı̈ssé limit of the class of all finite permutations
I Π appears with probability 1 in the random process that

constructs both orders independently

Question (Cameron, 2002)

What are the closed supergroups of Aut(Π)?
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Motivation

A permutation group G ≤ Sym(X) is closed iff h ∈ G whenever
for all finite A ⊆ X there exists g ∈ G which agrees with h on A.

Why look at closed supergroups?
I understand symmetries of Π

I Conjecture (Simon Thomas, 1991): If ∆ is a countable
relational structure which is homogeneous in a finite
language, then Aut(∆) has only finitely many closed
supergroups.

I classifying computational complexity of CSPs involving
finite permutations
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Closed supergroups of Aut(Q;<)

Let↔ be a permutation of Q which reverses <.

Let 	 be a permutation of Q which reverses < between (−∞, π)
and (π,∞), for some irrational π, and preserves < otherwise.

Theorem (Cameron, 1976)

The closed supergroups of
Aut(Q;<) are
I Aut(Q;<)

I 〈Aut(Q;<) ∪ {↔}〉
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I Sym(Q)

Aut(Q;<)

〈Aut(Q;<) ∪ {↔}〉 〈Aut(Q;<) ∪ {	}〉

〈Aut(Q;<) ∪ {↔,	}〉

Sym(Q)



Closed supergroups of Aut(Q;<)

Let↔ be a permutation of Q which reverses <.

Let 	 be a permutation of Q which reverses < between (−∞, π)
and (π,∞), for some irrational π, and preserves < otherwise.

Theorem (Cameron, 1976)

The closed supergroups of
Aut(Q;<) are
I Aut(Q;<)

I 〈Aut(Q;<) ∪ {↔}〉
I 〈Aut(Q;<) ∪ {	}〉
I 〈Aut(Q;<) ∪ {↔,	}〉
I Sym(Q)

Aut(Q;<)

〈Aut(Q;<) ∪ {↔}〉 〈Aut(Q;<) ∪ {	}〉

〈Aut(Q;<) ∪ {↔,	}〉

Sym(Q)



Closed supergroups of Aut(Q;<)

Let↔ be a permutation of Q which reverses <.

Let 	 be a permutation of Q which reverses < between (−∞, π)
and (π,∞), for some irrational π, and preserves < otherwise.

Theorem (Cameron, 1976)

The closed supergroups of
Aut(Q;<) are
I Aut(Q;<)

I 〈Aut(Q;<) ∪ {↔}〉
I 〈Aut(Q;<) ∪ {	}〉
I 〈Aut(Q;<) ∪ {↔,	}〉
I Sym(Q)

Aut(Q;<)

〈Aut(Q;<) ∪ {↔}〉 〈Aut(Q;<) ∪ {	}〉

〈Aut(Q;<) ∪ {↔,	}〉

Sym(Q)



Closed supergroups of Aut(Q;<)

Let↔ be a permutation of Q which reverses <.

Let 	 be a permutation of Q which reverses < between (−∞, π)
and (π,∞), for some irrational π, and preserves < otherwise.

Theorem (Cameron, 1976)

The closed supergroups of
Aut(Q;<) are
I Aut(Q;<)

I 〈Aut(Q;<) ∪ {↔}〉
I 〈Aut(Q;<) ∪ {	}〉
I 〈Aut(Q;<) ∪ {↔,	}〉
I Sym(Q)

Aut(Q;<)

〈Aut(Q;<) ∪ {↔}〉 〈Aut(Q;<) ∪ {	}〉

〈Aut(Q;<) ∪ {↔,	}〉

Sym(Q)



Connection with model theory

Definition
A reduct of a structure ∆ is a structure on the same domain
whose functions and relations are first-order definable in ∆
without parameters.

Theorem (Corollary of Ryll-Nardzewski, Engeler, Svenonius)

If ∆ is homogeneous in a finite relational language, then

{reducts of ∆}/∼ → {closed supergroups of Aut(∆)}
Γ/∼ 7→ Aut(Γ)

is an antiisomorphism.

Example

Btw(x, y, z)⇔ (x < y < z) ∨ (z < y < x)
Aut(Q; Btw) = 〈Aut(Q, <) ∪ {↔}〉
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A model of Th(Π)

Definition

Let D ⊆ Q2 be
I dense
I independent: for distinct (x1, x2), (y1, y2) ∈ D, xi 6= yi

For i = 1, 2 define linear orders on D:

(x1, x2) <i (y1, y2)⇔ xi < yi

Then (D;<1, <2) ∼= Π.
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The closed supergroups of Aut(Π)

Theorem (Linman and Pinsker, 2014)

There are precisely 39 closed supergroups of Aut(Π).

Each closed supergroup either contains Aut(D;<i) for some
i ∈ {1, 2}, or is generated by permutations which are
compositions of the following:
I

( id
rev

)
: reverses <2 and preserves <1

I
(id

t

)
: turns <2 about some irrational π and preserves <1

I sw: switches the orders <1 and <2

I
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)
I
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∆ is a Ramsey structure if...
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Theorem (Bodirsky, Pinsker,
Tsankov, 2011)

If ∆ is
I ordered Ramsey
I homogeneous in a finite

language
then closed supergroups of
Aut(∆) can be distinguished by
functions which are canonical.

We obtain our classification by
studying the behavior of such
canonical functions.
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