Reducts of the random permutation

Julie Linman ¹ Michael Pinsker ²

¹University of Colorado at Boulder

²Université Diderot, Paris 7

May, 19 2014

Any permutation on a finite set A may be regarded as

Any permutation on a finite set A may be regarded as

▶ a bijection $A \rightarrow A$

Any permutation on a finite set A may be regarded as

- ▶ a bijection $A \rightarrow A$
- ▶ a relational structure $(A; <_1, <_2)$

Definition

The random permutation, $\Pi = (D; <_1, <_2)$, is the unique (up to isomorphism) countable structure with two linear orders which

Definition

The random permutation, $\Pi = (D; <_1, <_2)$, is the unique (up to isomorphism) countable structure with two linear orders which

contains all finite permutations

Definition

The random permutation, $\Pi = (D; <_1, <_2)$, is the unique (up to isomorphism) countable structure with two linear orders which

- contains all finite permutations
- is homogeneous: isomorphisms between finite substructures extend to automorphisms of Π

Definition

The random permutation, $\Pi = (D; <_1, <_2)$, is the unique (up to isomorphism) countable structure with two linear orders which

- contains all finite permutations
- is homogeneous: isomorphisms between finite substructures extend to automorphisms of Π

Equivalently,

▶ ∏ is the Fraïssé limit of the class of all finite permutations

Definition

The random permutation, $\Pi = (D; <_1, <_2)$, is the unique (up to isomorphism) countable structure with two linear orders which

- contains all finite permutations
- is homogeneous: isomorphisms between finite substructures extend to automorphisms of Π

Equivalently,

- ▶ ∏ is the Fraïssé limit of the class of all finite permutations
- ► II appears with probability 1 in the random process that constructs both orders independently

Definition

The random permutation, $\Pi = (D; <_1, <_2)$, is the unique (up to isomorphism) countable structure with two linear orders which

- contains all finite permutations
- ▶ is homogeneous: isomorphisms between finite substructures extend to automorphisms of ∏

Equivalently,

- ▶ ∏ is the Fraïssé limit of the class of all finite permutations
- ► II appears with probability 1 in the random process that constructs both orders independently

Question (Cameron, 2002)

What are the closed supergroups of $Aut(\Pi)$?

A permutation group $G \leq \operatorname{Sym}(X)$ is closed iff $h \in G$ whenever for all finite $A \subseteq X$ there exists $g \in G$ which agrees with h on A.

A permutation group $G \leq \operatorname{Sym}(X)$ is closed iff $h \in G$ whenever for all finite $A \subseteq X$ there exists $g \in G$ which agrees with h on A.

Why look at closed supergroups?

A permutation group $G \leq \operatorname{Sym}(X)$ is closed iff $h \in G$ whenever for all finite $A \subseteq X$ there exists $g \in G$ which agrees with h on A.

Why look at closed supergroups?

understand symmetries of Π

A permutation group $G \leq \operatorname{Sym}(X)$ is closed iff $h \in G$ whenever for all finite $A \subseteq X$ there exists $g \in G$ which agrees with h on A.

Why look at closed supergroups?

- understand symmetries of Π
- ▶ Conjecture (Simon Thomas, 1991): If Δ is a countable relational structure which is homogeneous in a finite language, then $\operatorname{Aut}(\Delta)$ has only finitely many closed supergroups.

A permutation group $G \leq \operatorname{Sym}(X)$ is closed iff $h \in G$ whenever for all finite $A \subseteq X$ there exists $g \in G$ which agrees with h on A.

Why look at closed supergroups?

- understand symmetries of Π
- ▶ Conjecture (Simon Thomas, 1991): If Δ is a countable relational structure which is homogeneous in a finite language, then $\operatorname{Aut}(\Delta)$ has only finitely many closed supergroups.
- classifying computational complexity of CSPs involving finite permutations

Let \leftrightarrow be a permutation of $\mathbb Q$ which reverses <.

Let \leftrightarrow be a permutation of \mathbb{Q} which reverses <.

Let \circlearrowleft be a permutation of $\mathbb Q$ which reverses < between $(-\infty,\pi)$ and (π,∞) , for some irrational π , and preserves < otherwise.

Let \leftrightarrow be a permutation of \mathbb{Q} which reverses <.

Let \circlearrowleft be a permutation of $\mathbb Q$ which reverses < between $(-\infty, \pi)$ and (π, ∞) , for some irrational π , and preserves < otherwise.

Theorem (Cameron, 1976)

The closed supergroups of $Aut(\mathbb{Q}; <)$ are

- ► Aut(ℚ; <)
- $\land (\operatorname{Aut}(\mathbb{Q}; <) \cup \{\leftrightarrow\})$
- $\land \operatorname{Aut}(\mathbb{Q}; <) \cup \{\circlearrowleft\} \rangle$
- $\land \operatorname{Aut}(\mathbb{Q}; <) \cup \{\leftrightarrow, \circlearrowleft\} \rangle$
- \triangleright Sym(\mathbb{Q})

Definition

A reduct of a structure Δ is a structure on the same domain whose functions and relations are first-order definable in Δ without parameters.

Definition

A reduct of a structure Δ is a structure on the same domain whose functions and relations are first-order definable in Δ without parameters.

Theorem (Corollary of Ryll-Nardzewski, Engeler, Svenonius)

If Δ is homogeneous in a finite relational language, then

$$\{ \text{reducts of } \Delta \}/{\sim} \to \{ \text{closed supergroups of } \operatorname{Aut}(\Delta) \} \\ \Gamma/{\sim} \mapsto \operatorname{Aut}(\Gamma)$$

is an antiisomorphism.

Definition

A reduct of a structure Δ is a structure on the same domain whose functions and relations are first-order definable in Δ without parameters.

Theorem (Corollary of Ryll-Nardzewski, Engeler, Svenonius)

If Δ is homogeneous in a finite relational language, then

$$\{ \text{reducts of } \Delta \} / \sim \rightarrow \{ \text{closed supergroups of } \operatorname{Aut}(\Delta) \}$$

$$\Gamma / \sim \mapsto \operatorname{Aut}(\Gamma)$$

is an antiisomorphism.

Example

$$Btw(x, y, z) \Leftrightarrow (x < y < z) \lor (z < y < x)$$

$$Aut(\mathbb{Q}; Btw) = \langle Aut(\mathbb{Q}, <) \cup \{\leftrightarrow\} \rangle$$

A model of $Th(\Pi)$

Definition

Let $D \subseteq \mathbb{Q}^2$ be

- ▶ dense
- ▶ independent: for distinct $(x_1, x_2), (y_1, y_2) \in D$, $x_i \neq y_i$

A model of $Th(\Pi)$

Definition

Let $D \subseteq \mathbb{Q}^2$ be

- ▶ dense
- ▶ independent: for distinct $(x_1, x_2), (y_1, y_2) \in D, x_i \neq y_i$

For i = 1, 2 define linear orders on D:

$$(x_1, x_2) <_i (y_1, y_2) \Leftrightarrow x_i < y_i$$

A model of $Th(\Pi)$

Definition

Let $D \subseteq \mathbb{Q}^2$ be

- ▶ dense
- ▶ independent: for distinct $(x_1, x_2), (y_1, y_2) \in D, x_i \neq y_i$

For i = 1, 2 define linear orders on D:

$$(x_1, x_2) <_i (y_1, y_2) \Leftrightarrow x_i < y_i$$

Then $(D; <_1, <_2) \cong \Pi$.

The closed supergroups of $\operatorname{Aut}(\Pi)$

Theorem (Linman and Pinsker, 2014)

There are precisely 39 closed supergroups of $Aut(\Pi)$.

Theorem (Linman and Pinsker, 2014)

There are precisely 39 closed supergroups of $Aut(\Pi)$.

Theorem (Linman and Pinsker, 2014)

There are precisely 39 closed supergroups of $Aut(\Pi)$.

Each closed supergroup either contains $\operatorname{Aut}(D; <_i)$ for some $i \in \{1, 2\}$, or is generated by permutations which are compositions of the following:

▶ $\binom{id}{rev}$: reverses <2 and preserves <1

Theorem (Linman and Pinsker, 2014)

There are precisely 39 closed supergroups of $Aut(\Pi)$.

- ▶ $\binom{id}{rev}$: reverses $<_2$ and preserves $<_1$
- $\binom{\mathrm{id}}{t}$: turns $<_2$ about some irrational π and preserves $<_1$

Theorem (Linman and Pinsker, 2014)

There are precisely 39 closed supergroups of $Aut(\Pi)$.

- $\binom{id}{rev}$: reverses $<_2$ and preserves $<_1$
- $\binom{\mathrm{id}}{t}$: turns $<_2$ about some irrational π and preserves $<_1$
- sw: switches the orders $<_1$ and $<_2$

Theorem (Linman and Pinsker, 2014)

There are precisely 39 closed supergroups of $Aut(\Pi)$.

- $\binom{id}{rev}$: reverses $<_2$ and preserves $<_1$
- $\binom{\mathrm{id}}{t}$: turns $<_2$ about some irrational π and preserves $<_1$
- sw: switches the orders $<_1$ and $<_2$
- $ightharpoonup \left(\begin{array}{c} \text{rev} \\ \text{id} \end{array} \right)$
- $ightharpoonup \left({t \atop id} \right)$

Asymmetry in the roles of $\binom{id}{rev}$ and $\binom{id}{t}$

While \leftrightarrow and \circlearrowleft appear to play symmetric roles as generators of closed supergroups of $\operatorname{Aut}(\mathbb{Q};<)$, the corresponding permutations $\binom{\operatorname{id}}{\operatorname{rev}}$ and $\binom{\operatorname{id}}{t}$ of D do not.

Asymmetry in the roles of $\binom{id}{rev}$ and $\binom{id}{t}$

While \leftrightarrow and \circlearrowleft appear to play symmetric roles as generators of closed supergroups of $\operatorname{Aut}(\mathbb{Q};<)$, the corresponding permutations $\binom{\operatorname{id}}{\operatorname{rev}}$ and $\binom{\operatorname{id}}{t}$ of D do not.

There is a group consisting of all permutations which either preserve or reverse both orders simultaneously, but no corresponding simultaneous action of turns:

Asymmetry in the roles of $\binom{id}{rev}$ and $\binom{id}{t}$

While \leftrightarrow and \circlearrowleft appear to play symmetric roles as generators of closed supergroups of $\operatorname{Aut}(\mathbb{Q};<)$, the corresponding permutations $\binom{\operatorname{id}}{\operatorname{rev}}$ and $\binom{\operatorname{id}}{t}$ of D do not.

There is a group consisting of all permutations which either preserve or reverse both orders simultaneously, but no corresponding simultaneous action of turns:

$$\begin{split} \langle \binom{\text{rev}}{\text{rev}} \rangle &= \langle \binom{\text{id}}{\text{rev}} \circ \binom{\text{rev}}{\text{id}} \rangle \subsetneq \langle \binom{\text{id}}{\text{rev}}, \binom{\text{rev}}{\text{id}} \rangle \\ \langle \binom{\text{id}}{t} \circ \binom{t}{\text{id}} \rangle &= \langle \binom{\text{id}}{t}, \binom{t}{\text{id}} \rangle \end{split}$$

 Δ is a Ramsey structure if...

 Δ is a Ramsey structure if...

 Δ is a Ramsey structure if...

Theorem (Bodirsky, Pinsker, Tsankov, 2011)

If Δ is

- ordered Ramsey
- homogeneous in a finite language

then closed supergroups of $Aut(\Delta)$ can be distinguished by functions which are canonical.

Δ is a Ramsey structure if...

Theorem (Bodirsky, Pinsker, Tsankov, 2011)

If Δ is

- ordered Ramsey
- homogeneous in a finite language

then closed supergroups of $Aut(\Delta)$ can be distinguished by functions which are canonical.

We obtain our classification by studying the behavior of such canonical functions.

Thank you!

