Constraint Satisfaction on Infinite Domains

1st session

Michael Pinsker

Technische Universität Wien / Université Diderot - Paris 7 Funded by FWF grant I836-N23

Algebraic and Model Theoretical Methods in Constraint Satisfaction Banff International Research Station

2014

Ir	nfi	nit	e d	lon	nai	n (CS	Ps
							~~	

Part I: CSPs / dividing the world / pp definitions, polymorphism clones, ω-categoricity

- **Part I:** CSPs / dividing the world / pp definitions, polymorphism clones, ω-categoricity
- Part II: pp interpretations / topological clones

- **Part I:** CSPs / dividing the world / pp definitions, polymorphism clones, *ω*-categoricity
- Part II: pp interpretations / topological clones
- Part III: Canonical functions, Ramsey structures / Graph-SAT

- **Part I:** CSPs / dividing the world / pp definitions, polymorphism clones, ω-categoricity
- Part II: pp interpretations / topological clones
- Part III: Canonical functions, Ramsey structures / Graph-SAT
- Part IV: Model-complete cores / The infinite tractability conjecture

- **Part I:** CSPs / dividing the world / pp definitions, polymorphism clones, ω-categoricity
- Part II: pp interpretations / topological clones
- Part III: Canonical functions, Ramsey structures / Graph-SAT
- Part IV: Model-complete cores / The infinite tractability conjecture
- Model theory, Universal algebra, Ramsey theory, Topological dynamics \rightarrow Theoretical computer science

- **Part I:** CSPs / dividing the world / pp definitions, polymorphism clones, ω-categoricity
- Part II: pp interpretations / topological clones
- Part III: Canonical functions, Ramsey structures / Graph-SAT
- Part IV: Model-complete cores / The infinite tractability conjecture
- Model theory, Universal algebra, Ramsey theory, Topological dynamics \rightarrow Theoretical computer science

Building new dimension out of two smaller

Part I:

CSPs / dividing the world /

pp definitions, polymorphism clones, ω -categoricity

Infinite domain CSPs

Michael Pinsker

Let Γ be a structure in a finite relational language τ .

Let Γ be a structure in a finite relational language τ .

Definition $CSP(\Gamma)$ is the decision problem:

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \to \Gamma$?

Let Γ be a structure in a finite relational language τ .

Definition CSP(Γ) is the decision problem: INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \to \Gamma$?

 Γ is called the template of the CSP.

Let Γ be a structure in a finite relational language τ .

Definition CSP(Γ) is the decision problem: INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \to \Gamma$?

 Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Let Γ be a structure in a finite relational language τ .

Definition CSP(Γ) is the decision problem: INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \to \Gamma$?

 Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or can see it as pp sentence (existentially quantified conjunction).

Let Γ be a structure in a finite relational language τ .

Definition CSP(Γ) is the decision problem: INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \to \Gamma$?

 Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or can see it as pp sentence (existentially quantified conjunction).

Irrelevant whether Γ is finite or infinite. But language finite.

Homomorphism problems

Infinite domain CSPs

Michael Pinsker

Homomorphism problems

Let Γ be a structure in a finite relational language τ .

Homomorphism problems

Let Γ be a structure in a finite relational language τ .

Definition $HOM(\Gamma)$ is the decision problem:

Definition HOM(Γ) is the decision problem: INPUT: a *finite* τ -structure Δ.

Definition HOM(Γ) is the decision problem: INPUT: a *finite* τ -structure Δ. QUESTION: is there a homomorphism $h: \Delta \to \Gamma$?

Definition HOM(Γ) is the decision problem: INPUT: a *finite* τ -structure Δ. QUESTION: is there a homomorphism $h: \Delta \rightarrow \Gamma$?

Finite τ -structures \leftrightarrow pp τ -sentences.

Definition HOM(Γ) is the decision problem: INPUT: a *finite* τ -structure Δ. QUESTION: is there a homomorphism $h: \Delta \rightarrow \Gamma$?

Finite τ -structures \leftrightarrow pp τ -sentences.

HOM(Γ) and CSP(Γ) are equivalent.

Infinite domain CSPs

Michael Pinsker

Digraph acyclicity

Input: A finite directed graph (D; E)Question: Is (D; E) acyclic?

Digraph acyclicity

Input: A finite directed graph (D; E) Question: Is (D; E) acyclic? Is CSP: template ($\mathbb{Q}; <$)

Digraph acyclicity

Input: A finite directed graph (D; E) Question: Is (D; E) acyclic? Is CSP: template ($\mathbb{Q}; <$)

Betweenness

Input: A finite set of triples of variables Question: Is there a linear order on the variables such that for each triple (x, y, z) either x < y < z or z < y < x?

Digraph acyclicity

Input: A finite directed graph (D; E) Question: Is (D; E) acyclic? Is CSP: template ($\mathbb{Q}; <$)

Betweenness

Input: A finite set of triples of variables Question: Is there a linear order on the variables such that for each triple (x, y, z) either x < y < z or z < y < x? Is CSP: template $(\mathbb{Q}; \{(x, y, z) \mid (x < y < z) \lor (z < y < x)\})$

Infinite domain CSPs

Michael Pinsker

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$ Question: Is there a solution in \mathbb{Z} ?

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$ Question: Is there a solution in \mathbb{Z} ? Is CSP: template (\mathbb{Z} ; 1, +, ·, =)

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$ Question: Is there a solution in \mathbb{Z} ? Is CSP: template (\mathbb{Z} ; 1, +, \cdot , =)

n-colorability

Input: A finite undirected graph Question: Is it *n*-colorable?

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$ Question: Is there a solution in \mathbb{Z} ? Is CSP: template (\mathbb{Z} ; 1, +, \cdot , =)

n-colorability

Input: A finite undirected graph Question: Is it *n*-colorable? Is a CSP: template K_n

Dividing the world
Infinite domain CSPs

Michael Pinsker

Let *E* be a binary relation symbol.

Let Ψ be a finite set of quantifier-free {*E*}-formulas.

Let *E* be a binary relation symbol.

Let Ψ be a finite set of quantifier-free {*E*}-formulas.

Computational problem: Graph-SAT(Ψ) INPUT:

- A finite set *W* of variables (vertices), and
- statements φ₁,..., φ_n about the elements of W, where each φ_i is taken from Ψ.

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable in a graph?

Let *E* be a binary relation symbol.

Let Ψ be a finite set of quantifier-free {*E*}-formulas.

Computational problem: Graph-SAT(Ψ) INPUT:

- A finite set *W* of variables (vertices), and
- statements φ₁,..., φ_n about the elements of W, where each φ_i is taken from Ψ.

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable in a graph?

Computational complexity depends on Ψ . Always in NP.

Let *E* be a binary relation symbol.

Let Ψ be a finite set of quantifier-free $\{E\}$ -formulas.

Computational problem: Graph-SAT(Ψ) INPUT:

- A finite set *W* of variables (vertices), and
- statements φ₁,..., φ_n about the elements of W, where each φ_i is taken from Ψ.

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable in a graph?

Computational complexity depends on Ψ . Always in NP.

Question

For which Ψ is Graph-SAT(Ψ) tractable?

Infinite domain CSPs

Michael Pinsker

Example 1 Let Ψ_1 only contain

$$\psi_1(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)) .$$

Example 1 Let Ψ_1 only contain

$$\psi_1(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)) .$$

Graph-SAT(Ψ_1) is NP-complete.

Example 1 Let Ψ_1 only contain

$$\psi_1(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)) .$$

Graph-SAT(Ψ_1) is NP-complete.

Example 2 Let Ψ_2 only contain

$$\psi_{2}(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)) \\ \lor (E(x, y) \land E(y, z) \land E(x, z)) .$$

Example 1 Let Ψ_1 only contain

$$\psi_1(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)) .$$

Graph-SAT(Ψ_1) is NP-complete.

Example 2 Let Ψ_2 only contain

$$\psi_{2}(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)) \\ \lor (E(x, y) \land E(y, z) \land E(x, z)) .$$

Graph-SAT(Ψ_2) is in P.

Infinite domain CSPs

Michael Pinsker

Let G = (V; E) be the random graph: the unique countably infinite graph which is

Let G = (V; E) be the random graph: the unique countably infinite graph which is

(ultra-)homogeneous:

For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(G)$ extending *i*.

Let G = (V; E) be the random graph: the unique countably infinite graph which is

(ultra-)homogeneous:

For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(G)$ extending *i*.

■ universal: contains all finite (even countable) graphs.

Let G = (V; E) be the random graph: the unique countably infinite graph which is

(ultra-)homogeneous:

For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(G)$ extending *i*.

■ universal: contains all finite (even countable) graphs.

For a graph formula $\psi(x_1, \ldots, x_n)$, define a relation

$$R_{\psi} := \{(a_1,\ldots,a_n) \in V^n : \psi(a_1,\ldots,a_n)\}.$$

Let G = (V; E) be the random graph: the unique countably infinite graph which is

(ultra-)homogeneous:

For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(G)$ extending *i*.

■ universal: contains all finite (even countable) graphs.

For a graph formula $\psi(x_1, \ldots, x_n)$, define a relation

$$R_{\psi} := \{(a_1,\ldots,a_n) \in V^n : \psi(a_1,\ldots,a_n)\}.$$

For a set Ψ of graph formulas, define a structure

$$\Gamma_{\Psi} := (V; (R_{\psi} : \psi \in \Psi)).$$

Let G = (V; E) be the random graph: the unique countably infinite graph which is

(ultra-)homogeneous:

For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(G)$ extending *i*.

■ universal: contains all finite (even countable) graphs.

For a graph formula $\psi(x_1, \ldots, x_n)$, define a relation

$$R_{\psi} := \{(a_1,\ldots,a_n) \in V^n : \psi(a_1,\ldots,a_n)\}.$$

For a set Ψ of graph formulas, define a structure

$$\Gamma_{\Psi} := (V; (R_{\psi} : \psi \in \Psi)).$$

 Γ_{Ψ} is a reduct of the random graph, i.e., a structure with a first-order definition in *G*.

Infinite domain CSPs

Infinite domain CSPs

Michael Pinsker

An instance

$$W = \{w_1, \dots, w_m\}$$
$$\phi_1, \dots, \phi_n$$

of Graph-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

An instance

$$W = \{w_1, \dots, w_m\}$$
$$\phi_1, \dots, \phi_n$$

of Graph-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

Graph-SAT(Ψ) = CSP(Γ_{Ψ}).

An instance

$$W = \{w_1, \dots, w_m\}$$
$$\phi_1, \dots, \phi_n$$

of Graph-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

```
Graph-SAT(\Psi) = CSP(\Gamma_{\Psi}).
```

Could have used any universal graph?

An instance

$$W = \{w_1, \dots, w_m\}$$
$$\phi_1, \dots, \phi_n$$

of Graph-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

Graph-SAT(Ψ) = CSP(Γ_{Ψ}).

Could have used any universal graph?

Graph-SAT problems \leftrightarrow CSPs of reducts of the random graph.

Homogeneous structures

Infinite domain CSPs

Michael Pinsker

Homogeneous structures

Graph-SAT(Ψ): Is there a finite graph such that... (constraints)

Graph-SAT(Ψ): Is there a finite graph such that... (constraints) The class of finite graphs has amalgamation.

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

Further amalgamation classes.

Linear orders

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

- Linear orders
- Partial orders

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

- Linear orders
- Partial orders
- Lattices (Jónsson), Distributive lattices (Pierce), Trivial lattices (Day, Ježek)

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

- Linear orders
- Partial orders
- Lattices (Jónsson), Distributive lattices (Pierce), Trivial lattices (Day, Ježek)
- Boolean algebras

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

- Linear orders
- Partial orders
- Lattices (Jónsson), Distributive lattices (Pierce), Trivial lattices (Day, Ježek)
- Boolean algebras
- Metric spaces with rational distances

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

- Linear orders
- Partial orders
- Lattices (Jónsson), Distributive lattices (Pierce), Trivial lattices (Day, Ježek)
- Boolean algebras
- Metric spaces with rational distances
- Tournaments

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

Further amalgamation classes.

- Linear orders
- Partial orders
- Lattices (Jónsson), Distributive lattices (Pierce), Trivial lattices (Day, Ježek)
- Boolean algebras
- Metric spaces with rational distances
- Tournaments
- Henson digraphs (forbidden tournaments)

Infinite domain CSPs

Michael Pinsker

CSPs of reducts of homogeneous structures

Infinite domain CSPs

Michael Pinsker

CSPs of reducts of homogeneous structures

Let C be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.
Let $\ensuremath{\mathbb{C}}$ be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \dots, R_{\psi_n})$ be a reduct of Δ .

Let $\ensuremath{\mathbb{C}}$ be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \ldots, R_{\psi_n})$ be a reduct of Δ .

 $CSP(\Gamma)$ is called a C-SAT problem.

Let \mathcal{C} be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \dots, R_{\psi_n})$ be a reduct of Δ .

 $CSP(\Gamma)$ is called a C-SAT problem.

It asks whether a given conjunction using ψ_1, \ldots, ψ_n is satisfiable in some member of \mathbb{C} .

Let \mathcal{C} be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \ldots, R_{\psi_n})$ be a reduct of Δ .

 $CSP(\Gamma)$ is called a C-SAT problem.

It asks whether a given conjunction using ψ_1, \ldots, ψ_n is satisfiable in some member of C.

Note: This type of CSP cannot be modeled by finite templates.

Let \mathcal{C} be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \ldots, R_{\psi_n})$ be a reduct of Δ .

 $CSP(\Gamma)$ is called a C-SAT problem.

It asks whether a given conjunction using ψ_1, \ldots, ψ_n is satisfiable in some member of C.

Note: This type of CSP cannot be modeled by finite templates.

More general: τ , σ disjoint relational signatures.

Let \mathcal{C} be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \ldots, R_{\psi_n})$ be a reduct of Δ .

 $CSP(\Gamma)$ is called a C-SAT problem.

It asks whether a given conjunction using ψ_1, \ldots, ψ_n is satisfiable in some member of C.

Note: This type of CSP cannot be modeled by finite templates.

More general: τ , σ disjoint relational signatures. C... class of ($\tau \cup \sigma$)-structures.

Let \mathcal{C} be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \ldots, R_{\psi_n})$ be a reduct of Δ .

 $CSP(\Gamma)$ is called a C-SAT problem.

It asks whether a given conjunction using ψ_1, \ldots, ψ_n is satisfiable in some member of C.

Note: This type of CSP cannot be modeled by finite templates.

More general: τ , σ disjoint relational signatures.

 \mathbb{C} ... class of ($\tau \cup \sigma$)-structures.

INPUT: finite τ -structure.

Let \mathcal{C} be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \ldots, R_{\psi_n})$ be a reduct of Δ .

 $CSP(\Gamma)$ is called a C-SAT problem.

It asks whether a given conjunction using ψ_1, \ldots, ψ_n is satisfiable in some member of C.

Note: This type of CSP cannot be modeled by finite templates.

More general: τ , σ disjoint relational signatures.

 \mathbb{C} ... class of ($\tau \cup \sigma$)-structures.

INPUT: finite τ -structure.

QUESTION: can be expanded to structure in C?

Infinite domain CSPs

Michael Pinsker

Let Ψ be a finite set of propositional formulas.

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ) INPUT:

- A finite set W of propositional variables, and
- statements ϕ_1, \ldots, ϕ_n about the variables in *W*, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable?

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ) INPUT:

- A finite set W of propositional variables, and
- statements ϕ_1, \ldots, ϕ_n about the variables in *W*, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable?

Computational complexity depends on Ψ . Always in NP.

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ) INPUT:

- A finite set W of propositional variables, and
- statements ϕ_1, \ldots, ϕ_n about the variables in *W*, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable?

Computational complexity depends on Ψ . Always in NP.

Question

For which Ψ is Boolean-SAT(Ψ) tractable?

Infinite domain CSPs

Michael Pinsker

For a Boolean formula $\psi(x_1, \ldots, x_n)$, define a relation

$$R_{\psi} := \{(a_1, \ldots, a_n) \in \{0, 1\}^n : \psi(a_1, \ldots, a_n)\}.$$

For a Boolean formula $\psi(x_1, \ldots, x_n)$, define a relation

$$R_{\psi} := \{(a_1, \ldots, a_n) \in \{0, 1\}^n : \psi(a_1, \ldots, a_n)\}.$$

For a set Ψ of Boolean formulas, define a structure

$$\Gamma_{\Psi} := (\{0,1\}; (R_{\psi}: \psi \in \Psi)).$$

For a Boolean formula $\psi(x_1, \ldots, x_n)$, define a relation

$$R_{\psi} := \{ (a_1, \ldots, a_n) \in \{0, 1\}^n : \psi(a_1, \ldots, a_n) \}.$$

For a set Ψ of Boolean formulas, define a structure

$$\Gamma_{\Psi} := (\{0,1\}; (R_{\psi}: \psi \in \Psi)).$$

An instance

$$W = \{W_1, \dots, W_m\}$$
$$\phi_1, \dots, \phi_n$$

of Boolean-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

For a Boolean formula $\psi(x_1, \ldots, x_n)$, define a relation

$$R_{\psi} := \{ (a_1, \ldots, a_n) \in \{0, 1\}^n : \psi(a_1, \ldots, a_n) \}.$$

For a set Ψ of Boolean formulas, define a structure

$$\Gamma_{\Psi} := (\{0,1\}; (R_{\psi}: \psi \in \Psi)).$$

An instance

$$W = \{w_1, \dots, w_m\}$$
$$\phi_1, \dots, \phi_n$$

of Boolean-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

Boolean-SAT(Ψ) = CSP(Γ_{Ψ}).

For a Boolean formula $\psi(x_1, \ldots, x_n)$, define a relation

$$R_{\psi} := \{ (a_1, \ldots, a_n) \in \{0, 1\}^n : \psi(a_1, \ldots, a_n) \}.$$

For a set Ψ of Boolean formulas, define a structure

$$\Gamma_{\Psi} := (\{0,1\}; (R_{\psi}: \psi \in \Psi)).$$

An instance

$$W = \{w_1, \dots, w_m\}$$
$$\phi_1, \dots, \phi_n$$

of Boolean-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

Boolean-SAT(Ψ) = CSP(Γ_{Ψ}).

Boolean-SAT problems \leftrightarrow CSPs of structures on $\{0, 1\}$.

Infinite domain CSPs

Michael Pinsker

Classes of CSPs

Classes of CSPs

■ All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)

Classes of CSPs

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Classes of CSPs

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Classes of CSPs

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi '93)

Classes of CSPs

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi '93) *Infinite template:*

Classes of CSPs

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi '93)

Infinite template:

can be undecidable

Classes of CSPs

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi '93)

- can be undecidable
- Up to polyn. time, all complexities appear (Grohe + Bodirsky '08)

Classes of CSPs

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi '93)

- can be undecidable
- Up to polyn. time, all complexities appear (Grohe + Bodirsky '08) (even for reducts of (ℤ; +, ·, 1))

Classes of CSPs

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi '93)

- can be undecidable
- Up to polyn. time, all complexities appear (Grohe + Bodirsky '08) (even for reducts of (ℤ; +, ·, 1))
- C-SAT: If Fraïssé class C is decidable (in NP), then C-SAT is decidable (in NP)

Classes of CSPs

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi '93)

- can be undecidable
- Up to polyn. time, all complexities appear (Grohe + Bodirsky '08) (even for reducts of (ℤ; +, ⋅, 1))
- C-SAT: If Fraïssé class C is decidable (in NP), then C-SAT is decidable (in NP)
- CSPs are classes of finite *τ*-structures closed under inverse homomorphic images and unions

pp definitions, polymorphism clones, ω -categoricity

Infi	ini	te c	lo	ma	in	CS	Ps

Infinite domain CSPs

Michael Pinsker

A τ -formula is primitive positive (pp) iff it is of the form

$$\exists x_1 \cdots \exists x_n \psi_1 \wedge \cdots \wedge \psi_m,$$

where ψ_i are atomic.

A τ -formula is primitive positive (pp) iff it is of the form

$$\exists x_1 \cdots \exists x_n \psi_1 \wedge \cdots \wedge \psi_m,$$

where ψ_i are atomic.

Note: the input of a CSP really is a pp sentence.

A τ -formula is primitive positive (pp) iff it is of the form

 $\exists x_1 \cdots \exists x_n \psi_1 \wedge \cdots \wedge \psi_m,$

where ψ_i are atomic.

Note: the input of a CSP really is a pp sentence.

Example. The relation $y = 2^x$ is pp definable in $(\mathbb{Z}; +, \cdot, 1)$ (Matiyasevich + Robinson).
Primitive positive definitions

A τ -formula is primitive positive (pp) iff it is of the form

 $\exists x_1 \cdots \exists x_n \psi_1 \wedge \cdots \wedge \psi_m,$

where ψ_i are atomic.

Note: the input of a CSP really is a pp sentence.

Example. The relation $y = 2^x$ is pp definable in $(\mathbb{Z}; +, \cdot, 1)$ (Matiyasevich + Robinson).

Observation (Bulatov + Krokhin + Jeavons '00)

Expanding Γ by pp definable relations increases the complexity of the CSP by at most polynomial-time.

Infinite domain CSPs

Let Γ be a structure.

Let Γ be a structure.

 $\mathsf{Pol}(\Gamma)$ is the set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

Let Γ be a structure.

 $\mathsf{Pol}(\Gamma)$ is the set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

So $f(x_1, \ldots, x_n) \in \text{Pol}(\Gamma)$ iff $f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$ and all relations R of Γ .

Let Γ be a structure.

 $\mathsf{Pol}(\Gamma)$ is the set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

```
So f(x_1, \ldots, x_n) \in \text{Pol}(\Gamma) iff f(r_1, \ldots, r_n) \in R
for all r_1, \ldots, r_n \in R and all relations R of \Gamma.
```

The elements of $Pol(\Gamma)$ are called polymorphisms of Γ .

Let Γ be a structure.

 $Pol(\Gamma)$ is the set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

So $f(x_1, \ldots, x_n) \in \text{Pol}(\Gamma)$ iff $f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$ and all relations R of Γ .

The elements of $Pol(\Gamma)$ are called polymorphisms of Γ .

 $Pol(\Gamma)$ is a function clone:

- closed under composition
- contains projections.

Let Γ be a structure.

 $Pol(\Gamma)$ is the set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

So $f(x_1, \ldots, x_n) \in \text{Pol}(\Gamma)$ iff $f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$ and all relations R of Γ .

The elements of $Pol(\Gamma)$ are called polymorphisms of Γ .

 $Pol(\Gamma)$ is a function clone:

- closed under composition
- contains projections.

```
Observe: Pol(\Gamma) \supseteq End(\Gamma) \supseteq Aut(\Gamma).
```

Infinite domain CSPs

Theorem (Bodirsky + Nešetřil '03) Let Γ be a countable ω-categorical structure. A relation is pp definable over Γ iff it is preserved by all polymorphisms of Γ.

Theorem (Bodirsky + Nešetřil '03) Let Γ be a countable ω-categorical structure. A relation is pp definable over Γ iff it is preserved by all polymorphisms of Γ.

Hence, the complexity of $CSP(\Gamma)$ only depends on $Pol(\Gamma)$:

Theorem (Bodirsky + Nešetřil '03) Let Γ be a countable ω-categorical structure. A relation is pp definable over Γ iff it is preserved by all polymorphisms of Γ.

Hence, the complexity of $CSP(\Gamma)$ only depends on $Pol(\Gamma)$:

Corollary Let Γ be ω -categorical. If $Pol(\Gamma) \subseteq Pol(\Gamma')$, then $CSP(\Gamma')$ is polynomial-time reducible to $CSP(\Gamma)$.

Infinite domain CSPs

Let G be a permutation group acting on a countable set D.

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Definition

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Definition

 \mathcal{G} is oligomorphic iff its action on D^n has finitely many orbits for all n.

■ Aut(N; <)?

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Definition

- Aut(N; <)?
- Aut(ℤ; <)?

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Definition

- Aut(N; <)?
- Aut(ℤ; <)?
- Aut(Q; <)?</p>

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Definition

- Aut(N; <)?
- Aut(Z; <)?</p>
- Aut(Q; <)?</p>
- Homogeneous structures?

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Definition

 \mathcal{G} is oligomorphic iff its action on D^n has finitely many orbits for all n.

- Aut(N; <)?
- Aut(Z; <)?</p>
- Aut(ℚ; <)?
- Homogeneous structures?

Theorem (Ryll-Nardzewski, Engeler, Svenonius)

Let Γ be countable. TFAE:

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Definition

 \mathcal{G} is oligomorphic iff its action on D^n has finitely many orbits for all n.

- Aut(N; <)?
- Aut(ℤ; <)?
- Aut(ℚ; <)?
- Homogeneous structures?

Theorem (Ryll-Nardzewski, Engeler, Svenonius)

Let Γ be countable. TFAE:

Aut(Γ) is oligomorphic;

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Definition

 \mathcal{G} is oligomorphic iff its action on D^n has finitely many orbits for all n.

- Aut(N; <)?
- Aut(ℤ; <)?
- Aut(ℚ; <)?
- Homogeneous structures?

Theorem (Ryll-Nardzewski, Engeler, Svenonius)

Let Γ be countable. TFAE:

Aut(Γ) is oligomorphic;

\Gamma is ω -categorical: the only countable model of its theory.

Graph-SAT classification

I call our world Flatland,

not because we call it so,

but to make its nature clearer to you, my happy readers, who are privileged to live in Space.

2nd session: 14:00

Infinite domain CSPs