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Reminder from 1st session

CSPs are precisely the classes of finite τ -structures closed under:
disjoint unions
inverse homomorphic images

Polymorphisms preserve:
arbitrary intersections
directed unions
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Part II:

pp interpretations / topological clones
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Algebraic constructions

Let A = (A; (fi)i∈I) be an algebra, and τ its signature.

Term functions of A form function clone Clo(A).

Every function clone of this form→ can see Pol(Γ) as term clone.

Can see Pol(Γ) as a polymorphism algebra by giving it a signature.

Arbitrary, but many properties of an algebra depend only on its clone:
in particular, subalgebras, congruence relations.

Can apply algebraic constructions independently of signature:
Homomorphic images / factors
Subalgebras
finite Powers.
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CSP and HSPfin

For a function clone C:

H(C). . . function clones obtained by factoring by congruence.
S(C) . . . function clones obtained by restriction to subalgebra.
Pfin(C) . . . function clones obtained by taking finite power.

Proposition
Let Γ be ω-categorical.
If Pol(∆) can be obtained from Pol(Γ) by H, S, Pfin, then

∆ is ω-categorical and Pol(∆) ∈ HSPfin(Pol(Γ));
CSP(∆) is polynomial-time reducible to CSP(Γ).

Proof sketch
Subuniverses, congruence relations are pp-definable;
∆ can be simulated (“pp interpreted”) on pp-definable factor of
pp-definable subset of finite power of Γ.
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Topological clones
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Topological clones

Function clones carry natural structure:
algebraic (composition / equations)
topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:
Let C,D be function clones. ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological structure:
Pointwise convergence on functions f : Dn → D.
D. . . discrete; DDn

product topology.
(fi)i∈ω converges to f iff the fi eventually agree with f on every finite set.
Set of all finitary functions

⋃
n DDn

. . . sum space.
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Topological remarks

If D countable:
⋃

n DDn
is homeomorphic to the Baire space NN.

Complete metric separable (=Polish) space.

Polymorphism clones↔ closed function clones.

Why?

For finite function clones: topology discrete.
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Topological Birkhoff

Theorem (“Topological Birkhoff” Bodirsky + MP ’12)

Let ∆, Γ be ω-categorical or finite. TFAE:
Pol(∆) ∈ HSPfin(Pol(Γ));
there exists a continuous onto homomorphism
ξ : Pol(Γ)→ Pol(∆).

Corollary

Let ∆, Γ be ω-categorical or finite and such that Pol(∆) ∼= Pol(Γ).
Then CSP(∆) and CSP(Γ) are polynomial-time equivalent.

Theorem (Bodirsky + MP ’12)
Let ∆, Γ be ω-categorical or finite. TFAE:

∆ has a pp interpretation in Γ;
there exists a continuous homomorphism ξ : Pol(Γ)→ Pol(∆)
whose image is dense in an oligomorphic function clone.

Infinite domain CSPs Michael Pinsker



Topological Birkhoff

Theorem (“Topological Birkhoff” Bodirsky + MP ’12)

Let ∆, Γ be ω-categorical or finite. TFAE:
Pol(∆) ∈ HSPfin(Pol(Γ));
there exists a continuous onto homomorphism
ξ : Pol(Γ)→ Pol(∆).

Corollary

Let ∆, Γ be ω-categorical or finite and such that Pol(∆) ∼= Pol(Γ).
Then CSP(∆) and CSP(Γ) are polynomial-time equivalent.

Theorem (Bodirsky + MP ’12)
Let ∆, Γ be ω-categorical or finite. TFAE:

∆ has a pp interpretation in Γ;
there exists a continuous homomorphism ξ : Pol(Γ)→ Pol(∆)
whose image is dense in an oligomorphic function clone.

Infinite domain CSPs Michael Pinsker



Topological Birkhoff

Theorem (“Topological Birkhoff” Bodirsky + MP ’12)

Let ∆, Γ be ω-categorical or finite. TFAE:
Pol(∆) ∈ HSPfin(Pol(Γ));
there exists a continuous onto homomorphism
ξ : Pol(Γ)→ Pol(∆).

Corollary

Let ∆, Γ be ω-categorical or finite and such that Pol(∆) ∼= Pol(Γ).
Then CSP(∆) and CSP(Γ) are polynomial-time equivalent.

Theorem (Bodirsky + MP ’12)
Let ∆, Γ be ω-categorical or finite. TFAE:

∆ has a pp interpretation in Γ;
there exists a continuous homomorphism ξ : Pol(Γ)→ Pol(∆)
whose image is dense in an oligomorphic function clone.

Infinite domain CSPs Michael Pinsker



Topological Birkhoff

Theorem (“Topological Birkhoff” Bodirsky + MP ’12)

Let ∆, Γ be ω-categorical or finite. TFAE:
Pol(∆) ∈ HSPfin(Pol(Γ));
there exists a continuous onto homomorphism
ξ : Pol(Γ)→ Pol(∆).

Corollary

Let ∆, Γ be ω-categorical or finite and such that Pol(∆) ∼= Pol(Γ).
Then CSP(∆) and CSP(Γ) are polynomial-time equivalent.

Theorem (Bodirsky + MP ’12)
Let ∆, Γ be ω-categorical or finite. TFAE:

∆ has a pp interpretation in Γ;
there exists a continuous homomorphism ξ : Pol(Γ)→ Pol(∆)
whose image is dense in an oligomorphic function clone.

Infinite domain CSPs Michael Pinsker



The worst of the bad

Let Π := ({0,1}; {(1,0,0), (0,1,0), (0,0,1)}).

CSP(Π) NP-complete.

Pol(Π) contains only projections. Denote this clone by 1.

Theorem (Bodirsky + MP ’12)
Let Γ be ω-categorical. TFAE:

Π has a pp interpretation in Γ;

there exists a continuous clone homomorphism ξ : Pol(Γ)→ 1;

there exists a continuous clone homomorphism
ξ : Pol(Γ)→ Pol(Γ′) for all structures Γ′;

all finite Γ′ have a pp interpretation in Γ.
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Easy hardness proofs

Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})

CSP(Γ) is the Betweenness problem.

Let f ∈ Pol(Γ) of arity k .
There is a unique i ∈ {1, . . . , k} such that:

∀x , y ∈ Γk : xi < yi ⇒ f (x) < f (y), or
∀x , y ∈ Γk : xi < yi ⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.

Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

So the Betweenness problem is NP-hard.
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Part III:

Canonical functions, Ramsey structures / Graph-SAT
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C-SAT problems

Let C be a Fraïssé class of structures in finite language.

Let ∆ be its Fraïssé limit.

Let Γ = (D; Rψ1 , . . . ,Rψn ) be a reduct of ∆
(i.e. Rψi has first-order definition in ∆ with quantifier-free formula ψi ).

Complexity of CSP(Γ) only depends on Pol(Γ).
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Clones of reducts

Observation
Let ∆ be ω-categorical, and let Γ be a structure on the same domain.
TFAE:

Γ is a reduct of ∆;
Aut(Γ) ⊇ Aut(∆);
Pol(Γ) ⊇ Aut(∆).

To classify CSPs of reducts of ∆: have to understand
closed function clones ⊇ Aut(∆).

Closed function clones on fixed domain form complete lattice:

Intersection of function clones is function clone
Intersection of closed sets is closed.
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Graph-SAT classification
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Minimal clones

What are the minimal polymorphism clones ⊇ Aut(∆)?

Let Γ be a reduct of ∆ which has a polymorphism that is not in Aut(∆).

What can we say about Pol(Γ)?

Theorem (Thomas ’96)

Let G be the random graph, let M ⊇ Aut(G) be a closed monoid.

Then M is the monoid of self-embeddings of G,
or M contains one of the following:

a constant function
an injective function flipping edges and non-edges
an injective function flipping edges and non-edges
relative to a vertex
an injective function whose image is a clique
an injective function whose image is an independent set.
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Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
for all tuples t1, . . . , tn of the same length
the orbit of f (t1, . . . , tn) only depends on
the orbits of the tuples t1, . . . , tn.

Examples on the random graph

self-embeddings;
flipping edges and non-edges;
injections onto a clique / independent set;
binary edge-max or edge-min.

Flipping edges and non-edges around a vertex c ∈ G
not canonical on G, but canonical on (G, c).
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Ramsey structures

Definition (Ramsey structure ∆)
For all finite substructures P,H of ∆:
Whenever we color the copies of P in ∆ with 2 colors
then there is a monochromatic copy of H in ∆.

P

P

Δ

H

P

P

P

P

P

P

P P

Theorem (Nešetřil + Rödl)
The random ordered graph is Ramsey.
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Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

∆ be ordered Ramsey homogeneous finite relational language
f : ∆n → ∆

c1, . . . , ck ∈ ∆.

Then
{β(f (α1(x1), . . . , αn(xn))) | β, αi ∈ Aut(∆)}

contains a function which
is canonical as a function on (∆, c1, . . . , ck )

is identical with f on {c1, . . . , ck}n.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic ’05).
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Using canonical functions

If a closed function clone ⊇ Aut(∆) has a non-embedding,
then it also has a canonical non-embedding.
If a closed function clone ⊇ Aut(∆)
has a function violating a given relation (e.g., a hard relation),
then it also has a canonical function doing so.

Two canonical functions f ,g have the same behavior iff
f (t1, . . . , tn) and g(t1, . . . , tn) have equal orbit for all tuples t1, . . . , tn.

If ∆ is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions, for all n.

Canonical functions of same behavior belong to the same closed
clones.

Conclusion: We only care about canonical functions in a function
clone (in fact they are dense in the clone).
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“I am indeed, in a certain sense a Circle," replied the Voice,
“and a more perfect Circle than any in Flatland;
but to speak more accurately,
I am many Circles in one."

3rd session: tomorrow 9:00
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