Constraint Satisfaction on Infinite Domains

2nd session

Michael Pinsker

Technische Universität Wien / Université Diderot - Paris 7 Funded by FWF grant I836-N23

Algebraic and Model Theoretical Methods in Constraint Satisfaction Banff International Research Station

2014

Ir	nfi	nit	e d	lon	nai	n (CS	Ps
							~~	

- **Part I:** CSPs / dividing the world / pp definitions, polymorphism clones, ω-categoricity
- Part II: pp interpretations / topological clones
- Part III: Canonical functions, Ramsey structures / Graph-SAT
- Part IV: Model-complete cores / The infinite tractability conjecture

Reminder from 1st session

Infinite domain CSPs

Michael Pinsker

CSPs are precisely the classes of finite τ -structures closed under:

- disjoint unions
- inverse homomorphic images

CSPs are precisely the classes of finite τ -structures closed under:

- disjoint unions
- inverse homomorphic images

Polymorphisms preserve:

- arbitrary intersections
- directed unions

Part II:

pp interpretations / topological clones

Infini	te d	omai	in (CSPs
--------	------	------	------	------

Infinite domain CSPs

Michael Pinsker

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Term functions of \mathfrak{A} form function clone $Clo(\mathfrak{A})$.

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Term functions of \mathfrak{A} form function clone $Clo(\mathfrak{A})$.

Every function clone of this form \rightarrow can see Pol(Γ) as term clone.

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Term functions of \mathfrak{A} form function clone $Clo(\mathfrak{A})$.

Every function clone of this form \rightarrow can see Pol(Γ) as term clone.

Can see $Pol(\Gamma)$ as a polymorphism algebra by giving it a signature.

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Term functions of \mathfrak{A} form function clone $Clo(\mathfrak{A})$.

Every function clone of this form \rightarrow can see Pol(Γ) as term clone.

Can see $Pol(\Gamma)$ as a polymorphism algebra by giving it a signature.

Arbitrary, but many properties of an algebra depend only on its clone: in particular, subalgebras, congruence relations.

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Term functions of \mathfrak{A} form function clone $Clo(\mathfrak{A})$.

Every function clone of this form \rightarrow can see Pol(Γ) as term clone.

Can see $Pol(\Gamma)$ as a polymorphism algebra by giving it a signature.

Arbitrary, but many properties of an algebra depend only on its clone: in particular, subalgebras, congruence relations.

Can apply algebraic constructions *independently of signature*:

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Term functions of \mathfrak{A} form function clone $Clo(\mathfrak{A})$.

Every function clone of this form \rightarrow can see Pol(Γ) as term clone.

Can see $Pol(\Gamma)$ as a polymorphism algebra by giving it a signature.

Arbitrary, but many properties of an algebra depend only on its clone: in particular, subalgebras, congruence relations.

Can apply algebraic constructions *independently of signature*:

Homomorphic images / factors

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Term functions of \mathfrak{A} form function clone $Clo(\mathfrak{A})$.

Every function clone of this form \rightarrow can see Pol(Γ) as term clone.

Can see $Pol(\Gamma)$ as a polymorphism algebra by giving it a signature.

Arbitrary, but many properties of an algebra depend only on its clone: in particular, subalgebras, congruence relations.

Can apply algebraic constructions *independently of signature*:

Homomorphic images / factors

Subalgebras

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Term functions of \mathfrak{A} form function clone $Clo(\mathfrak{A})$.

Every function clone of this form \rightarrow can see Pol(Γ) as term clone.

Can see $Pol(\Gamma)$ as a polymorphism algebra by giving it a signature.

Arbitrary, but many properties of an algebra depend only on its clone: in particular, subalgebras, congruence relations.

Can apply algebraic constructions *independently of signature*:

- Homomorphic images / factors
- Subalgebras
- finite Powers.

Infinite domain CSPs

Michael Pinsker

For a function clone $\ensuremath{\textbf{C}}$:

For a function clone **C**:

- **H(C)**...function clones obtained by factoring by congruence.
- S(C) ... function clones obtained by restriction to subalgebra.
- P^{fin}(**C**) ... function clones obtained by taking finite power.

For a function clone **C**:

- **H(C)**...function clones obtained by factoring by congruence.
- S(C) ... function clones obtained by restriction to subalgebra.
- P^{fin}(**C**) ... function clones obtained by taking finite power.

Proposition

Let Γ be ω -categorical. If Pol(Δ) can be obtained from Pol(Γ) by H, S, P^{fin}, then

For a function clone **C**:

- **H(C)**...function clones obtained by factoring by congruence.
- \blacksquare S(C) ... function clones obtained by restriction to subalgebra.
- P^{fin}(**C**) ... function clones obtained by taking finite power.

Proposition

Let Γ be ω -categorical. If Pol(Δ) can be obtained from Pol(Γ) by H, S, P^{fin}, then

• Δ is ω -categorical and Pol(Δ) \in HSP^{fin}(Pol(Γ));

For a function clone **C**:

- **H(C)**...function clones obtained by factoring by congruence.
- \blacksquare S(C) ... function clones obtained by restriction to subalgebra.
- P^{fin}(**C**) ... function clones obtained by taking finite power.

Proposition

Let Γ be ω -categorical.

If $\text{Pol}(\Delta)$ can be obtained from $\text{Pol}(\Gamma)$ by H, S, $\text{P}^{\text{fin}},$ then

- Δ is ω -categorical and Pol(Δ) \in HSP^{fin}(Pol(Γ));
- **CSP**(Δ) is polynomial-time reducible to CSP(Γ).

For a function clone **C**:

- **H(C)**...function clones obtained by factoring by congruence.
- \blacksquare S(C) ... function clones obtained by restriction to subalgebra.
- P^{fin}(**C**) ... function clones obtained by taking finite power.

Proposition

Let Γ be ω -categorical.

If $\text{Pol}(\Delta)$ can be obtained from $\text{Pol}(\Gamma)$ by H, S, $\text{P}^{\text{fin}},$ then

- Δ is ω -categorical and Pol(Δ) \in HSP^{fin}(Pol(Γ));
- **CSP**(Δ) is polynomial-time reducible to CSP(Γ).

Proof sketch

For a function clone **C**:

- **H(C)**...function clones obtained by factoring by congruence.
- \blacksquare S(C) ... function clones obtained by restriction to subalgebra.
- \blacksquare $\mathsf{P}^{\mathsf{fin}}(\mathbf{C})\ldots$ function clones obtained by taking finite power.

Proposition

Let Γ be ω -categorical.

If $\text{Pol}(\Delta)$ can be obtained from $\text{Pol}(\Gamma)$ by H, S, $\text{P}^{\text{fin}},$ then

- Δ is ω -categorical and Pol(Δ) \in HSP^{fin}(Pol(Γ));
- **CSP**(Δ) is polynomial-time reducible to CSP(Γ).

Proof sketch

Subuniverses, congruence relations are pp-definable;

For a function clone **C**:

- **H(C)**...function clones obtained by factoring by congruence.
- \blacksquare S(C) ... function clones obtained by restriction to subalgebra.
- P^{fin}(**C**) ... function clones obtained by taking finite power.

Proposition

Let Γ be ω -categorical.

If $\text{Pol}(\Delta)$ can be obtained from $\text{Pol}(\Gamma)$ by H, S, $\text{P}^{\text{fin}},$ then

- Δ is ω -categorical and Pol(Δ) \in HSP^{fin}(Pol(Γ));
- **CSP**(Δ) is polynomial-time reducible to CSP(Γ).

Proof sketch

- Subuniverses, congruence relations are pp-definable;
- Δ can be simulated ("pp interpreted") on pp-definable factor of pp-definable subset of finite power of Γ.

Infinite domain CSPs

Michael Pinsker

Function clones carry natural structure:

Function clones carry natural structure:

algebraic (composition / equations)

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let **C**, **D** be function clones. ξ : **C** \rightarrow **D** is a (clone) homomorphism iff

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let **C**, **D** be function clones. ξ : **C** \rightarrow **D** is a (clone) homomorphism iff

it preserves arities;

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let \mathbf{C}, \mathbf{D} be function clones. $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

- it preserves arities;
- sends every projection in C to the corresponding projection in D;

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let C, D be function clones. $\xi : C \to D$ is a (clone) homomorphism iff

it preserves arities;

sends every projection in **C** to the corresponding projection in **D**;

• $\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$ for all $f,g_1,\ldots,g_n \in \mathbf{C}$.
Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let \mathbf{C}, \mathbf{D} be function clones. $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

it preserves arities;

sends every projection in **C** to the corresponding projection in **D**;

• $\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$ for all $f,g_1,\ldots,g_n \in \mathbf{C}$.

Topological structure:

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let \mathbf{C}, \mathbf{D} be function clones. $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

it preserves arities;

sends every projection in **C** to the corresponding projection in **D**;

 $= \xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n)) \text{ for all } f,g_1,\ldots,g_n \in \mathbf{C}.$

Topological structure:

Pointwise convergence on functions $f: D^n \to D$.

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let \mathbf{C}, \mathbf{D} be function clones. $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

it preserves arities;

sends every projection in **C** to the corresponding projection in **D**;

• $\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$ for all $f,g_1,\ldots,g_n \in \mathbf{C}$.

Topological structure:

Pointwise convergence on functions $f: D^n \to D$. D...discrete; D^{D^n} product topology.

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let \mathbf{C}, \mathbf{D} be function clones. $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

it preserves arities;

sends every projection in **C** to the corresponding projection in **D**;

• $\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$ for all $f,g_1,\ldots,g_n \in \mathbf{C}$.

Topological structure:

Pointwise convergence on functions $f: D^n \to D$. D... discrete; D^{D^n} product topology.

 $(f_i)_{i \in \omega}$ converges to f iff the f_i eventually agree with f on every finite set.

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let \mathbf{C}, \mathbf{D} be function clones. $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

it preserves arities;

sends every projection in **C** to the corresponding projection in **D**;

• $\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$ for all $f,g_1,\ldots,g_n \in \mathbf{C}$.

Topological structure:

Pointwise convergence on functions $f: D^n \to D$. D... discrete; D^{D^n} product topology. $(f_i)_{i \in \omega}$ converges to f iff the f_i eventually agree with f on every finite set. Set of all finitary functions $\bigcup_n D^{D^n}...$ sum space.

Topological remarks

Infinite domain CSPs

Michael Pinsker

Topological remarks

If *D* countable: $\bigcup_n D^{D^n}$ is homeomorphic to the Baire space $\mathbb{N}^{\mathbb{N}}$.

Complete metric separable (=Polish) space.

Complete metric separable (=Polish) space.

Polymorphism clones \leftrightarrow closed function clones.

Complete metric separable (=Polish) space.

Polymorphism clones \leftrightarrow closed function clones.

Why?

Complete metric separable (=Polish) space.

Polymorphism clones \leftrightarrow closed function clones.

Why?

For finite function clones: topology discrete.

Infinite domain CSPs

Michael Pinsker

Theorem ("Topological Birkhoff" Bodirsky + MP '12)

Let Δ , Γ be ω -categorical or finite. TFAE:

 $\blacksquare \ {\sf Pol}(\Delta) \in {\sf HSP}^{\sf fin}({\sf Pol}(\Gamma));$

there exists a continuous onto homomorphism

 $\xi \colon \mathsf{Pol}(\Gamma) \to \mathsf{Pol}(\Delta).$

Theorem ("Topological Birkhoff" Bodirsky + MP '12)

Let Δ , Γ be ω -categorical or finite. TFAE:

 $\blacksquare \ {\sf Pol}(\Delta) \in {\sf HSP}^{\sf fin}({\sf Pol}(\Gamma));$

• there exists a continuous onto homomorphism $\xi: \operatorname{Pol}(\Gamma) \to \operatorname{Pol}(\Delta).$

Corollary

Let Δ , Γ be ω -categorical or finite and such that $Pol(\Delta) \cong Pol(\Gamma)$. Then $CSP(\Delta)$ and $CSP(\Gamma)$ are polynomial-time equivalent.

Theorem ("Topological Birkhoff" Bodirsky + MP '12)

Let Δ , Γ be ω -categorical or finite. TFAE:

 $\blacksquare \ {\sf Pol}(\Delta) \in {\sf HSP}^{\sf fin}({\sf Pol}(\Gamma));$

• there exists a continuous onto homomorphism $\xi: \operatorname{Pol}(\Gamma) \to \operatorname{Pol}(\Delta).$

Corollary

Let Δ , Γ be ω -categorical or finite and such that $Pol(\Delta) \cong Pol(\Gamma)$. Then $CSP(\Delta)$ and $CSP(\Gamma)$ are polynomial-time equivalent.

Theorem (Bodirsky + MP '12)

Let Δ , Γ be ω -categorical or finite. TFAE:

- Δ has a pp interpretation in Γ ;
- there exists a continuous homomorphism $\xi \colon \mathsf{Pol}(\Gamma) \to \mathsf{Pol}(\Delta)$ whose image is dense in an oligomorphic function clone.

Infinite domain CSPs

Michael Pinsker

Let $\Pi:=(\{0,1\};\{(1,0,0),(0,1,0),(0,0,1)\}).$

Let $\Pi := (\{0, 1\}; \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}).$ CSP(Π) NP-complete.

Let $\Pi := (\{0,1\}; \{(1,0,0), (0,1,0), (0,0,1)\}).$

CSP(Π) NP-complete.

 $Pol(\Pi)$ contains only projections.

Let $\Pi := (\{0,1\}; \{(1,0,0), (0,1,0), (0,0,1)\}).$

CSP(Π) NP-complete.

 $Pol(\Pi)$ contains only projections. Denote this clone by **1**.

Let $\Pi := (\{0,1\}; \{(1,0,0), (0,1,0), (0,0,1)\}).$

 $CSP(\Pi)$ NP-complete.

 $Pol(\Pi)$ contains only projections. Denote this clone by **1**.

Theorem (Bodirsky + MP '12) Let Γ be ω-categorical. TFAE:

Let $\Pi := (\{0, 1\}; \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}).$

CSP(Π) NP-complete.

 $Pol(\Pi)$ contains only projections. Denote this clone by **1**.

Theorem (Bodirsky + MP '12)

Let Γ be ω -categorical. TFAE:

Π has a pp interpretation in Γ;

Let $\Pi := (\{0, 1\}; \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}).$

 $CSP(\Pi)$ NP-complete.

 $Pol(\Pi)$ contains only projections. Denote this clone by **1**.

Theorem (Bodirsky + MP '12)

Let Γ be ω -categorical. TFAE:

- **\square** In has a pp interpretation in Γ ;
- there exists a continuous clone homomorphism ξ : Pol(Γ) \rightarrow 1;

Let $\Pi := (\{0, 1\}; \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}).$

 $CSP(\Pi)$ NP-complete.

 $Pol(\Pi)$ contains only projections. Denote this clone by **1**.

Theorem (Bodirsky + MP '12)

Let Γ be ω -categorical. TFAE:

- Π has a pp interpretation in Γ;
- there exists a continuous clone homomorphism ξ : Pol(Γ) \rightarrow 1;
- there exists a continuous clone homomorphism $\xi: \operatorname{Pol}(\Gamma) \to \operatorname{Pol}(\Gamma')$ for all structures Γ' ;

Let $\Pi := (\{0, 1\}; \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}).$

CSP(Π) NP-complete.

 $Pol(\Pi)$ contains only projections. Denote this clone by **1**.

Theorem (Bodirsky + MP '12)

Let Γ be ω -categorical. TFAE:

- Π has a pp interpretation in Γ;
- there exists a continuous clone homomorphism ξ : Pol(Γ) \rightarrow 1;
- there exists a continuous clone homomorphism ξ: Pol(Γ) → Pol(Γ') for all structures Γ';
- **all finite** Γ' have a pp interpretation in Γ .

 $\mathsf{F} := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \ \lor \ z < y < x\})$

 $\mathsf{F} := (\mathbb{Q}; \{ (x, y, z) \in \mathbb{Q}^3 \mid x < y < z \ \lor \ z < y < x \})$

 $CSP(\Gamma)$ is the Betweenness problem.

 $\mathsf{F} := (\mathbb{Q}; \{ (x, y, z) \in \mathbb{Q}^3 \mid x < y < z \ \lor \ z < y < x \})$

 $CSP(\Gamma)$ is the Betweenness problem.

Let $f \in Pol(\Gamma)$ of arity k.

 $\mathsf{F} := \left(\mathbb{Q}; \left\{ \left(x, y, z \right) \in \mathbb{Q}^3 \mid x < y < z \ \lor \ z < y < x \right\} \right)$

 $CSP(\Gamma)$ is the Betweenness problem.

Let $f \in Pol(\Gamma)$ of arity k.

There is a unique $i \in \{1, \ldots, k\}$ such that:

 $\mathsf{F} := \left(\mathbb{Q}; \left\{ \left(x, y, z \right) \in \mathbb{Q}^3 \mid x < y < z \ \lor \ z < y < x \right\} \right)$

 $CSP(\Gamma)$ is the Betweenness problem.

Let $f \in Pol(\Gamma)$ of arity k.

There is a unique $i \in \{1, \ldots, k\}$ such that:

•
$$\forall x, y \in \Gamma^k : x_i < y_i \Rightarrow f(x) < f(y)$$
, or

 $\mathsf{F} := \left(\mathbb{Q}; \left\{ (x, y, z) \in \mathbb{Q}^3 \mid x < y < z \ \lor \ z < y < x \right\} \right)$

 $CSP(\Gamma)$ is the Betweenness problem.

Let $f \in Pol(\Gamma)$ of arity k. There is a unique $i \in \{1, ..., k\}$ such that:

■
$$\forall x, y \in \Gamma^k : x_i < y_i \Rightarrow f(x) < f(y)$$
, or
■ $\forall x, y \in \Gamma^k : x_i < y_i \Rightarrow f(x) > f(y)$.

$$\mathsf{\Gamma} := (\mathbb{Q}; \{ (x, y, z) \in \mathbb{Q}^3 \mid x < y < z \ \lor \ z < y < x \})$$

 $CSP(\Gamma)$ is the Betweenness problem.

Let $f \in Pol(\Gamma)$ of arity k.

There is a unique $i \in \{1, \ldots, k\}$ such that:

■
$$\forall x, y \in \Gamma^k : x_i < y_i \Rightarrow f(x) < f(y)$$
, or
■ $\forall x, y \in \Gamma^k : x_i < y_i \Rightarrow f(x) > f(y)$.

Set $\xi(f)$ to be the *i*-th *k*-ary projection in **1**.

$${\sf \Gamma} := ({\Bbb Q}; \{(x,y,z) \in {\Bbb Q}^3 \mid x < y < z \ \lor \ z < y < x\})$$

 $CSP(\Gamma)$ is the Betweenness problem.

Let $f \in Pol(\Gamma)$ of arity k.

There is a unique $i \in \{1, \ldots, k\}$ such that:

■
$$\forall x, y \in \Gamma^k : x_i < y_i \Rightarrow f(x) < f(y)$$
, or
■ $\forall x, y \in \Gamma^k : x_i < y_i \Rightarrow f(x) > f(y)$.

Set $\xi(f)$ to be the *i*-th *k*-ary projection in **1**.

Straightforward: ξ : Pol(Γ) \rightarrow **1** is continuous homomorphism.

 $\mathsf{F} := \left(\mathbb{Q}; \{ (x, y, z) \in \mathbb{Q}^3 \mid x < y < z \ \lor \ z < y < x \} \right)$

 $CSP(\Gamma)$ is the Betweenness problem.

Let $f \in Pol(\Gamma)$ of arity k.

There is a unique $i \in \{1, \ldots, k\}$ such that:

■
$$\forall x, y \in \Gamma^k : x_i < y_i \Rightarrow f(x) < f(y)$$
, or
■ $\forall x, y \in \Gamma^k : x_i < y_i \Rightarrow f(x) > f(y)$.

Set $\xi(f)$ to be the *i*-th *k*-ary projection in **1**.

Straightforward: ξ : Pol(Γ) \rightarrow **1** is continuous homomorphism.

So the Betweenness problem is NP-hard.

Part III:

Canonical functions, Ramsey structures / Graph-SAT

	Inf	inii	te d	loma	in	CS	Ps
--	-----	------	------	------	----	----	----

C-SAT problems

Infinite domain CSPs

Michael Pinsker
Let Δ be its Fraïssé limit.

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \dots, R_{\psi_n})$ be a reduct of Δ (i.e. R_{ψ_i} has first-order definition in Δ with quantifier-free formula ψ_i).

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \dots, R_{\psi_n})$ be a reduct of Δ (i.e. R_{ψ_i} has first-order definition in Δ with quantifier-free formula ψ_i).

Complexity of $CSP(\Gamma)$ only depends on $Pol(\Gamma)$.

Observation

Let Δ be ω -categorical, and let Γ be a structure on the same domain. TFAE:

- Γ is a reduct of Δ;
- $\operatorname{Aut}(\Gamma) \supseteq \operatorname{Aut}(\Delta);$
- $Pol(\Gamma) \supseteq Aut(\Delta)$.

Observation

Let Δ be ω -categorical, and let Γ be a structure on the same domain. TFAE:

- Γ is a reduct of Δ ;
- $\operatorname{Aut}(\Gamma) \supseteq \operatorname{Aut}(\Delta);$
- $Pol(\Gamma) \supseteq Aut(\Delta)$.

To classify CSPs of reducts of Δ : have to understand closed function clones $\supseteq Aut(\Delta)$.

Observation

Let Δ be ω -categorical, and let Γ be a structure on the same domain. TFAE:

- Γ is a reduct of Δ;
- $\operatorname{Aut}(\Gamma) \supseteq \operatorname{Aut}(\Delta);$
- $Pol(\Gamma) \supseteq Aut(\Delta)$.

To classify CSPs of reducts of Δ : have to understand closed function clones $\supseteq Aut(\Delta)$.

Closed function clones on fixed domain form complete lattice:

Observation

Let Δ be ω -categorical, and let Γ be a structure on the same domain. TFAE:

Γ is a reduct of Δ;

```
• \operatorname{Aut}(\Gamma) \supseteq \operatorname{Aut}(\Delta);
```

```
■ Pol(\Gamma) \supseteq Aut(\Delta).
```

To classify CSPs of reducts of Δ : have to understand closed function clones $\supseteq \operatorname{Aut}(\Delta)$.

Closed function clones on fixed domain form complete lattice:

- Intersection of function clones is function clone
- Intersection of closed sets is closed.

Graph-SAT classification

Michael Pinsker

Infinite domain CSPs

Michael Pinsker

What are the minimal polymorphism clones \supseteq Aut(Δ)?

What are the minimal polymorphism clones $\supseteq Aut(\Delta)$?

Let Γ be a reduct of Δ which has a polymorphism that is not in Aut(Δ).

What are the minimal polymorphism clones $\supseteq Aut(\Delta)$?

Let Γ be a reduct of Δ which has a polymorphism that is not in Aut(Δ). What can we say about Pol(Γ)?

What are the minimal polymorphism clones $\supseteq Aut(\Delta)$?

Let Γ be a reduct of Δ which has a polymorphism that is not in $\text{Aut}(\Delta).$

What can we say about $Pol(\Gamma)$?

Theorem (Thomas '96)

Let *G* be the random graph, let $\mathbf{M} \supseteq \operatorname{Aut}(G)$ be a closed monoid.

What are the minimal polymorphism clones $\supseteq Aut(\Delta)$?

Let Γ be a reduct of Δ which has a polymorphism that is not in Aut(Δ). What can we say about Pol(Γ)?

Theorem (Thomas '96)

Let *G* be the random graph, let $\mathbf{M} \supseteq \operatorname{Aut}(G)$ be a closed monoid.

What are the minimal polymorphism clones $\supseteq Aut(\Delta)$?

Let Γ be a reduct of Δ which has a polymorphism that is not in Aut(Δ). What can we say about Pol(Γ)?

Theorem (Thomas '96)

Let G be the random graph, let $\mathbf{M} \supseteq \operatorname{Aut}(G)$ be a closed monoid.

Then **M** is the monoid of self-embeddings of G, or **M** contains one of the following:

a constant function

What are the minimal polymorphism clones $\supseteq Aut(\Delta)$?

Let Γ be a reduct of Δ which has a polymorphism that is not in Aut(Δ). What can we say about Pol(Γ)?

Theorem (Thomas '96)

Let *G* be the random graph, let $\mathbf{M} \supseteq \operatorname{Aut}(G)$ be a closed monoid.

- a constant function
- an injective function flipping edges and non-edges

What are the minimal polymorphism clones $\supseteq Aut(\Delta)$?

Let Γ be a reduct of Δ which has a polymorphism that is not in Aut(Δ). What can we say about Pol(Γ)?

Theorem (Thomas '96)

Let *G* be the random graph, let $\mathbf{M} \supseteq \operatorname{Aut}(G)$ be a closed monoid.

- a constant function
- an injective function flipping edges and non-edges
- an injective function flipping edges and non-edges relative to a vertex

What are the minimal polymorphism clones $\supseteq Aut(\Delta)$?

Let Γ be a reduct of Δ which has a polymorphism that is not in Aut(Δ). What can we say about Pol(Γ)?

Theorem (Thomas '96)

Let *G* be the random graph, let $\mathbf{M} \supseteq \operatorname{Aut}(G)$ be a closed monoid.

- a constant function
- an injective function flipping edges and non-edges
- an injective function flipping edges and non-edges relative to a vertex
- an injective function whose image is a clique

What are the minimal polymorphism clones $\supseteq Aut(\Delta)$?

Let Γ be a reduct of Δ which has a polymorphism that is not in Aut(Δ). What can we say about Pol(Γ)?

Theorem (Thomas '96)

Let *G* be the random graph, let $\mathbf{M} \supseteq \operatorname{Aut}(G)$ be a closed monoid.

- a constant function
- an injective function flipping edges and non-edges
- an injective function flipping edges and non-edges relative to a vertex
- an injective function whose image is a clique
- an injective function whose image is an independent set.

Infinite domain CSPs

Michael Pinsker

Definition

Let Δ be a structure.

 $f: \Delta^n \to \Delta$ is canonical iff for all tuples t_1, \ldots, t_n of the same length the orbit of $f(t_1, \ldots, t_n)$ only depends on the orbits of the tuples t_1, \ldots, t_n .

Definition

Let Δ be a structure.

 $f: \Delta^n \to \Delta$ is canonical iff for all tuples t_1, \ldots, t_n of the same length the orbit of $f(t_1, \ldots, t_n)$ only depends on the orbits of the tuples t_1, \ldots, t_n .

Definition

Let Δ be a structure.

 $f: \Delta^n \to \Delta$ is canonical iff for all tuples t_1, \ldots, t_n of the same length the orbit of $f(t_1, \ldots, t_n)$ only depends on the orbits of the tuples t_1, \ldots, t_n .

Examples on the random graph

self-embeddings;

Definition

Let Δ be a structure.

 $f: \Delta^n \to \Delta$ is canonical iff for all tuples t_1, \ldots, t_n of the same length the orbit of $f(t_1, \ldots, t_n)$ only depends on the orbits of the tuples t_1, \ldots, t_n .

- self-embeddings;
- flipping edges and non-edges;

Definition

Let Δ be a structure.

```
f: \Delta^n \to \Delta is canonical iff
for all tuples t_1, \ldots, t_n of the same length
the orbit of f(t_1, \ldots, t_n) only depends on
the orbits of the tuples t_1, \ldots, t_n.
```

- self-embeddings;
- flipping edges and non-edges;
- injections onto a clique / independent set;

Definition

Let Δ be a structure.

 $f: \Delta^n \to \Delta$ is canonical iff for all tuples t_1, \ldots, t_n of the same length the orbit of $f(t_1, \ldots, t_n)$ only depends on the orbits of the tuples t_1, \ldots, t_n .

- self-embeddings;
- flipping edges and non-edges;
- injections onto a clique / independent set;
- binary edge-max or edge-min.

Definition

Let Δ be a structure.

 $f: \Delta^n \to \Delta$ is canonical iff for all tuples t_1, \ldots, t_n of the same length the orbit of $f(t_1, \ldots, t_n)$ only depends on the orbits of the tuples t_1, \ldots, t_n .

Examples on the random graph

- self-embeddings;
- flipping edges and non-edges;
- injections onto a clique / independent set;
- binary edge-max or edge-min.

Flipping edges and non-edges around a vertex $c \in G$ not canonical on G, but canonical on (G, c).

Infinite domain CSPs

Infinite domain CSPs

Michael Pinsker

Definition (Ramsey structure Δ)

Definition (Ramsey structure Δ)

For all finite substructures P, H of Δ : Whenever we color the copies of P in Δ with 2 colors then there is a monochromatic copy of H in Δ .

Definition (Ramsey structure Δ)

For all finite substructures P, H of Δ : Whenever we color the copies of P in Δ with 2 colors then there is a monochromatic copy of H in Δ .

Definition (Ramsey structure Δ)

For all finite substructures P, H of Δ : Whenever we color the copies of P in Δ with 2 colors then there is a monochromatic copy of H in Δ .

Theorem (Nešetřil + Rödl)

The random ordered graph is Ramsey.

Infinite domain CSPs

Michael Pinsker

Canonizing functions on Ramsey structures

Infinite domain CSPs

Michael Pinsker

Canonizing functions on Ramsey structures

```
Proposition (Bodirsky + MP + Tsankov '11)
```

Let

- △ be ordered Ramsey homogeneous finite relational language
- $\blacksquare f: \Delta^n \to \Delta$
- $\blacksquare c_1,\ldots,c_k \in \Delta.$

Canonizing functions on Ramsey structures

```
Proposition (Bodirsky + MP + Tsankov '11)
```

Let

 \blacksquare Δ be ordered Ramsey homogeneous finite relational language

- $\blacksquare f: \Delta^n \to \Delta$
- $\blacksquare c_1,\ldots,c_k \in \Delta.$

Then

$$\overline{\{\beta(f(\alpha_1(x_1),\ldots,\alpha_n(x_n))) \mid \beta,\alpha_i \in \mathsf{Aut}(\Delta)\}}$$
```
Proposition (Bodirsky + MP + Tsankov '11)
```

Let

 \blacksquare Δ be ordered Ramsey homogeneous finite relational language

- $\blacksquare f: \Delta^n \to \Delta$
- $\blacksquare c_1,\ldots,c_k \in \Delta.$

Then

$$\overline{\{\beta(f(\alpha_1(x_1),\ldots,\alpha_n(x_n))) \mid \beta,\alpha_i \in \mathsf{Aut}(\Delta)\}}$$

contains a function which

```
Proposition (Bodirsky + MP + Tsankov '11)
```

Let

 \blacksquare \triangle be ordered Ramsey homogeneous finite relational language

- $\blacksquare f: \Delta^n \to \Delta$
- $\blacksquare c_1,\ldots,c_k \in \Delta.$

Then

$$\overline{\{\beta(f(\alpha_1(x_1),\ldots,\alpha_n(x_n))) \mid \beta,\alpha_i \in \mathsf{Aut}(\Delta)\}}$$

contains a function which

• is canonical as a function on $(\Delta, c_1, \dots, c_k)$

Infini	te c	loma	in C	SPs
				U . U

```
Proposition (Bodirsky + MP + Tsankov '11)
```

Let

 \blacksquare \triangle be ordered Ramsey homogeneous finite relational language

- $\blacksquare f: \Delta^n \to \Delta$
- $\blacksquare c_1,\ldots,c_k \in \Delta.$

Then

$$\overline{\{\beta(f(\alpha_1(x_1),\ldots,\alpha_n(x_n))) \mid \beta,\alpha_i \in \mathsf{Aut}(\Delta)\}}$$

contains a function which

- is canonical as a function on $(\Delta, c_1, \ldots, c_k)$
- is identical with f on $\{c_1, \ldots, c_k\}^n$.

```
Proposition (Bodirsky + MP + Tsankov '11)
```

Let

 \blacksquare \triangle be ordered Ramsey homogeneous finite relational language

- $\blacksquare f: \Delta^n \to \Delta$
- $\blacksquare c_1,\ldots,c_k \in \Delta.$

Then

$$\overline{\{\beta(f(\alpha_1(x_1),\ldots,\alpha_n(x_n))) \mid \beta,\alpha_i \in \mathsf{Aut}(\Delta)\}}$$

contains a function which

- is canonical as a function on $(\Delta, c_1, \ldots, c_k)$
- is identical with *f* on $\{c_1, \ldots, c_k\}^n$.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic '05).

Infin	ite d	loma	in	CS	Ps

Infinite domain CSPs

Michael Pinsker

If a closed function clone ⊇ Aut(∆) has a non-embedding, then it also has a canonical non-embedding.

- If a closed function clone ⊇ Aut(∆) has a non-embedding, then it also has a canonical non-embedding.
- If a closed function clone ⊇ Aut(∆) has a function violating a given relation (e.g., a hard relation), then it also has a canonical function doing so.

- If a closed function clone ⊇ Aut(∆) has a non-embedding, then it also has a canonical non-embedding.
- If a closed function clone ⊇ Aut(∆) has a function violating a given relation (e.g., a hard relation), then it also has a canonical function doing so.

Two canonical functions f, g have the same behavior iff $f(t_1, \ldots, t_n)$ and $g(t_1, \ldots, t_n)$ have equal orbit for all tuples t_1, \ldots, t_n .

- If a closed function clone ⊇ Aut(∆) has a non-embedding, then it also has a canonical non-embedding.
- If a closed function clone ⊇ Aut(∆) has a function violating a given relation (e.g., a hard relation), then it also has a canonical function doing so.

Two canonical functions f, g have the same behavior iff $f(t_1, \ldots, t_n)$ and $g(t_1, \ldots, t_n)$ have equal orbit for all tuples t_1, \ldots, t_n .

If Δ is homogeneous in a finite language, there are only finitely many behaviors of *n*-ary canonical functions, for all *n*.

- If a closed function clone ⊇ Aut(∆) has a non-embedding, then it also has a canonical non-embedding.
- If a closed function clone ⊇ Aut(∆) has a function violating a given relation (e.g., a hard relation), then it also has a canonical function doing so.

Two canonical functions f, g have the same behavior iff $f(t_1, \ldots, t_n)$ and $g(t_1, \ldots, t_n)$ have equal orbit for all tuples t_1, \ldots, t_n .

If Δ is homogeneous in a finite language, there are only finitely many behaviors of *n*-ary canonical functions, for all *n*.

Canonical functions of same behavior belong to the same closed clones.

- If a closed function clone ⊇ Aut(∆) has a non-embedding, then it also has a canonical non-embedding.
- If a closed function clone ⊇ Aut(∆) has a function violating a given relation (e.g., a hard relation), then it also has a canonical function doing so.

Two canonical functions f, g have the same behavior iff $f(t_1, \ldots, t_n)$ and $g(t_1, \ldots, t_n)$ have equal orbit for all tuples t_1, \ldots, t_n .

If Δ is homogeneous in a finite language, there are only finitely many behaviors of *n*-ary canonical functions, for all *n*.

Canonical functions of same behavior belong to the same closed clones.

Conclusion: We only care about canonical functions in a function clone (in fact they are dense in the clone).

Infinite domain CSPs

Michael Pinsker

"I am indeed, in a certain sense a Circle," replied the Voice, "and a more perfect Circle than any in Flatland; but to speak more accurately, I am many Circles in one."

3rd session: tomorrow 9:00

Infinite domain CSPs

Michael Pinsker