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Reminder from 1st session

CSPs are precisely the classes of finite 7-structures closed under:
m disjoint unions
m inverse homomorphic images

Polymorphisms preserve:
m arbitrary intersections
m directed unions
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Algebraic constructions

Let 2 = (A; (f;)ic/) be an algebra, and  its signature.

Term functions of 2 form function clone Clo(2!).

Every function clone of this form — can see Pol(I') as term clone.
Can see Pol(I") as a polymorphism algebra by giving it a signature.

Arbitrary, but many properties of an algebra depend only on its clone:
in particular, subalgebras, congruence relations.

Can apply algebraic constructions independently of signature:
m Homomorphic images / factors
m Subalgebras
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CSP and HSPfin

For a function clone C:

m H(C). .. function clones obtained by factoring by congruence.
] S(_C) ... function clones obtained by restriction to subalgebra.
] P“”(C) ... function clones obtained by taking finite power.

Proposition

Let I' be w-categorical. '
If Pol(A) can be obtained from Pol(I') by H, S, P, then

m A is w-categorical and Pol(A) € HSP™(Pol(I));
m CSP(A) is polynomial-time reducible to CSP(I").

Proof sketch
m Subuniverses, congruence relations are pp-definable;

m A can be simulated (“pp interpreted”) on pp-definable factor of
pp-definable subset of finite power of I'.
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Topological clones

Function clones carry natural structure:
m algebraic (composition / equations)
m topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let C, D be function clones. £: C — D is a (clone) homomorphism iff
m it preserves arities;
m sends every projection in C to the corresponding projection in D;
m(f(91,---,9n) =&(H(&(91),---,&(gn)) forall f,gq,...,9n € C.

Topological structure:

Pointwise convergence on functions f: D" — D.

D. . .discrete; DP" product topology.

(f))iew converges to f iff the f; eventually agree with f on every finite set.
Set of all finitary functions |J, DP". .. sum space.
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Topological remarks

If D countable: |, DP" is homeomorphic to the Baire space NV,
Complete metric separable (=Polish) space.

Polymorphism clones «> closed function clones.
Why?

For finite function clones: topology discrete.
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Topological Birkhoff

Theorem (“Topological Birkhoff” Bodirsky + MP ’12)
Let A, T be w-categorical or finite. TFAE:
m Pol(A) € HSPi"(Pol(I));
m there exists a continuous onto homomorphism
&: Pol(l") — Pol(A).
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Topological Birkhoff

Theorem (“Topological Birkhoff” Bodirsky + MP ’12)
Let A, T be w-categorical or finite. TFAE:
m Pol(A) € HSPi"(Pol(I));

m there exists a continuous onto homomorphism
&: Pol(l") — Pol(A).

Corollary

Let A, T be w-categorical or finite and such that Pol(A) = Pol(T").
Then CSP(A) and CSP(I') are polynomial-time equivalent.

Theorem (Bodirsky + MP ’12)
Let A, T be w-categorical or finite. TFAE:
m A has a pp interpretation in T;

m there exists a continuous homomorphism ¢&: Pol(I') — Pol(A)
whose image is dense in an oligomorphic function clone.
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The worst of the bad

Let M :=({0,1};{(1,0,0),(0,1,0),(0,0,1)}).
CSP(M) NP-complete.

Pol(M) contains only projections. Denote this clone by 1.

Theorem (Bodirsky + MP ’12)
Let I' be w-categorical. TFAE:

m [1 has a pp interpretation in T;
m there exists a continuous clone homomorphism ¢: Pol(l') — 1;

m there exists a continuous clone homomorphism
&: Pol(I") — Pol(I) for all structures I'’;

m all finite [’ have a pp interpretation in I'.
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Easy hardness proofs

M=(Q{(xy.2)eQ®|x<y<zVvz<y<x})
CSP(I') is the Betweenness problem.

Let f € Pol(T) of arity k.
There is aunique i € {1,..., k} such that:

mVx,yclk:x <y = f(x)<f(y),or
mVx,y ek x <y = f(x) > f(y).

Set £(f) to be the i-th k-ary projection in 1.
Straightforward: ¢ : Pol(I') — 1 is continuous homomorphism.

So the Betweenness problem is NP-hard.
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C-SAT problems

Let C be a Fraissé class of structures in finite language.
Let A be its Fraissé limit.

Letl = (D; Ry,, ..., Ry,) be areduct of A
(i.e. Ry, has first-order definition in A with quantifier-free formula ;).

Complexity of CSP(I') only depends on Pol(T).
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Clones of reducts

Observation

Let A be w-categorical, and let I be a structure on the same domain.
TFAE:

m [ is areduct of A;
m Aut(l) 2 Aut(A);
m Pol(l") 2 Aut(A).
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Clones of reducts

Observation

Let A be w-categorical, and let I be a structure on the same domain.
TFAE:

m [ is areduct of A;
m Aut(l) D Aut(A);
m Pol(l") 2 Aut(A).

To classify CSPs of reducts of A: have to understand
closed function clones D Aut(A).

Closed function clones on fixed domain form complete lattice:

m Intersection of function clones is function clone
m Intersection of closed sets is closed.
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Graph-SAT classification

12,13: 11:
9,10:

minority

majority hp balanced
hp E-dom
max
B ‘minority
majority

hp balanced

P1
7.8:
majority
hp E-
onstan

NP-complete
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Minimal clones

What are the minimal polymorphism clones O Aut(A)?

Let I be a reduct of A which has a polymorphism that is not in Aut(A).
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Let G be the random graph, let M O Aut(G) be a closed monoid.

Then M is the monoid of self-embeddings of G,
or M contains one of the following:
m a constant function
m an injective function flipping edges and non-edges

m an injective function flipping edges and non-edges
relative to a vertex
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Minimal clones

What are the minimal polymorphism clones O Aut(A)?

Let I be a reduct of A which has a polymorphism that is not in Aut(A).
What can we say about Pol(I")?

Theorem (Thomas ’96)

Let G be the random graph, let M O Aut(G) be a closed monoid.

Then M is the monoid of self-embeddings of G,
or M contains one of the following:
m a constant function
m an injective function flipping edges and non-edges

m an injective function flipping edges and non-edges
relative to a vertex

m an injective function whose image is a clique
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Minimal clones

What are the minimal polymorphism clones O Aut(A)?
Let I be a reduct of A which has a polymorphism that is not in Aut(A).
What can we say about Pol(I")?

Theorem (Thomas ’96)
Let G be the random graph, let M O Aut(G) be a closed monoid.
Then M is the monoid of self-embeddings of G,
or M contains one of the following:
m a constant function
m an injective function flipping edges and non-edges

m an injective function flipping edges and non-edges
relative to a vertex

m an injective function whose image is a clique
m an injective function whose image is an independent set.
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Canonical functions
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Canonical functions

Definition
Let A be a structure.

f: A" — A is canonical iff

for all tuples tq, ..., t, of the same length
the orbit of f(, ..., ty) only depends on
the orbits of the tuples ¢, ..., .
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Canonical functions

Definition
Let A be a structure.

f: A" — A is canonical iff

for all tuples tq, ..., t, of the same length
the orbit of f(, ..., ty) only depends on
the orbits of the tuples ¢, ..., .

Examples on the random graph

m self-embeddings;
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Canonical functions

Definition
Let A be a structure.

f: A" — A is canonical iff

for all tuples tq, ..., t, of the same length
the orbit of f(, ..., ty) only depends on
the orbits of the tuples ¢, ..., .

Examples on the random graph

m self-embeddings;

m flipping edges and non-edges;

m injections onto a clique / independent set;
m binary edge-max or edge-min.
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Canonical functions

Definition
Let A be a structure.

f: A" — A is canonical iff

for all tuples tq, ..., t, of the same length
the orbit of f(, ..., ty) only depends on
the orbits of the tuples ¢, ..., .

Examples on the random graph

m self-embeddings;

m flipping edges and non-edges;

m injections onto a clique / independent set;
m binary edge-max or edge-min.

Flipping edges and non-edges around a vertex c € G
not canonical on G, but canonical on (G, ¢).
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Ramsey structures
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Ramsey structures

Definition (Ramsey structure A)
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Ramsey structures

Definition (Ramsey structure A)

For all finite substructures P, H of A:
Whenever we color the copies of P in A with 2 colors
then there is a monochromatic copy of H in A.
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For all finite substructures P, H of A:
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Ramsey structures

Definition (Ramsey structure A)

For all finite substructures P, H of A:
Whenever we color the copies of P in A with 2 colors
then there is a monochromatic copy of H in A.

Theorem (NeSetfil + Rodl)
The random ordered graph is Ramsey.
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Canonizing functions on Ramsey structures
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Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov '11)

Let
m A be ordered Ramsey homogeneous finite relational language
mf:A"5 A
HCi,...,Ck € A.
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Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov '11)

Let
m A be ordered Ramsey homogeneous finite relational language
mf:A"5 A
HCi,...,Ck € A.

Then

{B(F(a1(x1), - -, an(xn))) | B, i € Aut(A)}
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Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov '11)
Let

m A be ordered Ramsey homogeneous finite relational language
mf:A"5 A
HCi,...,Ck € A.

Then

{B(f(a1(x1),- .., an(xn))) | B, i € Aut(A)}
contains a function which
m is canonical as a function on (A, ¢y, . .., Ck)
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Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

m A be ordered Ramsey homogeneous finite relational language
mf:A"5 A
HCi,...,Ck € A.

Then

{B(f(ar(x1), ..., an(xn))) | B, i € Aut(A)}
contains a function which
m is canonical as a function on (A, ¢y, ..., Ck)
m is identical with fon {c1, ..., ck}".
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Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

m A be ordered Ramsey homogeneous finite relational language
mf:A"S A
HCi,...,Ck € A.

Then

{B(f(ar(x1), ..., an(xn))) | B, i € Aut(A)}
contains a function which
m is canonical as a function on (A, ¢y, ..., Ck)
m is identical with fon {c1, ..., ck}".

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic '05).
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Using canonical functions
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Using canonical functions

m If a closed function clone D Aut(A) has a non-embedding,
then it also has a canonical non-embedding.
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Using canonical functions

m If a closed function clone D Aut(A) has a non-embedding,
then it also has a canonical non-embedding.

m If a closed function clone D Aut(A)
has a function violating a given relation (e.g., a hard relation),
then it also has a canonical function doing so.
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m If a closed function clone D Aut(A) has a non-embedding,
then it also has a canonical non-embedding.

m If a closed function clone D Aut(A)
has a function violating a given relation (e.g., a hard relation),
then it also has a canonical function doing so.

Two canonical functions f, g have the same behavior iff
f(t,...,th) and g(t,. .., ty) have equal orbit for all tuples t, ..., t,.
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Using canonical functions

m If a closed function clone D Aut(A) has a non-embedding,
then it also has a canonical non-embedding.
m If a closed function clone 2 Aut(A)

has a function violating a given relation (e.g., a hard relation),
then it also has a canonical function doing so.
Two canonical functions f, g have the same behavior iff
f(t,...,th) and g(t,. .., ty) have equal orbit for all tuples t;,.

ot

If A is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions, for all n.
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m If a closed function clone 2 Aut(A)

has a function violating a given relation (e.g., a hard relation),
then it also has a canonical function doing so.
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If A is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions, for all n.

Canonical functions of same behavior belong to the same closed
clones.
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Using canonical functions

m If a closed function clone D Aut(A) has a non-embedding,
then it also has a canonical non-embedding.
m If a closed function clone 2 Aut(A)

has a function violating a given relation (e.g., a hard relation),
then it also has a canonical function doing so.

Two canonical functions f, g have the same behavior iff
f(t,...,th) and g(t,. .., ty) have equal orbit for all tuples t, ..., t,.

If A is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions, for all n.

Canonical functions of same behavior belong to the same closed
clones.

Conclusion: We only care about canonical functions in a function
clone (in fact they are dense in the clone).
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“I am indeed, in a certain sense a Circle," replied the Voice,
“and a more perfect Circle than any in Flatland;

but to speak more accurately,

| am many Circles in one."

3rd session: tomorrow 9:00
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