
Algebraic and model-theoretic methods
in constraint satisfaction

Michael Pinsker

Technische Universität Wien / Université Diderot - Paris 7

Funded by FWF grant I836-N23

CUNY Logic Workshop

14th November 2014

Constraint Satisfaction Michael Pinsker



Outline

Part I: CSPs

Part II: pp definitions / polymorphism clones / ω-categoricity

Part III: pp interpretations / topological clones

Part IV: The tractability conjecture

Part V: Canonical functions / Ramsey theory

Model theory, Universal algebra, Ramsey theory, Topological dynamics
→ Theoretical computer science

Building new dimension out of two smaller

Constraint Satisfaction Michael Pinsker



Outline

Part I: CSPs

Part II: pp definitions / polymorphism clones / ω-categoricity

Part III: pp interpretations / topological clones

Part IV: The tractability conjecture

Part V: Canonical functions / Ramsey theory

Model theory, Universal algebra, Ramsey theory, Topological dynamics
→ Theoretical computer science

Building new dimension out of two smaller

Constraint Satisfaction Michael Pinsker



Outline

Part I: CSPs

Part II: pp definitions / polymorphism clones / ω-categoricity

Part III: pp interpretations / topological clones

Part IV: The tractability conjecture

Part V: Canonical functions / Ramsey theory

Model theory, Universal algebra, Ramsey theory, Topological dynamics
→ Theoretical computer science

Building new dimension out of two smaller

Constraint Satisfaction Michael Pinsker



Outline

Part I: CSPs

Part II: pp definitions / polymorphism clones / ω-categoricity

Part III: pp interpretations / topological clones

Part IV: The tractability conjecture

Part V: Canonical functions / Ramsey theory

Model theory, Universal algebra, Ramsey theory, Topological dynamics
→ Theoretical computer science

Building new dimension out of two smaller

Constraint Satisfaction Michael Pinsker



Outline

Part I: CSPs

Part II: pp definitions / polymorphism clones / ω-categoricity

Part III: pp interpretations / topological clones

Part IV: The tractability conjecture

Part V: Canonical functions / Ramsey theory

Model theory, Universal algebra, Ramsey theory, Topological dynamics
→ Theoretical computer science

Building new dimension out of two smaller

Constraint Satisfaction Michael Pinsker



Outline

Part I: CSPs

Part II: pp definitions / polymorphism clones / ω-categoricity

Part III: pp interpretations / topological clones

Part IV: The tractability conjecture

Part V: Canonical functions / Ramsey theory

Model theory, Universal algebra, Ramsey theory, Topological dynamics
→ Theoretical computer science

Building new dimension out of two smaller

Constraint Satisfaction Michael Pinsker



Outline

Part I: CSPs

Part II: pp definitions / polymorphism clones / ω-categoricity

Part III: pp interpretations / topological clones

Part IV: The tractability conjecture

Part V: Canonical functions / Ramsey theory

Model theory, Universal algebra, Ramsey theory, Topological dynamics
→ Theoretical computer science

Building new dimension out of two smaller

Constraint Satisfaction Michael Pinsker



Outline

Part I: CSPs

Part II: pp definitions / polymorphism clones / ω-categoricity

Part III: pp interpretations / topological clones

Part IV: The tractability conjecture

Part V: Canonical functions / Ramsey theory

Model theory, Universal algebra, Ramsey theory, Topological dynamics
→ Theoretical computer science

Building new dimension out of two smaller

Constraint Satisfaction Michael Pinsker



Most statements in this presentation are imprecise / false.

Constraint Satisfaction Michael Pinsker



Part I

CSPs

Constraint Satisfaction Michael Pinsker



Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or as a pp sentence (existentially quantified conjunction).

Irrelevant whether Γ is finite or infinite.

Constraint Satisfaction Michael Pinsker



Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or as a pp sentence (existentially quantified conjunction).

Irrelevant whether Γ is finite or infinite.

Constraint Satisfaction Michael Pinsker



Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or as a pp sentence (existentially quantified conjunction).

Irrelevant whether Γ is finite or infinite.

Constraint Satisfaction Michael Pinsker



Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.

QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or as a pp sentence (existentially quantified conjunction).

Irrelevant whether Γ is finite or infinite.

Constraint Satisfaction Michael Pinsker



Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or as a pp sentence (existentially quantified conjunction).

Irrelevant whether Γ is finite or infinite.

Constraint Satisfaction Michael Pinsker



Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or as a pp sentence (existentially quantified conjunction).

Irrelevant whether Γ is finite or infinite.

Constraint Satisfaction Michael Pinsker



Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or as a pp sentence (existentially quantified conjunction).

Irrelevant whether Γ is finite or infinite.

Constraint Satisfaction Michael Pinsker



Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or as a pp sentence (existentially quantified conjunction).

Irrelevant whether Γ is finite or infinite.

Constraint Satisfaction Michael Pinsker



Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or as a pp sentence (existentially quantified conjunction).

Irrelevant whether Γ is finite or infinite.

Constraint Satisfaction Michael Pinsker



Examples

Digraph acyclicity
Input: A finite directed graph (D; E)

Question: Is (D; E) acyclic?
Is CSP: template (Q;<)

Betweenness
Input: A finite set of triples of variables

Question: Is there a linear order on the variables such that
for each triple (x , y , z) either x < y < z or z < y < x?

Is CSP: template (Q; {(x , y , z) | (x < y < z) ∨ (z < y < x)})

Constraint Satisfaction Michael Pinsker



Examples

Digraph acyclicity
Input: A finite directed graph (D; E)

Question: Is (D; E) acyclic?

Is CSP: template (Q;<)

Betweenness
Input: A finite set of triples of variables

Question: Is there a linear order on the variables such that
for each triple (x , y , z) either x < y < z or z < y < x?

Is CSP: template (Q; {(x , y , z) | (x < y < z) ∨ (z < y < x)})

Constraint Satisfaction Michael Pinsker



Examples

Digraph acyclicity
Input: A finite directed graph (D; E)

Question: Is (D; E) acyclic?
Is CSP: template (Q;<)

Betweenness
Input: A finite set of triples of variables

Question: Is there a linear order on the variables such that
for each triple (x , y , z) either x < y < z or z < y < x?

Is CSP: template (Q; {(x , y , z) | (x < y < z) ∨ (z < y < x)})

Constraint Satisfaction Michael Pinsker



Examples

Digraph acyclicity
Input: A finite directed graph (D; E)

Question: Is (D; E) acyclic?
Is CSP: template (Q;<)

Betweenness
Input: A finite set of triples of variables

Question: Is there a linear order on the variables such that
for each triple (x , y , z) either x < y < z or z < y < x?

Is CSP: template (Q; {(x , y , z) | (x < y < z) ∨ (z < y < x)})

Constraint Satisfaction Michael Pinsker



Examples

Digraph acyclicity
Input: A finite directed graph (D; E)

Question: Is (D; E) acyclic?
Is CSP: template (Q;<)

Betweenness
Input: A finite set of triples of variables

Question: Is there a linear order on the variables such that
for each triple (x , y , z) either x < y < z or z < y < x?

Is CSP: template (Q; {(x , y , z) | (x < y < z) ∨ (z < y < x)})

Constraint Satisfaction Michael Pinsker



Examples

Diophantine
Input: A finite system of equations using =,+, ·,1

Question: Is there a solution in Z?
Is CSP: template (Z; 1,+, ·,=)

n-colorability
Input: A finite undirected graph

Question: Is it n-colorable?
Is a CSP: template Kn

Constraint Satisfaction Michael Pinsker



Examples

Diophantine
Input: A finite system of equations using =,+, ·,1

Question: Is there a solution in Z?

Is CSP: template (Z; 1,+, ·,=)

n-colorability
Input: A finite undirected graph

Question: Is it n-colorable?
Is a CSP: template Kn

Constraint Satisfaction Michael Pinsker



Examples

Diophantine
Input: A finite system of equations using =,+, ·,1

Question: Is there a solution in Z?
Is CSP: template (Z; 1,+, ·,=)

n-colorability
Input: A finite undirected graph

Question: Is it n-colorable?
Is a CSP: template Kn

Constraint Satisfaction Michael Pinsker



Examples

Diophantine
Input: A finite system of equations using =,+, ·,1

Question: Is there a solution in Z?
Is CSP: template (Z; 1,+, ·,=)

n-colorability
Input: A finite undirected graph

Question: Is it n-colorable?

Is a CSP: template Kn

Constraint Satisfaction Michael Pinsker



Examples

Diophantine
Input: A finite system of equations using =,+, ·,1

Question: Is there a solution in Z?
Is CSP: template (Z; 1,+, ·,=)

n-colorability
Input: A finite undirected graph

Question: Is it n-colorable?
Is a CSP: template Kn

Constraint Satisfaction Michael Pinsker



Graph Satisfiability Problems

Let E be a binary relation symbol.

Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Constraint Satisfaction Michael Pinsker



Graph Satisfiability Problems

Let E be a binary relation symbol.

Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Constraint Satisfaction Michael Pinsker



Graph Satisfiability Problems

Let E be a binary relation symbol.

Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Constraint Satisfaction Michael Pinsker



Graph Satisfiability Problems

Let E be a binary relation symbol.

Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Constraint Satisfaction Michael Pinsker



Graph Satisfiability Problems

Let E be a binary relation symbol.

Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ.

Always in NP.

Constraint Satisfaction Michael Pinsker



Graph Satisfiability Problems

Let E be a binary relation symbol.

Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Constraint Satisfaction Michael Pinsker



Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.

Constraint Satisfaction Michael Pinsker



Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.

Constraint Satisfaction Michael Pinsker



Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.

Constraint Satisfaction Michael Pinsker



Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.

Constraint Satisfaction Michael Pinsker



Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.

Constraint Satisfaction Michael Pinsker



Graph formulas and reducts of the random graph

Let G = (V ; E) be the random graph:
the unique countably infinite graph which is

(ultra-)homogeneous:
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

universal: contains all finite graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of G, i.e.,
a structure with a first-order definition in G (without parameters).

Constraint Satisfaction Michael Pinsker



Graph formulas and reducts of the random graph

Let G = (V ; E) be the random graph:
the unique countably infinite graph which is

(ultra-)homogeneous:
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

universal: contains all finite graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of G, i.e.,
a structure with a first-order definition in G (without parameters).

Constraint Satisfaction Michael Pinsker



Graph formulas and reducts of the random graph

Let G = (V ; E) be the random graph:
the unique countably infinite graph which is

(ultra-)homogeneous:
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

universal: contains all finite graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of G, i.e.,
a structure with a first-order definition in G (without parameters).

Constraint Satisfaction Michael Pinsker



Graph formulas and reducts of the random graph

Let G = (V ; E) be the random graph:
the unique countably infinite graph which is

(ultra-)homogeneous:
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

universal: contains all finite graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of G, i.e.,
a structure with a first-order definition in G (without parameters).

Constraint Satisfaction Michael Pinsker



Graph formulas and reducts of the random graph

Let G = (V ; E) be the random graph:
the unique countably infinite graph which is

(ultra-)homogeneous:
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

universal: contains all finite graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of G, i.e.,
a structure with a first-order definition in G (without parameters).

Constraint Satisfaction Michael Pinsker



Graph formulas and reducts of the random graph

Let G = (V ; E) be the random graph:
the unique countably infinite graph which is

(ultra-)homogeneous:
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

universal: contains all finite graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of G, i.e.,
a structure with a first-order definition in G (without parameters).

Constraint Satisfaction Michael Pinsker



Graph formulas and reducts of the random graph

Let G = (V ; E) be the random graph:
the unique countably infinite graph which is

(ultra-)homogeneous:
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

universal: contains all finite graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of G, i.e.,
a structure with a first-order definition in G (without parameters).

Constraint Satisfaction Michael Pinsker



Graph-SAT as CSP

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

Graph-SAT(Ψ) = CSP(ΓΨ).

Could have used any universal graph?

Graph-SAT problems↔ CSPs of reducts of the random graph.

Constraint Satisfaction Michael Pinsker



Graph-SAT as CSP

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

Graph-SAT(Ψ) = CSP(ΓΨ).

Could have used any universal graph?

Graph-SAT problems↔ CSPs of reducts of the random graph.

Constraint Satisfaction Michael Pinsker



Graph-SAT as CSP

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

Graph-SAT(Ψ) = CSP(ΓΨ).

Could have used any universal graph?

Graph-SAT problems↔ CSPs of reducts of the random graph.

Constraint Satisfaction Michael Pinsker



Graph-SAT as CSP

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

Graph-SAT(Ψ) = CSP(ΓΨ).

Could have used any universal graph?

Graph-SAT problems↔ CSPs of reducts of the random graph.

Constraint Satisfaction Michael Pinsker



Graph-SAT as CSP

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

Graph-SAT(Ψ) = CSP(ΓΨ).

Could have used any universal graph?

Graph-SAT problems↔ CSPs of reducts of the random graph.

Constraint Satisfaction Michael Pinsker



CSPs of reducts of homogeneous structures

Let C be a Fraïssé class of finite structures.

A

D

CB

Let ∆ be its Fraïssé limit.

Let Γ = (D; Rψ1 , . . . ,Rψn ) be a reduct of ∆.

CSP(Γ) is called a C-SAT problem.

Asks whether a given conjunction using ψ1, . . . , ψn
is satisfiable in some member of C.

Constraint Satisfaction Michael Pinsker



CSPs of reducts of homogeneous structures

Let C be a Fraïssé class of finite structures.

A

D

CB

Let ∆ be its Fraïssé limit.

Let Γ = (D; Rψ1 , . . . ,Rψn ) be a reduct of ∆.

CSP(Γ) is called a C-SAT problem.

Asks whether a given conjunction using ψ1, . . . , ψn
is satisfiable in some member of C.

Constraint Satisfaction Michael Pinsker



CSPs of reducts of homogeneous structures

Let C be a Fraïssé class of finite structures.

A

D

CB

Let ∆ be its Fraïssé limit.

Let Γ = (D; Rψ1 , . . . ,Rψn ) be a reduct of ∆.

CSP(Γ) is called a C-SAT problem.

Asks whether a given conjunction using ψ1, . . . , ψn
is satisfiable in some member of C.

Constraint Satisfaction Michael Pinsker



CSPs of reducts of homogeneous structures

Let C be a Fraïssé class of finite structures.

A

D

CB

Let ∆ be its Fraïssé limit.

Let Γ = (D; Rψ1 , . . . ,Rψn ) be a reduct of ∆.

CSP(Γ) is called a C-SAT problem.

Asks whether a given conjunction using ψ1, . . . , ψn
is satisfiable in some member of C.

Constraint Satisfaction Michael Pinsker



CSPs of reducts of homogeneous structures

Let C be a Fraïssé class of finite structures.

A

D

CB

Let ∆ be its Fraïssé limit.

Let Γ = (D; Rψ1 , . . . ,Rψn ) be a reduct of ∆.

CSP(Γ) is called a C-SAT problem.

Asks whether a given conjunction using ψ1, . . . , ψn
is satisfiable in some member of C.

Constraint Satisfaction Michael Pinsker



CSPs of reducts of homogeneous structures

Let C be a Fraïssé class of finite structures.

A

D

CB

Let ∆ be its Fraïssé limit.

Let Γ = (D; Rψ1 , . . . ,Rψn ) be a reduct of ∆.

CSP(Γ) is called a C-SAT problem.

Asks whether a given conjunction using ψ1, . . . , ψn
is satisfiable in some member of C.

Constraint Satisfaction Michael Pinsker



Dividing the world

Classifications

All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi ’93)
Infinite template: can be undecidable
Up to polyn. time, all complexities appear (Grohe + Bodirsky ’08)
If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Conjecture (Bodirsky + MP ’11)
Let C be a Fraïssé class which is finitely bounded
(i.e., given by finitely many forbidden substructures).
Then C-SAT is always in P or NP-complete.

Constraint Satisfaction Michael Pinsker



Dividing the world

Classifications

All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi ’93)
Infinite template: can be undecidable
Up to polyn. time, all complexities appear (Grohe + Bodirsky ’08)
If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Conjecture (Bodirsky + MP ’11)
Let C be a Fraïssé class which is finitely bounded
(i.e., given by finitely many forbidden substructures).
Then C-SAT is always in P or NP-complete.

Constraint Satisfaction Michael Pinsker



Dividing the world

Classifications

All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)

All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi ’93)
Infinite template: can be undecidable
Up to polyn. time, all complexities appear (Grohe + Bodirsky ’08)
If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Conjecture (Bodirsky + MP ’11)
Let C be a Fraïssé class which is finitely bounded
(i.e., given by finitely many forbidden substructures).
Then C-SAT is always in P or NP-complete.

Constraint Satisfaction Michael Pinsker



Dividing the world

Classifications

All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi ’93)
Infinite template: can be undecidable
Up to polyn. time, all complexities appear (Grohe + Bodirsky ’08)
If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Conjecture (Bodirsky + MP ’11)
Let C be a Fraïssé class which is finitely bounded
(i.e., given by finitely many forbidden substructures).
Then C-SAT is always in P or NP-complete.

Constraint Satisfaction Michael Pinsker



Dividing the world

Classifications

All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi ’93)
Infinite template: can be undecidable
Up to polyn. time, all complexities appear (Grohe + Bodirsky ’08)
If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Conjecture (Bodirsky + MP ’11)
Let C be a Fraïssé class which is finitely bounded
(i.e., given by finitely many forbidden substructures).
Then C-SAT is always in P or NP-complete.

Constraint Satisfaction Michael Pinsker



Dividing the world

Classifications

All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi ’93)

Infinite template: can be undecidable
Up to polyn. time, all complexities appear (Grohe + Bodirsky ’08)
If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Conjecture (Bodirsky + MP ’11)
Let C be a Fraïssé class which is finitely bounded
(i.e., given by finitely many forbidden substructures).
Then C-SAT is always in P or NP-complete.

Constraint Satisfaction Michael Pinsker



Dividing the world

Classifications

All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi ’93)
Infinite template: can be undecidable

Up to polyn. time, all complexities appear (Grohe + Bodirsky ’08)
If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Conjecture (Bodirsky + MP ’11)
Let C be a Fraïssé class which is finitely bounded
(i.e., given by finitely many forbidden substructures).
Then C-SAT is always in P or NP-complete.

Constraint Satisfaction Michael Pinsker



Dividing the world

Classifications

All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi ’93)
Infinite template: can be undecidable
Up to polyn. time, all complexities appear (Grohe + Bodirsky ’08)

If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Conjecture (Bodirsky + MP ’11)
Let C be a Fraïssé class which is finitely bounded
(i.e., given by finitely many forbidden substructures).
Then C-SAT is always in P or NP-complete.

Constraint Satisfaction Michael Pinsker



Dividing the world

Classifications

All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi ’93)
Infinite template: can be undecidable
Up to polyn. time, all complexities appear (Grohe + Bodirsky ’08)
If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Conjecture (Bodirsky + MP ’11)
Let C be a Fraïssé class which is finitely bounded
(i.e., given by finitely many forbidden substructures).
Then C-SAT is always in P or NP-complete.

Constraint Satisfaction Michael Pinsker



Dividing the world

Classifications

All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi ’93)
Infinite template: can be undecidable
Up to polyn. time, all complexities appear (Grohe + Bodirsky ’08)
If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Conjecture (Bodirsky + MP ’11)
Let C be a Fraïssé class which is finitely bounded
(i.e., given by finitely many forbidden substructures).

Then C-SAT is always in P or NP-complete.

Constraint Satisfaction Michael Pinsker



Dividing the world

Classifications

All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder + Vardi ’93)
Infinite template: can be undecidable
Up to polyn. time, all complexities appear (Grohe + Bodirsky ’08)
If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Conjecture (Bodirsky + MP ’11)
Let C be a Fraïssé class which is finitely bounded
(i.e., given by finitely many forbidden substructures).
Then C-SAT is always in P or NP-complete.

Constraint Satisfaction Michael Pinsker



Part II

pp definitions / polymorphism clones / ω-categoricity

Constraint Satisfaction Michael Pinsker



Primitive positive definitions

A τ -formula is primitive positive (pp) iff it is of the form

∃x1 · · · ∃xn ψ1 ∧ · · · ∧ ψm,

where ψi are atomic.

Note: the input of a CSP really is a pp sentence.

Example. The relation y = 2x is pp definable in (Z; +, ·,1)
(Matiyasevich + Robinson).

Observation (Bulatov + Krokhin + Jeavons ’00)
Expanding Γ by pp definable relations
increases the complexity of the CSP by at most polynomial-time.

Constraint Satisfaction Michael Pinsker



Primitive positive definitions

A τ -formula is primitive positive (pp) iff it is of the form

∃x1 · · · ∃xn ψ1 ∧ · · · ∧ ψm,

where ψi are atomic.

Note: the input of a CSP really is a pp sentence.

Example. The relation y = 2x is pp definable in (Z; +, ·,1)
(Matiyasevich + Robinson).

Observation (Bulatov + Krokhin + Jeavons ’00)
Expanding Γ by pp definable relations
increases the complexity of the CSP by at most polynomial-time.

Constraint Satisfaction Michael Pinsker



Primitive positive definitions

A τ -formula is primitive positive (pp) iff it is of the form

∃x1 · · · ∃xn ψ1 ∧ · · · ∧ ψm,

where ψi are atomic.

Note: the input of a CSP really is a pp sentence.

Example. The relation y = 2x is pp definable in (Z; +, ·,1)
(Matiyasevich + Robinson).

Observation (Bulatov + Krokhin + Jeavons ’00)
Expanding Γ by pp definable relations
increases the complexity of the CSP by at most polynomial-time.

Constraint Satisfaction Michael Pinsker



Primitive positive definitions

A τ -formula is primitive positive (pp) iff it is of the form

∃x1 · · · ∃xn ψ1 ∧ · · · ∧ ψm,

where ψi are atomic.

Note: the input of a CSP really is a pp sentence.

Example. The relation y = 2x is pp definable in (Z; +, ·,1)
(Matiyasevich + Robinson).

Observation (Bulatov + Krokhin + Jeavons ’00)
Expanding Γ by pp definable relations
increases the complexity of the CSP by at most polynomial-time.

Constraint Satisfaction Michael Pinsker



Primitive positive definitions

A τ -formula is primitive positive (pp) iff it is of the form

∃x1 · · · ∃xn ψ1 ∧ · · · ∧ ψm,

where ψi are atomic.

Note: the input of a CSP really is a pp sentence.

Example. The relation y = 2x is pp definable in (Z; +, ·,1)
(Matiyasevich + Robinson).

Observation (Bulatov + Krokhin + Jeavons ’00)
Expanding Γ by pp definable relations
increases the complexity of the CSP by at most polynomial-time.

Constraint Satisfaction Michael Pinsker



Polymorphism clones

Let Γ be a structure.

Pol(Γ) is the set of all homomorphisms f : Γn → Γ, where 1 ≤ n < ω.

The elements of Pol(Γ) are called polymorphisms of Γ.

Pol(Γ) is a function clone:

closed under composition
contains projections.

Observe: Pol(Γ) ⊇ End(Γ) ⊇ Aut(Γ).

Constraint Satisfaction Michael Pinsker



Polymorphism clones

Let Γ be a structure.

Pol(Γ) is the set of all homomorphisms f : Γn → Γ, where 1 ≤ n < ω.

The elements of Pol(Γ) are called polymorphisms of Γ.

Pol(Γ) is a function clone:

closed under composition
contains projections.

Observe: Pol(Γ) ⊇ End(Γ) ⊇ Aut(Γ).

Constraint Satisfaction Michael Pinsker



Polymorphism clones

Let Γ be a structure.

Pol(Γ) is the set of all homomorphisms f : Γn → Γ, where 1 ≤ n < ω.

The elements of Pol(Γ) are called polymorphisms of Γ.

Pol(Γ) is a function clone:

closed under composition
contains projections.

Observe: Pol(Γ) ⊇ End(Γ) ⊇ Aut(Γ).

Constraint Satisfaction Michael Pinsker



Polymorphism clones

Let Γ be a structure.

Pol(Γ) is the set of all homomorphisms f : Γn → Γ, where 1 ≤ n < ω.

The elements of Pol(Γ) are called polymorphisms of Γ.

Pol(Γ) is a function clone:

closed under composition
contains projections.

Observe: Pol(Γ) ⊇ End(Γ) ⊇ Aut(Γ).

Constraint Satisfaction Michael Pinsker



Polymorphism clones

Let Γ be a structure.

Pol(Γ) is the set of all homomorphisms f : Γn → Γ, where 1 ≤ n < ω.

The elements of Pol(Γ) are called polymorphisms of Γ.

Pol(Γ) is a function clone:

closed under composition
contains projections.

Observe: Pol(Γ) ⊇ End(Γ) ⊇ Aut(Γ).

Constraint Satisfaction Michael Pinsker



Polymorphism clones

Let Γ be a structure.

Pol(Γ) is the set of all homomorphisms f : Γn → Γ, where 1 ≤ n < ω.

The elements of Pol(Γ) are called polymorphisms of Γ.

Pol(Γ) is a function clone:

closed under composition
contains projections.

Observe: Pol(Γ) ⊇ End(Γ) ⊇ Aut(Γ).

Constraint Satisfaction Michael Pinsker



Function clones and pp definitions

Theorem (Bodirsky + Nešetřil ’03)
Let Γ be a countable ω-categorical structure.
A relation is pp definable over Γ iff
it is preserved by all polymorphisms of Γ.

Hence, the complexity of CSP(Γ) only depends on Pol(Γ):

Corollary
Let Γ be ω-categorical or finite.
If Pol(Γ) ⊆ Pol(Γ′),
then CSP(Γ′) is polynomial-time reducible to CSP(Γ).

Constraint Satisfaction Michael Pinsker



Function clones and pp definitions

Theorem (Bodirsky + Nešetřil ’03)
Let Γ be a countable ω-categorical structure.
A relation is pp definable over Γ iff
it is preserved by all polymorphisms of Γ.

Hence, the complexity of CSP(Γ) only depends on Pol(Γ):

Corollary
Let Γ be ω-categorical or finite.
If Pol(Γ) ⊆ Pol(Γ′),
then CSP(Γ′) is polynomial-time reducible to CSP(Γ).

Constraint Satisfaction Michael Pinsker



Function clones and pp definitions

Theorem (Bodirsky + Nešetřil ’03)
Let Γ be a countable ω-categorical structure.
A relation is pp definable over Γ iff
it is preserved by all polymorphisms of Γ.

Hence, the complexity of CSP(Γ) only depends on Pol(Γ):

Corollary
Let Γ be ω-categorical or finite.
If Pol(Γ) ⊆ Pol(Γ′),
then CSP(Γ′) is polynomial-time reducible to CSP(Γ).

Constraint Satisfaction Michael Pinsker



Function clones and pp definitions

Theorem (Bodirsky + Nešetřil ’03)
Let Γ be a countable ω-categorical structure.
A relation is pp definable over Γ iff
it is preserved by all polymorphisms of Γ.

Hence, the complexity of CSP(Γ) only depends on Pol(Γ):

Corollary
Let Γ be ω-categorical or finite.
If Pol(Γ) ⊆ Pol(Γ′),
then CSP(Γ′) is polynomial-time reducible to CSP(Γ).

Constraint Satisfaction Michael Pinsker



Graph-SAT classification

balanced 
max

sw

constant

eE

E-
constant

NP-complete

in P

-

E-dom 
max

E-dom 
p1 balanced 

p1 E-semi-
dom p1

majority
hp balanced 

p1

minority
hp balanced 

p1

majority
hp E-

constant

minority
hp xnor E-

dom

majority
hp E-dom 

max

minority 
hp E-dom p1

Pol(H1)

Pol(H2)

Pol(H'1)

Pol(E6)

12,13:

14,15:
6:

7,8:

11:
9,10:

16,17:

2,3:

1:

4,5:

Pol(H'2)

Constraint Satisfaction Michael Pinsker



Part III

pp interpretations / topological clones

Constraint Satisfaction Michael Pinsker



Topological clones

Function clones carry natural structure:
algebraic (composition / equations)
topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:
Let C,D be function clones. ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological structure:
Pointwise convergence on functions f : Dn → D.
D. . . discrete; DDn

product topology.
(fi)i∈ω converges to f iff the fi eventually agree with f for every point.
Set of all finitary functions

⋃
n DDn

. . . sum space.

Constraint Satisfaction Michael Pinsker



Topological clones

Function clones carry natural structure:

algebraic (composition / equations)
topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:
Let C,D be function clones. ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological structure:
Pointwise convergence on functions f : Dn → D.
D. . . discrete; DDn

product topology.
(fi)i∈ω converges to f iff the fi eventually agree with f for every point.
Set of all finitary functions

⋃
n DDn

. . . sum space.

Constraint Satisfaction Michael Pinsker



Topological clones

Function clones carry natural structure:
algebraic (composition / equations)

topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:
Let C,D be function clones. ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological structure:
Pointwise convergence on functions f : Dn → D.
D. . . discrete; DDn

product topology.
(fi)i∈ω converges to f iff the fi eventually agree with f for every point.
Set of all finitary functions

⋃
n DDn

. . . sum space.

Constraint Satisfaction Michael Pinsker



Topological clones

Function clones carry natural structure:
algebraic (composition / equations)
topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:
Let C,D be function clones. ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological structure:
Pointwise convergence on functions f : Dn → D.
D. . . discrete; DDn

product topology.
(fi)i∈ω converges to f iff the fi eventually agree with f for every point.
Set of all finitary functions

⋃
n DDn

. . . sum space.

Constraint Satisfaction Michael Pinsker



Topological clones

Function clones carry natural structure:
algebraic (composition / equations)
topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:
Let C,D be function clones. ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological structure:
Pointwise convergence on functions f : Dn → D.
D. . . discrete; DDn

product topology.
(fi)i∈ω converges to f iff the fi eventually agree with f for every point.
Set of all finitary functions

⋃
n DDn

. . . sum space.

Constraint Satisfaction Michael Pinsker



Topological clones

Function clones carry natural structure:
algebraic (composition / equations)
topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let C,D be function clones. ξ : C→ D is a (clone) homomorphism iff
it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological structure:
Pointwise convergence on functions f : Dn → D.
D. . . discrete; DDn

product topology.
(fi)i∈ω converges to f iff the fi eventually agree with f for every point.
Set of all finitary functions

⋃
n DDn

. . . sum space.

Constraint Satisfaction Michael Pinsker



Topological clones

Function clones carry natural structure:
algebraic (composition / equations)
topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:
Let C,D be function clones. ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological structure:
Pointwise convergence on functions f : Dn → D.
D. . . discrete; DDn

product topology.
(fi)i∈ω converges to f iff the fi eventually agree with f for every point.
Set of all finitary functions

⋃
n DDn

. . . sum space.

Constraint Satisfaction Michael Pinsker



Topological clones

Function clones carry natural structure:
algebraic (composition / equations)
topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:
Let C,D be function clones. ξ : C→ D is a (clone) homomorphism iff

it preserves arities;

sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological structure:
Pointwise convergence on functions f : Dn → D.
D. . . discrete; DDn

product topology.
(fi)i∈ω converges to f iff the fi eventually agree with f for every point.
Set of all finitary functions

⋃
n DDn

. . . sum space.

Constraint Satisfaction Michael Pinsker



Topological clones

Function clones carry natural structure:
algebraic (composition / equations)
topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:
Let C,D be function clones. ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;

ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological structure:
Pointwise convergence on functions f : Dn → D.
D. . . discrete; DDn

product topology.
(fi)i∈ω converges to f iff the fi eventually agree with f for every point.
Set of all finitary functions

⋃
n DDn

. . . sum space.

Constraint Satisfaction Michael Pinsker



Topological clones

Function clones carry natural structure:
algebraic (composition / equations)
topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:
Let C,D be function clones. ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological structure:
Pointwise convergence on functions f : Dn → D.
D. . . discrete; DDn

product topology.
(fi)i∈ω converges to f iff the fi eventually agree with f for every point.
Set of all finitary functions

⋃
n DDn

. . . sum space.

Constraint Satisfaction Michael Pinsker



Topological clones

Function clones carry natural structure:
algebraic (composition / equations)
topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:
Let C,D be function clones. ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological structure:

Pointwise convergence on functions f : Dn → D.
D. . . discrete; DDn

product topology.
(fi)i∈ω converges to f iff the fi eventually agree with f for every point.
Set of all finitary functions

⋃
n DDn

. . . sum space.

Constraint Satisfaction Michael Pinsker



Topological clones

Function clones carry natural structure:
algebraic (composition / equations)
topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:
Let C,D be function clones. ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological structure:
Pointwise convergence on functions f : Dn → D.

D. . . discrete; DDn
product topology.

(fi)i∈ω converges to f iff the fi eventually agree with f for every point.
Set of all finitary functions

⋃
n DDn

. . . sum space.

Constraint Satisfaction Michael Pinsker



Topological clones

Function clones carry natural structure:
algebraic (composition / equations)
topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:
Let C,D be function clones. ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological structure:
Pointwise convergence on functions f : Dn → D.
D. . . discrete; DDn

product topology.

(fi)i∈ω converges to f iff the fi eventually agree with f for every point.
Set of all finitary functions

⋃
n DDn

. . . sum space.

Constraint Satisfaction Michael Pinsker



Topological clones

Function clones carry natural structure:
algebraic (composition / equations)
topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:
Let C,D be function clones. ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological structure:
Pointwise convergence on functions f : Dn → D.
D. . . discrete; DDn

product topology.
(fi)i∈ω converges to f iff the fi eventually agree with f for every point.

Set of all finitary functions
⋃

n DDn
. . . sum space.

Constraint Satisfaction Michael Pinsker



Topological clones

Function clones carry natural structure:
algebraic (composition / equations)
topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:
Let C,D be function clones. ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological structure:
Pointwise convergence on functions f : Dn → D.
D. . . discrete; DDn

product topology.
(fi)i∈ω converges to f iff the fi eventually agree with f for every point.
Set of all finitary functions

⋃
n DDn

. . . sum space.
Constraint Satisfaction Michael Pinsker



Topological Birkhoff

Theorem (Bodirsky + MP ’12)
Let ∆, Γ be ω-categorical or finite. TFAE:

∆ has a pp interpretation in Γ;
there exists a continuous homomorphism ξ : Pol(Γ)→ Pol(∆)
whose image is dense in an oligomorphic function clone.

When ∆ has a pp interpretation in Γ,
then CSP(∆) is polynomial-time reducible to CSP(Γ).

Corollary

Let ∆, Γ be ω-categorical or finite. If Pol(∆) ∼= Pol(Γ),
then CSP(∆) and CSP(Γ) are polynomial-time equivalent.

Constraint Satisfaction Michael Pinsker



Topological Birkhoff

Theorem (Bodirsky + MP ’12)
Let ∆, Γ be ω-categorical or finite. TFAE:

∆ has a pp interpretation in Γ;
there exists a continuous homomorphism ξ : Pol(Γ)→ Pol(∆)
whose image is dense in an oligomorphic function clone.

When ∆ has a pp interpretation in Γ,
then CSP(∆) is polynomial-time reducible to CSP(Γ).

Corollary

Let ∆, Γ be ω-categorical or finite. If Pol(∆) ∼= Pol(Γ),
then CSP(∆) and CSP(Γ) are polynomial-time equivalent.

Constraint Satisfaction Michael Pinsker



Topological Birkhoff

Theorem (Bodirsky + MP ’12)
Let ∆, Γ be ω-categorical or finite. TFAE:

∆ has a pp interpretation in Γ;
there exists a continuous homomorphism ξ : Pol(Γ)→ Pol(∆)
whose image is dense in an oligomorphic function clone.

When ∆ has a pp interpretation in Γ,
then CSP(∆) is polynomial-time reducible to CSP(Γ).

Corollary

Let ∆, Γ be ω-categorical or finite. If Pol(∆) ∼= Pol(Γ),
then CSP(∆) and CSP(Γ) are polynomial-time equivalent.

Constraint Satisfaction Michael Pinsker



Topological Birkhoff

Theorem (Bodirsky + MP ’12)
Let ∆, Γ be ω-categorical or finite. TFAE:

∆ has a pp interpretation in Γ;
there exists a continuous homomorphism ξ : Pol(Γ)→ Pol(∆)
whose image is dense in an oligomorphic function clone.

When ∆ has a pp interpretation in Γ,
then CSP(∆) is polynomial-time reducible to CSP(Γ).

Corollary

Let ∆, Γ be ω-categorical or finite. If Pol(∆) ∼= Pol(Γ),
then CSP(∆) and CSP(Γ) are polynomial-time equivalent.

Constraint Satisfaction Michael Pinsker



The worst of the finite

Let Π := ({0,1}; {(1,0,0), (0,1,0), (0,0,1)}).

CSP(Π) is NP-complete.

Pol(Π) contains only projections. Denote this clone by 1.

Corollary
Let Γ be ω-categorical. TFAE:

Π has a pp interpretation in Γ;

there exists a continuous clone homomorphism ξ : Pol(Γ)→ 1;

all finite structures have a pp interpretation in Γ.

Constraint Satisfaction Michael Pinsker



The worst of the finite

Let Π := ({0,1}; {(1,0,0), (0,1,0), (0,0,1)}).

CSP(Π) is NP-complete.

Pol(Π) contains only projections. Denote this clone by 1.

Corollary
Let Γ be ω-categorical. TFAE:

Π has a pp interpretation in Γ;

there exists a continuous clone homomorphism ξ : Pol(Γ)→ 1;

all finite structures have a pp interpretation in Γ.

Constraint Satisfaction Michael Pinsker



The worst of the finite

Let Π := ({0,1}; {(1,0,0), (0,1,0), (0,0,1)}).

CSP(Π) is NP-complete.

Pol(Π) contains only projections. Denote this clone by 1.

Corollary
Let Γ be ω-categorical. TFAE:

Π has a pp interpretation in Γ;

there exists a continuous clone homomorphism ξ : Pol(Γ)→ 1;

all finite structures have a pp interpretation in Γ.

Constraint Satisfaction Michael Pinsker



The worst of the finite

Let Π := ({0,1}; {(1,0,0), (0,1,0), (0,0,1)}).

CSP(Π) is NP-complete.

Pol(Π) contains only projections.

Denote this clone by 1.

Corollary
Let Γ be ω-categorical. TFAE:

Π has a pp interpretation in Γ;

there exists a continuous clone homomorphism ξ : Pol(Γ)→ 1;

all finite structures have a pp interpretation in Γ.

Constraint Satisfaction Michael Pinsker



The worst of the finite

Let Π := ({0,1}; {(1,0,0), (0,1,0), (0,0,1)}).

CSP(Π) is NP-complete.

Pol(Π) contains only projections. Denote this clone by 1.

Corollary
Let Γ be ω-categorical. TFAE:

Π has a pp interpretation in Γ;

there exists a continuous clone homomorphism ξ : Pol(Γ)→ 1;

all finite structures have a pp interpretation in Γ.

Constraint Satisfaction Michael Pinsker



The worst of the finite

Let Π := ({0,1}; {(1,0,0), (0,1,0), (0,0,1)}).

CSP(Π) is NP-complete.

Pol(Π) contains only projections. Denote this clone by 1.

Corollary
Let Γ be ω-categorical. TFAE:

Π has a pp interpretation in Γ;

there exists a continuous clone homomorphism ξ : Pol(Γ)→ 1;

all finite structures have a pp interpretation in Γ.

Constraint Satisfaction Michael Pinsker



The worst of the finite

Let Π := ({0,1}; {(1,0,0), (0,1,0), (0,0,1)}).

CSP(Π) is NP-complete.

Pol(Π) contains only projections. Denote this clone by 1.

Corollary
Let Γ be ω-categorical. TFAE:

Π has a pp interpretation in Γ;

there exists a continuous clone homomorphism ξ : Pol(Γ)→ 1;

all finite structures have a pp interpretation in Γ.

Constraint Satisfaction Michael Pinsker



The worst of the finite

Let Π := ({0,1}; {(1,0,0), (0,1,0), (0,0,1)}).

CSP(Π) is NP-complete.

Pol(Π) contains only projections. Denote this clone by 1.

Corollary
Let Γ be ω-categorical. TFAE:

Π has a pp interpretation in Γ;

there exists a continuous clone homomorphism ξ : Pol(Γ)→ 1;

all finite structures have a pp interpretation in Γ.

Constraint Satisfaction Michael Pinsker



The worst of the finite

Let Π := ({0,1}; {(1,0,0), (0,1,0), (0,0,1)}).

CSP(Π) is NP-complete.

Pol(Π) contains only projections. Denote this clone by 1.

Corollary
Let Γ be ω-categorical. TFAE:

Π has a pp interpretation in Γ;

there exists a continuous clone homomorphism ξ : Pol(Γ)→ 1;

all finite structures have a pp interpretation in Γ.

Constraint Satisfaction Michael Pinsker



Easy hardness proofs

Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})

CSP(Γ) is the Betweenness problem.

Let f ∈ Pol(Γ) of arity k .
There is a unique i ∈ {1, . . . , k} such that:

∀x , y ∈ Γk : xi < yi ⇒ f (x) < f (y), or
∀x , y ∈ Γk : xi < yi ⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.

Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

So the Betweenness problem is NP-hard.

Constraint Satisfaction Michael Pinsker



Easy hardness proofs

Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})

CSP(Γ) is the Betweenness problem.

Let f ∈ Pol(Γ) of arity k .
There is a unique i ∈ {1, . . . , k} such that:

∀x , y ∈ Γk : xi < yi ⇒ f (x) < f (y), or
∀x , y ∈ Γk : xi < yi ⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.

Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

So the Betweenness problem is NP-hard.

Constraint Satisfaction Michael Pinsker



Easy hardness proofs

Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})

CSP(Γ) is the Betweenness problem.

Let f ∈ Pol(Γ) of arity k .

There is a unique i ∈ {1, . . . , k} such that:

∀x , y ∈ Γk : xi < yi ⇒ f (x) < f (y), or
∀x , y ∈ Γk : xi < yi ⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.

Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

So the Betweenness problem is NP-hard.

Constraint Satisfaction Michael Pinsker



Easy hardness proofs

Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})

CSP(Γ) is the Betweenness problem.

Let f ∈ Pol(Γ) of arity k .
There is a unique i ∈ {1, . . . , k} such that:

∀x , y ∈ Γk : xi < yi ⇒ f (x) < f (y), or
∀x , y ∈ Γk : xi < yi ⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.

Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

So the Betweenness problem is NP-hard.

Constraint Satisfaction Michael Pinsker



Easy hardness proofs

Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})

CSP(Γ) is the Betweenness problem.

Let f ∈ Pol(Γ) of arity k .
There is a unique i ∈ {1, . . . , k} such that:

∀x , y ∈ Γk : xi < yi ⇒ f (x) < f (y), or

∀x , y ∈ Γk : xi < yi ⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.

Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

So the Betweenness problem is NP-hard.

Constraint Satisfaction Michael Pinsker



Easy hardness proofs

Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})

CSP(Γ) is the Betweenness problem.

Let f ∈ Pol(Γ) of arity k .
There is a unique i ∈ {1, . . . , k} such that:

∀x , y ∈ Γk : xi < yi ⇒ f (x) < f (y), or
∀x , y ∈ Γk : xi < yi ⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.

Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

So the Betweenness problem is NP-hard.

Constraint Satisfaction Michael Pinsker



Easy hardness proofs

Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})

CSP(Γ) is the Betweenness problem.

Let f ∈ Pol(Γ) of arity k .
There is a unique i ∈ {1, . . . , k} such that:

∀x , y ∈ Γk : xi < yi ⇒ f (x) < f (y), or
∀x , y ∈ Γk : xi < yi ⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.

Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

So the Betweenness problem is NP-hard.

Constraint Satisfaction Michael Pinsker



Easy hardness proofs

Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})

CSP(Γ) is the Betweenness problem.

Let f ∈ Pol(Γ) of arity k .
There is a unique i ∈ {1, . . . , k} such that:

∀x , y ∈ Γk : xi < yi ⇒ f (x) < f (y), or
∀x , y ∈ Γk : xi < yi ⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.

Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

So the Betweenness problem is NP-hard.

Constraint Satisfaction Michael Pinsker



Easy hardness proofs

Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})

CSP(Γ) is the Betweenness problem.

Let f ∈ Pol(Γ) of arity k .
There is a unique i ∈ {1, . . . , k} such that:

∀x , y ∈ Γk : xi < yi ⇒ f (x) < f (y), or
∀x , y ∈ Γk : xi < yi ⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.

Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

So the Betweenness problem is NP-hard.

Constraint Satisfaction Michael Pinsker



Part IV

The tractability conjecture

Constraint Satisfaction Michael Pinsker



The finite tractability conjecture

Conjecture
(Feder + Vardi ’93; Bulatov + Jeavons + Krokhin ’05; Barto + Kozik ’10)
Let Γ be finite. Then:

either Pol(Γ) has a homomorphism to 1
(and CSP(Γ) is NP-complete),
or Pol(Γ) contains a cyclic operation f of arity n > 1, i.e.,

f (x1, . . . , xn) = f (x2, . . . , xn, x1)

and CSP(Γ) is in P.

Constraint Satisfaction Michael Pinsker



The finite tractability conjecture

Conjecture
(Feder + Vardi ’93; Bulatov + Jeavons + Krokhin ’05; Barto + Kozik ’10)
Let Γ be finite. Then:

either Pol(Γ) has a homomorphism to 1
(and CSP(Γ) is NP-complete),
or Pol(Γ) contains a cyclic operation f of arity n > 1, i.e.,

f (x1, . . . , xn) = f (x2, . . . , xn, x1)

and CSP(Γ) is in P.

Constraint Satisfaction Michael Pinsker



Reducts of (Q;<)

Theorem (Bodirsky + Kara ’08, reformulated)

Let Γ be a reduct of (Q;<). Then:

either Pol(Γ) has a continuous homomorphism to 1
(and CSP(Γ) is NP-hard);

or there are f (x1, x2) ∈ Pol(Γ) and α, β ∈ Aut(Q;<) such that

f (x1, x2) = α(f (βx2, βx1))

and CSP(Γ) is in P.

Constraint Satisfaction Michael Pinsker



Reducts of (Q;<)

Theorem (Bodirsky + Kara ’08, reformulated)

Let Γ be a reduct of (Q;<). Then:

either Pol(Γ) has a continuous homomorphism to 1
(and CSP(Γ) is NP-hard);

or there are f (x1, x2) ∈ Pol(Γ) and α, β ∈ Aut(Q;<) such that

f (x1, x2) = α(f (βx2, βx1))

and CSP(Γ) is in P.

Constraint Satisfaction Michael Pinsker



Reducts of (Q;<)

Theorem (Bodirsky + Kara ’08, reformulated)

Let Γ be a reduct of (Q;<). Then:

either Pol(Γ) has a continuous homomorphism to 1
(and CSP(Γ) is NP-hard);

or there are f (x1, x2) ∈ Pol(Γ) and α, β ∈ Aut(Q;<) such that

f (x1, x2) = α(f (βx2, βx1))

and CSP(Γ) is in P.

Constraint Satisfaction Michael Pinsker



Reducts of (Q;<)

Theorem (Bodirsky + Kara ’08, reformulated)

Let Γ be a reduct of (Q;<). Then:

either Pol(Γ) has a continuous homomorphism to 1
(and CSP(Γ) is NP-hard);

or there are f (x1, x2) ∈ Pol(Γ) and α, β ∈ Aut(Q;<) such that

f (x1, x2) = α(f (βx2, βx1))

and CSP(Γ) is in P.

Constraint Satisfaction Michael Pinsker



Reducts of the random graph

Theorem (Bodirsky + MP ’11, reformulated)
Let Γ be a reduct of the random graph. Then:

either Pol(Γ) has a continuous homomorphism to 1
(and CSP(Γ) is NP-hard);

or there are f (x1, x2, x3) ∈ Pol(Γ) and α ∈ Aut(G) such that

f (x1, x2, x3) = α(f (x3, x1, x2))

and CSP(Γ) is in P.

Constraint Satisfaction Michael Pinsker



Reducts of the random graph

Theorem (Bodirsky + MP ’11, reformulated)
Let Γ be a reduct of the random graph. Then:

either Pol(Γ) has a continuous homomorphism to 1
(and CSP(Γ) is NP-hard);

or there are f (x1, x2, x3) ∈ Pol(Γ) and α ∈ Aut(G) such that

f (x1, x2, x3) = α(f (x3, x1, x2))

and CSP(Γ) is in P.

Constraint Satisfaction Michael Pinsker



Reducts of the random graph

Theorem (Bodirsky + MP ’11, reformulated)
Let Γ be a reduct of the random graph. Then:

either Pol(Γ) has a continuous homomorphism to 1
(and CSP(Γ) is NP-hard);

or there are f (x1, x2, x3) ∈ Pol(Γ) and α ∈ Aut(G) such that

f (x1, x2, x3) = α(f (x3, x1, x2))

and CSP(Γ) is in P.

Constraint Satisfaction Michael Pinsker



Infinite tractability conjecture

Fact: There are homogeneous digraphs with undecidable CSP.

Definition
A structure with finite relational signature is finitely bounded iff
its age is determined by finitely many forbidden substructures.

Examples: (Q;<) and the random graph.

Fact: The CSP of any reduct of a finitely bounded structure is in NP.

Constraint Satisfaction Michael Pinsker



Infinite tractability conjecture

Fact: There are homogeneous digraphs with undecidable CSP.

Definition
A structure with finite relational signature is finitely bounded iff
its age is determined by finitely many forbidden substructures.

Examples: (Q;<) and the random graph.

Fact: The CSP of any reduct of a finitely bounded structure is in NP.

Constraint Satisfaction Michael Pinsker



Infinite tractability conjecture

Fact: There are homogeneous digraphs with undecidable CSP.

Definition
A structure with finite relational signature is finitely bounded iff
its age is determined by finitely many forbidden substructures.

Examples: (Q;<) and the random graph.

Fact: The CSP of any reduct of a finitely bounded structure is in NP.

Constraint Satisfaction Michael Pinsker



Infinite tractability conjecture

Fact: There are homogeneous digraphs with undecidable CSP.

Definition
A structure with finite relational signature is finitely bounded iff
its age is determined by finitely many forbidden substructures.

Examples: (Q;<) and the random graph.

Fact: The CSP of any reduct of a finitely bounded structure is in NP.

Constraint Satisfaction Michael Pinsker



Infinite tractability conjecture

Fact: There are homogeneous digraphs with undecidable CSP.

Definition
A structure with finite relational signature is finitely bounded iff
its age is determined by finitely many forbidden substructures.

Examples: (Q;<) and the random graph.

Fact: The CSP of any reduct of a finitely bounded structure is in NP.

Constraint Satisfaction Michael Pinsker



Infinite tractability conjecture

Conjecture (Bodirsky + MP ’13)
Let Γ be a reduct of a finitely bounded homogeneous structure.

Either Pol(Γ) has a continuous homomorphism to 1
(and CSP(Γ) is NP-hard);

or Pol(Γ) satisfies a non-trivial equation,
and CSP(Γ) is in P.

Constraint Satisfaction Michael Pinsker



Infinite tractability conjecture

Conjecture (Bodirsky + MP ’13)
Let Γ be a reduct of a finitely bounded homogeneous structure.

Either Pol(Γ) has a continuous homomorphism to 1
(and CSP(Γ) is NP-hard);

or Pol(Γ) satisfies a non-trivial equation,
and CSP(Γ) is in P.

Constraint Satisfaction Michael Pinsker



Infinite tractability conjecture

Conjecture (Bodirsky + MP ’13)
Let Γ be a reduct of a finitely bounded homogeneous structure.

Either Pol(Γ) has a continuous homomorphism to 1
(and CSP(Γ) is NP-hard);

or Pol(Γ) satisfies a non-trivial equation,
and CSP(Γ) is in P.

Constraint Satisfaction Michael Pinsker



Infinite tractability conjecture

Conjecture (Bodirsky + MP ’13)
Let Γ be a reduct of a finitely bounded homogeneous structure.

Either Pol(Γ) has a continuous homomorphism to 1
(and CSP(Γ) is NP-hard);

or Pol(Γ) satisfies a non-trivial equation,
and CSP(Γ) is in P.

Constraint Satisfaction Michael Pinsker



Proof method

Identify relations R such that Pol(V ; R) has a continuous
homomorphism to 1 (hard relations).

If none of those hard relations is pp definable in Γ,
then there are functions in Pol(Γ) witnessing this.

Using Ramsey theory we find canonical such polymorphisms.

These canonical polymorphisms are essentially finite functions.

So they allow for combinatorial analysis and algorithmic use, and
“should” satisfy equations.

Constraint Satisfaction Michael Pinsker



Proof method

Identify relations R such that Pol(V ; R) has a continuous
homomorphism to 1 (hard relations).

If none of those hard relations is pp definable in Γ,
then there are functions in Pol(Γ) witnessing this.

Using Ramsey theory we find canonical such polymorphisms.

These canonical polymorphisms are essentially finite functions.

So they allow for combinatorial analysis and algorithmic use, and
“should” satisfy equations.

Constraint Satisfaction Michael Pinsker



Proof method

Identify relations R such that Pol(V ; R) has a continuous
homomorphism to 1 (hard relations).

If none of those hard relations is pp definable in Γ,
then there are functions in Pol(Γ) witnessing this.

Using Ramsey theory we find canonical such polymorphisms.

These canonical polymorphisms are essentially finite functions.

So they allow for combinatorial analysis and algorithmic use, and
“should” satisfy equations.

Constraint Satisfaction Michael Pinsker



Proof method

Identify relations R such that Pol(V ; R) has a continuous
homomorphism to 1 (hard relations).

If none of those hard relations is pp definable in Γ,
then there are functions in Pol(Γ) witnessing this.

Using Ramsey theory we find canonical such polymorphisms.

These canonical polymorphisms are essentially finite functions.

So they allow for combinatorial analysis and algorithmic use, and
“should” satisfy equations.

Constraint Satisfaction Michael Pinsker



Proof method

Identify relations R such that Pol(V ; R) has a continuous
homomorphism to 1 (hard relations).

If none of those hard relations is pp definable in Γ,
then there are functions in Pol(Γ) witnessing this.

Using Ramsey theory we find canonical such polymorphisms.

These canonical polymorphisms are essentially finite functions.

So they allow for combinatorial analysis and algorithmic use, and
“should” satisfy equations.

Constraint Satisfaction Michael Pinsker



Proof method

Identify relations R such that Pol(V ; R) has a continuous
homomorphism to 1 (hard relations).

If none of those hard relations is pp definable in Γ,
then there are functions in Pol(Γ) witnessing this.

Using Ramsey theory we find canonical such polymorphisms.

These canonical polymorphisms are essentially finite functions.

So they allow for combinatorial analysis and algorithmic use, and
“should” satisfy equations.

Constraint Satisfaction Michael Pinsker



Part V

Canonical functions / Ramsey theory

Constraint Satisfaction Michael Pinsker



Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
for all tuples t1, . . . , tn of the same length
the type of f (t1, . . . , tn) in ∆ only depends on
the types of the tuples t1, . . . , tn in ∆.

Examples on the random graph

self-embeddings;
flipping edges and non-edges;
injections onto a clique;
binary edge-max or edge-min.

Constraint Satisfaction Michael Pinsker



Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
for all tuples t1, . . . , tn of the same length
the type of f (t1, . . . , tn) in ∆ only depends on
the types of the tuples t1, . . . , tn in ∆.

Examples on the random graph

self-embeddings;
flipping edges and non-edges;
injections onto a clique;
binary edge-max or edge-min.

Constraint Satisfaction Michael Pinsker



Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
for all tuples t1, . . . , tn of the same length
the type of f (t1, . . . , tn) in ∆ only depends on
the types of the tuples t1, . . . , tn in ∆.

Examples on the random graph

self-embeddings;
flipping edges and non-edges;
injections onto a clique;
binary edge-max or edge-min.

Constraint Satisfaction Michael Pinsker



Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
for all tuples t1, . . . , tn of the same length
the type of f (t1, . . . , tn) in ∆ only depends on
the types of the tuples t1, . . . , tn in ∆.

Examples on the random graph

self-embeddings;

flipping edges and non-edges;
injections onto a clique;
binary edge-max or edge-min.

Constraint Satisfaction Michael Pinsker



Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
for all tuples t1, . . . , tn of the same length
the type of f (t1, . . . , tn) in ∆ only depends on
the types of the tuples t1, . . . , tn in ∆.

Examples on the random graph

self-embeddings;
flipping edges and non-edges;

injections onto a clique;
binary edge-max or edge-min.

Constraint Satisfaction Michael Pinsker



Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
for all tuples t1, . . . , tn of the same length
the type of f (t1, . . . , tn) in ∆ only depends on
the types of the tuples t1, . . . , tn in ∆.

Examples on the random graph

self-embeddings;
flipping edges and non-edges;
injections onto a clique;

binary edge-max or edge-min.

Constraint Satisfaction Michael Pinsker



Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
for all tuples t1, . . . , tn of the same length
the type of f (t1, . . . , tn) in ∆ only depends on
the types of the tuples t1, . . . , tn in ∆.

Examples on the random graph

self-embeddings;
flipping edges and non-edges;
injections onto a clique;
binary edge-max or edge-min.

Constraint Satisfaction Michael Pinsker



Ramsey structures

Definition (Ramsey structure ∆)
For all finite substructures P,H of ∆:
Whenever we color the copies of P in ∆ with 2 colors
then there is a monochromatic copy of H in ∆.

P

P

Δ

H

P

P

P

P

P

P

P P

Theorem (Nešetřil + Rödl)
The random ordered graph is Ramsey.

Constraint Satisfaction Michael Pinsker



Ramsey structures

Definition (Ramsey structure ∆)

For all finite substructures P,H of ∆:
Whenever we color the copies of P in ∆ with 2 colors
then there is a monochromatic copy of H in ∆.

P

P

Δ

H

P

P

P

P

P

P

P P

Theorem (Nešetřil + Rödl)
The random ordered graph is Ramsey.

Constraint Satisfaction Michael Pinsker



Ramsey structures

Definition (Ramsey structure ∆)
For all finite substructures P,H of ∆:
Whenever we color the copies of P in ∆ with 2 colors
then there is a monochromatic copy of H in ∆.

P

P

Δ

H

P

P

P

P

P

P

P P

Theorem (Nešetřil + Rödl)
The random ordered graph is Ramsey.

Constraint Satisfaction Michael Pinsker



Ramsey structures

Definition (Ramsey structure ∆)
For all finite substructures P,H of ∆:
Whenever we color the copies of P in ∆ with 2 colors
then there is a monochromatic copy of H in ∆.

P

P

Δ

H

P

P

P

P

P

P

P P

Theorem (Nešetřil + Rödl)
The random ordered graph is Ramsey.

Constraint Satisfaction Michael Pinsker



Ramsey structures

Definition (Ramsey structure ∆)
For all finite substructures P,H of ∆:
Whenever we color the copies of P in ∆ with 2 colors
then there is a monochromatic copy of H in ∆.

P

P

Δ

H

P

P

P

P

P

P

P P

Theorem (Nešetřil + Rödl)
The random ordered graph is Ramsey.

Constraint Satisfaction Michael Pinsker



Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

∆ be ordered Ramsey homogeneous finite language
f : ∆n → ∆

c1, . . . , ck ∈ ∆.

Then

{β(f (α1(x1), . . . , αn(xn))) | β, αi ∈ Aut(∆, c1, . . . , ck )}

contains a function which
is canonical as a function on (∆, c1, . . . , ck )

is identical with f on {c1, . . . , ck}n.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic ’05):
Aut(∆, c1, . . . , ck ) acts on above set: (α,g) 7→ g(α−1(x1), . . . , α−1(xn)).

Constraint Satisfaction Michael Pinsker



Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

∆ be ordered Ramsey homogeneous finite language
f : ∆n → ∆

c1, . . . , ck ∈ ∆.

Then

{β(f (α1(x1), . . . , αn(xn))) | β, αi ∈ Aut(∆, c1, . . . , ck )}

contains a function which
is canonical as a function on (∆, c1, . . . , ck )

is identical with f on {c1, . . . , ck}n.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic ’05):
Aut(∆, c1, . . . , ck ) acts on above set: (α,g) 7→ g(α−1(x1), . . . , α−1(xn)).

Constraint Satisfaction Michael Pinsker



Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

∆ be ordered Ramsey homogeneous finite language
f : ∆n → ∆

c1, . . . , ck ∈ ∆.

Then

{β(f (α1(x1), . . . , αn(xn))) | β, αi ∈ Aut(∆, c1, . . . , ck )}

contains a function which
is canonical as a function on (∆, c1, . . . , ck )

is identical with f on {c1, . . . , ck}n.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic ’05):
Aut(∆, c1, . . . , ck ) acts on above set: (α,g) 7→ g(α−1(x1), . . . , α−1(xn)).

Constraint Satisfaction Michael Pinsker



Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

∆ be ordered Ramsey homogeneous finite language
f : ∆n → ∆

c1, . . . , ck ∈ ∆.

Then

{β(f (α1(x1), . . . , αn(xn))) | β, αi ∈ Aut(∆, c1, . . . , ck )}

contains a function which
is canonical as a function on (∆, c1, . . . , ck )

is identical with f on {c1, . . . , ck}n.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic ’05):
Aut(∆, c1, . . . , ck ) acts on above set: (α,g) 7→ g(α−1(x1), . . . , α−1(xn)).

Constraint Satisfaction Michael Pinsker



Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

∆ be ordered Ramsey homogeneous finite language
f : ∆n → ∆

c1, . . . , ck ∈ ∆.

Then

{β(f (α1(x1), . . . , αn(xn))) | β, αi ∈ Aut(∆, c1, . . . , ck )}

contains a function which
is canonical as a function on (∆, c1, . . . , ck )

is identical with f on {c1, . . . , ck}n.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic ’05):
Aut(∆, c1, . . . , ck ) acts on above set: (α,g) 7→ g(α−1(x1), . . . , α−1(xn)).

Constraint Satisfaction Michael Pinsker



Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

∆ be ordered Ramsey homogeneous finite language
f : ∆n → ∆

c1, . . . , ck ∈ ∆.

Then

{β(f (α1(x1), . . . , αn(xn))) | β, αi ∈ Aut(∆, c1, . . . , ck )}

contains a function which
is canonical as a function on (∆, c1, . . . , ck )

is identical with f on {c1, . . . , ck}n.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic ’05):

Aut(∆, c1, . . . , ck ) acts on above set: (α,g) 7→ g(α−1(x1), . . . , α−1(xn)).

Constraint Satisfaction Michael Pinsker



Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

∆ be ordered Ramsey homogeneous finite language
f : ∆n → ∆

c1, . . . , ck ∈ ∆.

Then

{β(f (α1(x1), . . . , αn(xn))) | β, αi ∈ Aut(∆, c1, . . . , ck )}

contains a function which
is canonical as a function on (∆, c1, . . . , ck )

is identical with f on {c1, . . . , ck}n.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic ’05):
Aut(∆, c1, . . . , ck ) acts on above set: (α,g) 7→ g(α−1(x1), . . . , α−1(xn)).

Constraint Satisfaction Michael Pinsker



Using canonical functions

Two canonical functions f ,g have the same behavior iff
f (t1, . . . , tn) and g(t1, . . . , tn) have equal type for all tuples t1, . . . , tn.

If ∆ is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions.

Canonical functions of same behavior belong to the same
polymorphism clones ⊇ Aut(∆).

Conclusion: Violation of hard relations
(and thus non-existence of a continuous homomorphism to 1)
is witnessed by canonical functions.

Constraint Satisfaction Michael Pinsker



Using canonical functions

Two canonical functions f ,g have the same behavior iff
f (t1, . . . , tn) and g(t1, . . . , tn) have equal type for all tuples t1, . . . , tn.

If ∆ is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions.

Canonical functions of same behavior belong to the same
polymorphism clones ⊇ Aut(∆).

Conclusion: Violation of hard relations
(and thus non-existence of a continuous homomorphism to 1)
is witnessed by canonical functions.

Constraint Satisfaction Michael Pinsker



Using canonical functions

Two canonical functions f ,g have the same behavior iff
f (t1, . . . , tn) and g(t1, . . . , tn) have equal type for all tuples t1, . . . , tn.

If ∆ is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions.

Canonical functions of same behavior belong to the same
polymorphism clones ⊇ Aut(∆).

Conclusion: Violation of hard relations
(and thus non-existence of a continuous homomorphism to 1)
is witnessed by canonical functions.

Constraint Satisfaction Michael Pinsker



Using canonical functions

Two canonical functions f ,g have the same behavior iff
f (t1, . . . , tn) and g(t1, . . . , tn) have equal type for all tuples t1, . . . , tn.

If ∆ is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions.

Canonical functions of same behavior belong to the same
polymorphism clones ⊇ Aut(∆).

Conclusion: Violation of hard relations
(and thus non-existence of a continuous homomorphism to 1)
is witnessed by canonical functions.

Constraint Satisfaction Michael Pinsker



Using canonical functions

Two canonical functions f ,g have the same behavior iff
f (t1, . . . , tn) and g(t1, . . . , tn) have equal type for all tuples t1, . . . , tn.

If ∆ is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions.

Canonical functions of same behavior belong to the same
polymorphism clones ⊇ Aut(∆).

Conclusion: Violation of hard relations
(and thus non-existence of a continuous homomorphism to 1)
is witnessed by canonical functions.

Constraint Satisfaction Michael Pinsker



Complexity of CSP for reducts of the random graph

Theorem (Bodirsky + MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ has one out of 17 canonical polymorphisms,
and CSP(Γ) is tractable,

or CSP(Γ) is NP-complete.

Theorem (Bodirsky + MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ pp-defines one out of 5 hard relations,
and CSP(Γ) is NP-complete,

or CSP(Γ) is tractable.

Constraint Satisfaction Michael Pinsker



Complexity of CSP for reducts of the random graph

Theorem (Bodirsky + MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ has one out of 17 canonical polymorphisms,
and CSP(Γ) is tractable,

or CSP(Γ) is NP-complete.

Theorem (Bodirsky + MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ pp-defines one out of 5 hard relations,
and CSP(Γ) is NP-complete,

or CSP(Γ) is tractable.

Constraint Satisfaction Michael Pinsker



Complexity of CSP for reducts of the random graph

Theorem (Bodirsky + MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ has one out of 17 canonical polymorphisms,
and CSP(Γ) is tractable,

or CSP(Γ) is NP-complete.

Theorem (Bodirsky + MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ pp-defines one out of 5 hard relations,
and CSP(Γ) is NP-complete,

or CSP(Γ) is tractable.

Constraint Satisfaction Michael Pinsker



Graph-SAT classification

balanced 
max

sw

constant

eE

E-
constant

NP-complete

in P

-

E-dom 
max

E-dom 
p1 balanced 

p1 E-semi-
dom p1

majority
hp balanced 

p1

minority
hp balanced 

p1

majority
hp E-

constant

minority
hp xnor E-

dom

majority
hp E-dom 

max

minority 
hp E-dom p1

Pol(H1)

Pol(H2)

Pol(H'1)

Pol(E6)

12,13:

14,15:
6:

7,8:

11:
9,10:

16,17:

2,3:

1:

4,5:

Pol(H'2)

Constraint Satisfaction Michael Pinsker



Future work

Constraint Satisfaction Michael Pinsker



Future work

Does every homogeneous structure in a finite relational language
have a homogeneous Ramsey expansion
by finitely many relation symbols?
(Bodirsky + MP + Tsankov, Decidability of definability)

If Pol(Γ) has a homomorphism to 1, does it also have a continuous
homomorphism?
(Bodirsky + MP + Pongrácz, Projective clone homomorphisms)

Clarify relationship between canonical functions and their finite
counterparts (algorithmic / equational).

Let ∆ be homogeneous in a finite relational language.
Does Aut(∆) have finitely many closed supergroups?
(S. Thomas, Reducts of the random graph)

Constraint Satisfaction Michael Pinsker



Future work

Does every homogeneous structure in a finite relational language
have a homogeneous Ramsey expansion
by finitely many relation symbols?
(Bodirsky + MP + Tsankov, Decidability of definability)

If Pol(Γ) has a homomorphism to 1, does it also have a continuous
homomorphism?
(Bodirsky + MP + Pongrácz, Projective clone homomorphisms)

Clarify relationship between canonical functions and their finite
counterparts (algorithmic / equational).

Let ∆ be homogeneous in a finite relational language.
Does Aut(∆) have finitely many closed supergroups?
(S. Thomas, Reducts of the random graph)

Constraint Satisfaction Michael Pinsker



Future work

Does every homogeneous structure in a finite relational language
have a homogeneous Ramsey expansion
by finitely many relation symbols?
(Bodirsky + MP + Tsankov, Decidability of definability)

If Pol(Γ) has a homomorphism to 1, does it also have a continuous
homomorphism?
(Bodirsky + MP + Pongrácz, Projective clone homomorphisms)

Clarify relationship between canonical functions and their finite
counterparts (algorithmic / equational).

Let ∆ be homogeneous in a finite relational language.
Does Aut(∆) have finitely many closed supergroups?
(S. Thomas, Reducts of the random graph)

Constraint Satisfaction Michael Pinsker



Future work

Does every homogeneous structure in a finite relational language
have a homogeneous Ramsey expansion
by finitely many relation symbols?
(Bodirsky + MP + Tsankov, Decidability of definability)

If Pol(Γ) has a homomorphism to 1, does it also have a continuous
homomorphism?
(Bodirsky + MP + Pongrácz, Projective clone homomorphisms)

Clarify relationship between canonical functions and their finite
counterparts (algorithmic / equational).

Let ∆ be homogeneous in a finite relational language.
Does Aut(∆) have finitely many closed supergroups?
(S. Thomas, Reducts of the random graph)

Constraint Satisfaction Michael Pinsker



Future work

Does every homogeneous structure in a finite relational language
have a homogeneous Ramsey expansion
by finitely many relation symbols?
(Bodirsky + MP + Tsankov, Decidability of definability)

If Pol(Γ) has a homomorphism to 1, does it also have a continuous
homomorphism?
(Bodirsky + MP + Pongrácz, Projective clone homomorphisms)

Clarify relationship between canonical functions and their finite
counterparts (algorithmic / equational).

Let ∆ be homogeneous in a finite relational language.
Does Aut(∆) have finitely many closed supergroups?
(S. Thomas, Reducts of the random graph)

Constraint Satisfaction Michael Pinsker



Thank you

Constraint Satisfaction Michael Pinsker


