Reconstructing structures from their abstract clones

Michael Pinsker

Technische Universität Wien / Université Diderot - Paris 7 Funded by FWF grant I836-N23

Special Session on Universal algebra and Constraint Satisfaction ASL 2014 North American Annual Meeting, Boulder

 Reconstructing structures from their automorphism groups and polymorphism clones

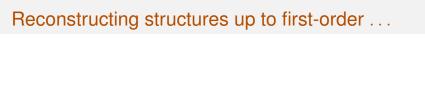
- Reconstructing structures from their automorphism groups and polymorphism clones
- The topology of algebras

- Reconstructing structures from their automorphism groups and polymorphism clones
- The topology of algebras
- Reconstruction the topology of function clones

Part I

Reconstructing structures from their automorphism groups and polymorphism clones

countable, ω -categorical



$$Aut(\blacksquare) \rightarrow$$

$$\operatorname{\mathsf{Aut}}(lacktriangledown)$$
 o first-order interdefinable with

Theorem (Ryll-Nardzewski)

Let Δ , Γ be ω -categorical structures on the same domain. Then $\operatorname{Aut}(\Delta) = \operatorname{Aut}(\Gamma)$ iff Δ , Γ are first-order interdefinable.

 $\mathsf{Aut}(lacktriangledown)$ o first-order interdefinable with

Theorem (Ryll-Nardzewski)

Let Δ , Γ be ω -categorical structures on the same domain. Then $\operatorname{Aut}(\Delta) = \operatorname{Aut}(\Gamma)$ iff Δ , Γ are first-order interdefinable.

Aut(as a topological group

$$\mathsf{Aut}(lacktriangledown)$$
 o first-order interdefinable with

Theorem (Ryll-Nardzewski)

Let Δ , Γ be ω -categorical structures on the same domain. Then $\operatorname{Aut}(\Delta)=\operatorname{Aut}(\Gamma)$ iff Δ , Γ are first-order interdefinable.

$$\mathsf{Aut}(leftarrow{leftarrow{leftarrow{left}}{leftarrow{left}}})$$
 as a topological group o

 $\mathsf{Aut}(lacktriangledown)$ o first-order interdefinable with

Theorem (Ryll-Nardzewski)

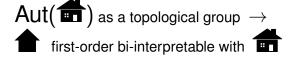
Let Δ , Γ be ω -categorical structures on the same domain. Then $\operatorname{Aut}(\Delta)=\operatorname{Aut}(\Gamma)$ iff Δ , Γ are first-order interdefinable.

 $\operatorname{Aut}(\blacksquare)$ as a topological group \rightarrow first-order bi-interpretable with

$$\mathsf{Aut}(lacktriangledown)$$
 o first-order interdefinable with

Theorem (Ryll-Nardzewski)

Let Δ , Γ be ω -categorical structures on the same domain. Then $\operatorname{Aut}(\Delta)=\operatorname{Aut}(\Gamma)$ iff Δ , Γ are first-order interdefinable.



Theorem (Ahlbrandt + Ziegler '86)

Let Δ, Γ be ω -categorical structures. Then $\operatorname{Aut}(\Delta) \cong^{\mathcal{T}} \operatorname{Aut}(\Gamma)$ iff Δ, Γ are first-order bi-interpretable.

$$\operatorname{\mathsf{Aut}}(lacktriangledown)$$
 as an abstract group o ?

$$\operatorname{\mathsf{Aut}}(lacktriangledown)$$
 as an abstract group o ?

■ Can we reconstruct an ω -categorical structure Δ from the algebraic group structure of Aut(Δ)?

$$\operatorname{\mathsf{Aut}}(lacktriangledown)$$
 as an abstract group o ?

- Can we reconstruct an ω -categorical structure Δ from the algebraic group structure of Aut(Δ)?
- Can we reconstruct the topological structure of $Aut(\Delta)$ from its algebraic structure?

$$\operatorname{\mathsf{Aut}}(lacktriangledown)$$
 as an abstract group o ?

- Can we reconstruct an ω -categorical structure Δ from the algebraic group structure of Aut(Δ)?
- Can we reconstruct the topological structure of $Aut(\Delta)$ from its algebraic structure?

The automorphism groups of ω -categorical structures are the closed oligomorphic permutation groups:

$$\operatorname{\mathsf{Aut}}(lacktriangledown)$$
 as an abstract group o ?

- Can we reconstruct an ω -categorical structure Δ from the algebraic group structure of Aut(Δ)?
- Can we reconstruct the topological structure of $Aut(\Delta)$ from its algebraic structure?

The automorphism groups of ω -categorical structures are the closed oligomorphic permutation groups:

their coordinatewise action on n-tuples has finitely many orbits for all $n \ge 1$.

$$\operatorname{\mathsf{Aut}}(lacktriangledown)$$
 as an abstract group o ?

- Can we reconstruct an ω -categorical structure Δ from the algebraic group structure of Aut(Δ)?
- Can we reconstruct the topological structure of $Aut(\Delta)$ from its algebraic structure?

The automorphism groups of ω -categorical structures are the closed oligomorphic permutation groups:

their coordinatewise action on n-tuples has finitely many orbits for all $n \ge 1$.

Can we reconstruct the topological structure of closed oligomorphic permutation groups from their algebraic structure?

Let Δ be a structure.

Let Δ be a structure.

■ $Aut(\Delta)$... automorphism group of Δ

Let Δ be a structure.

- $Aut(\Delta)$... automorphism group of Δ
- $End(\Delta)$... endomorphism monoid of Δ

Let Δ be a structure.

- $Aut(\Delta)$... automorphism group of Δ
- $End(\Delta)$... endomorphism monoid of Δ
- $Pol(\Delta)...polymorphism$ clone of Δ

Let Δ be a structure.

- $Aut(\Delta)$... automorphism group of Δ
- $End(\Delta)$... endomorphism monoid of Δ
- $Pol(\Delta)$...polymorphism clone of Δ

 $\mathsf{End}(\Delta)\dots$ all homomorphisms $f\colon \Delta\to \Delta.$

Let Δ be a structure.

- $Aut(\Delta)$... automorphism group of Δ
- $End(\Delta)$... endomorphism monoid of Δ
- $Pol(\Delta)$... polymorphism clone of Δ

 $\mathsf{End}(\Delta)\dots$ all homomorphisms $f\colon \Delta\to \Delta.$

 $Pol(\Delta)$. . . all homomorphisms $f : \Delta^n \to \Delta$, where $1 \le n < \omega$.

Let Δ be a structure.

- $Aut(\Delta)$... automorphism group of Δ
- $End(\Delta)$... endomorphism monoid of Δ
- $Pol(\Delta)$... polymorphism clone of Δ

 $\mathsf{End}(\Delta)\dots$ all homomorphisms $f\colon \Delta\to \Delta.$

 $Pol(\Delta)$... all homomorphisms $f: \Delta^n \to \Delta$, where $1 \le n < \omega$.

 $Pol(\Delta)$ is a function clone:

- closed under composition
- contains projections.

Let Δ be a structure.

- $Aut(\Delta)$... automorphism group of Δ
- End(Δ)... endomorphism monoid of Δ
- $Pol(\Delta)$...polymorphism clone of Δ

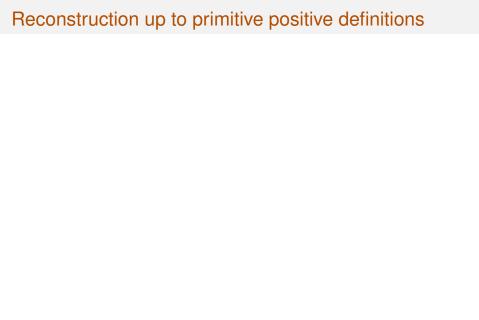
 $\mathsf{End}(\Delta)\dots \mathsf{all}\ \mathsf{homomorphisms}\ f\colon \Delta\to \Delta.$

 $Pol(\Delta)$... all homomorphisms $f: \Delta^n \to \Delta$, where $1 \le n < \omega$.

 $Pol(\Delta)$ is a function clone:

- closed under composition
- contains projections.

Observe: $Pol(\Delta) \supseteq End(\Delta) \supseteq Aut(\Delta)$.



Reconstruction up to primitive positive definitions

Reconstruction up to primitive positive definitions

Theorem (Bodirsky + Nešetřil '03)

Let Δ , Γ be ω -categorical structures on the same domain. Then: Pol(Δ) = Pol(Γ) iff Δ , Γ are primitive positive interdefinable.

Reconstruction up to primitive positive definitions

Theorem (Bodirsky + Nešetřil '03)

Let Δ , Γ be ω -categorical structures on the same domain. Then: Pol(Δ) = Pol(Γ) iff Δ , Γ are primitive positive interdefinable.

Why primitive positive definitions?

Reconstruction up to primitive positive definitions

Theorem (Bodirsky + Nešetřil '03)

Let Δ , Γ be ω -categorical structures on the same domain. Then: Pol(Δ) = Pol(Γ) iff Δ , Γ are primitive positive interdefinable.

Why primitive positive definitions?

Let Δ be a structure with a *finite* relational signature τ .

Reconstruction up to primitive positive definitions

Theorem (Bodirsky + Nešetřil '03)

Let Δ , Γ be ω -categorical structures on the same domain. Then: Pol(Δ) = Pol(Γ) iff Δ , Γ are primitive positive interdefinable.

Why primitive positive definitions?

Let Δ be a structure with a *finite* relational signature τ .

Definition (Constraint Satisfaction Problem)

 $\mathsf{CSP}(\Delta)$ is the computational problem to decide whether a given primitive positive τ -sentence holds in Δ .

Function clones carry:

Function clones carry:

■ algebraic structure (laws of composition): multi-sorted algebra

Function clones carry:

- algebraic structure (laws of composition): multi-sorted algebra
- topological structure (pointwise convergence)

Function clones carry:

- algebraic structure (laws of composition): multi-sorted algebra
- topological structure (pointwise convergence)

Let C, D be function clones.

 $\xi \colon \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

Function clones carry:

- algebraic structure (laws of composition): multi-sorted algebra
- topological structure (pointwise convergence)

Let **C**, **D** be function clones.

 $\xi \colon \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

it preserves arities;

Function clones carry:

- algebraic structure (laws of composition): multi-sorted algebra
- topological structure (pointwise convergence)

Let C, D be function clones.

 $\xi \colon \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

- it preserves arities;
- sends every projection in C to the corresponding projection in D;

Function clones carry:

- algebraic structure (laws of composition): multi-sorted algebra
- topological structure (pointwise convergence)

Let C, D be function clones.

 $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

- it preserves arities;
- sends every projection in C to the corresponding projection in D;

Function clones carry:

- algebraic structure (laws of composition): multi-sorted algebra
- topological structure (pointwise convergence)

Let C, D be function clones.

 $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

- it preserves arities;
- sends every projection in C to the corresponding projection in D;
- ⇒ Topological clones

Function clones carry:

- algebraic structure (laws of composition): multi-sorted algebra
- topological structure (pointwise convergence)

Let C, D be function clones.

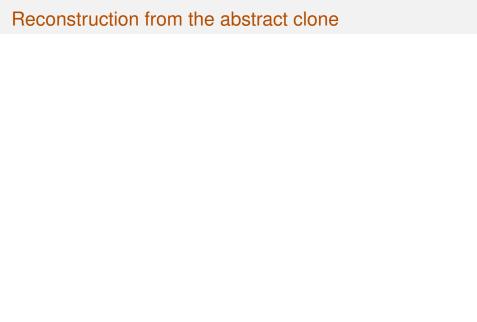
 $\xi \colon \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

- it preserves arities;
- sends every projection in C to the corresponding projection in D;
- → Topological clones

Theorem (Bodirsky + MP '12)

Let Δ , Γ be ω -categorical structures. Then:

 $Pol(\Delta) \cong^{\mathcal{T}} Pol(\Gamma)$ iff Δ, Γ are primitive positive bi-interpretable.



$$\mathsf{Pol}(\mathbf{f})$$
 as an abstract clone \rightarrow ?

 $\mathsf{Pol}(lacktriangledown)$ as an abstract clone o ?

■ Can we reconstruct an ω -categorical structure Δ from the algebraic clone structure of Pol(Δ)?

 $\mathsf{Pol}(lacktriangledown)$ as an abstract clone o?

- Can we reconstruct an ω -categorical structure Δ from the algebraic clone structure of Pol(Δ)?
- Can we reconstruct the topological structure of $Pol(\Delta)$ from its algebraic structure?

 $\mathsf{Pol}(\clubsuit)$ as an abstract clone \to ?

- Can we reconstruct an ω -categorical structure Δ from the algebraic clone structure of Pol(Δ)?
- Can we reconstruct the topological structure of $Pol(\Delta)$ from its algebraic structure?

Polymorphism clones of ω -categorical structures are the closed oligomorphic function clones:

they contain an oligomorphic permutation group.

 $\mathsf{Pol}(\clubsuit)$ as an abstract clone \to ?

- Can we reconstruct an ω -categorical structure Δ from the algebraic clone structure of Pol(Δ)?
- Can we reconstruct the topological structure of $Pol(\Delta)$ from its algebraic structure?

Polymorphism clones of ω -categorical structures are the closed oligomorphic function clones: they contain an oligomorphic permutation group.

Can we reconstruct the topological structure of closed oligomorphic function clones from their algebraic structure?

Part II

The topology of algebras

Let $\mathfrak A$ be an algebra, and τ its signature.

Let $\mathfrak A$ be an algebra, and τ its signature.

Abstract τ -term $t \implies \text{term function } t^{\mathfrak{A}}$ on \mathfrak{A} .

Let $\mathfrak A$ be an algebra, and τ its signature.

Abstract τ -term $t \implies \text{term function } t^{\mathfrak{A}}$ on \mathfrak{A} .

Term functions of \mathfrak{A} : function clone $Clo(\mathfrak{A})$.

Let ${\mathfrak A}$ be an algebra, and τ its signature.

Abstract τ -term $t \implies \text{term function } t^{\mathfrak{A}} \text{ on } \mathfrak{A}$.

Term functions of \mathfrak{A} : function clone $Clo(\mathfrak{A})$.

Structural conclusions about $\mathfrak A$ from abstract clone $Clo(\mathfrak A)$: Varieties.

For an algebra \mathfrak{A} , write $\mathsf{HSP}^\mathsf{fin}(\mathfrak{A})$ for the algebras obtained by taking

For an algebra $\mathfrak A$, write $\mathsf{HSP}^\mathsf{fin}(\mathfrak A)$ for the algebras obtained by taking

■ Homomorphic images

For an algebra \mathfrak{A} , write $\mathsf{HSP}^\mathsf{fin}(\mathfrak{A})$ for the algebras obtained by taking

- Homomorphic images
- Subalgebras

For an algebra \mathfrak{A} , write $\mathsf{HSP}^\mathsf{fin}(\mathfrak{A})$ for the algebras obtained by taking

- Homomorphic images
- Subalgebras
- finite Powers.

For an algebra \mathfrak{A} , write $\mathsf{HSP}^\mathsf{fin}(\mathfrak{A})$ for the algebras obtained by taking

- Homomorphic images
- Subalgebras
- finite Powers.

Let $\mathfrak{A}, \mathfrak{B}$ be τ -algebras.

For an algebra \mathfrak{A} , write $\mathsf{HSP}^\mathsf{fin}(\mathfrak{A})$ for the algebras obtained by taking

- Homomorphic images
- Subalgebras
- finite Powers.

Let $\mathfrak{A}, \mathfrak{B}$ be τ -algebras. If the mapping

$$t^{\mathfrak{A}}\mapsto t^{\mathfrak{B}}$$

is well-defined,

For an algebra ${\mathfrak A},$ write $\mathsf{HSP}^\mathsf{fin}({\mathfrak A})$ for the algebras obtained by taking

- Homomorphic images
- Subalgebras
- finite Powers.

Let $\mathfrak{A}, \mathfrak{B}$ be τ -algebras. If the mapping

$$t^{\mathfrak{A}}\mapsto t^{\mathfrak{B}}$$

is well-defined, then it is a clone homomorphism

$$\xi \colon \mathsf{Clo}(\mathfrak{A}) \to \mathsf{Clo}(\mathfrak{B})$$

For an algebra \mathfrak{A} , write $\mathsf{HSP}^\mathsf{fin}(\mathfrak{A})$ for the algebras obtained by taking

- Homomorphic images
- Subalgebras
- finite Powers.

Let $\mathfrak{A}, \mathfrak{B}$ be τ -algebras. If the mapping

$$t^{\mathfrak{A}} \mapsto t^{\mathfrak{B}}$$

is well-defined, then it is a clone homomorphism

$$\xi \colon \mathsf{Clo}(\mathfrak{A}) \to \mathsf{Clo}(\mathfrak{B})$$

called the natural homomorphism.

For an algebra \mathfrak{A} , write $\mathsf{HSP}^\mathsf{fin}(\mathfrak{A})$ for the algebras obtained by taking

- Homomorphic images
- Subalgebras
- finite Powers.

Let $\mathfrak{A}, \mathfrak{B}$ be τ -algebras. If the mapping

$$t^{\mathfrak{A}} \mapsto t^{\mathfrak{B}}$$

is well-defined, then it is a clone homomorphism

$$\xi \colon \mathsf{Clo}(\mathfrak{A}) \to \mathsf{Clo}(\mathfrak{B})$$

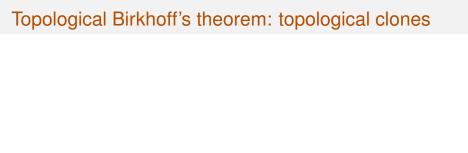
called the natural homomorphism.

Theorem (Birkhoff 1935)

Let \mathfrak{A} , \mathfrak{B} be finite.

$${\mathfrak B}$$
 is in ${\sf HSP}^{\sf fin}({\mathfrak A}) \leftrightarrow$

the natural homomorphism from $Clo(\mathfrak{A})$ to $Clo(\mathfrak{B})$ exists.



Call a countable algebra $\mathfrak A$ oligomorphic iff $\overline{\mathsf{Clo}(\mathfrak A)}$ is.

Call a countable algebra $\mathfrak A$ oligomorphic iff $\overline{\mathsf{Clo}(\mathfrak A)}$ is.

Theorem ('Topological Birkhoff'; Bodirsky + MP '12)

Let \mathfrak{A} , \mathfrak{B} be oligomorphic or finite.

 ${\mathfrak B}$ is in $\mathsf{HSP}^\mathsf{fin}({\mathfrak A}) \leftrightarrow$

the natural homomorphism from $\overline{Clo(\mathfrak{A})}$ to $\overline{Clo(\mathfrak{B})}$ exists and is continuous.

Call a countable algebra $\mathfrak A$ oligomorphic iff $\overline{\mathsf{Clo}(\mathfrak A)}$ is.

Theorem ('Topological Birkhoff'; Bodirsky + MP '12)

Let \mathfrak{A} , \mathfrak{B} be oligomorphic or finite.

 ${\mathfrak B}$ is in $\mathsf{HSP}^\mathsf{fin}({\mathfrak A}) \leftrightarrow$

the natural homomorphism from $\overline{Clo(\mathfrak{A})}$ to $\overline{Clo(\mathfrak{B})}$ exists and is continuous.

Problem.

Call a countable algebra $\mathfrak A$ oligomorphic iff $\overline{\mathsf{Clo}(\mathfrak A)}$ is.

Theorem ('Topological Birkhoff'; Bodirsky + MP '12)

Let \mathfrak{A} , \mathfrak{B} be oligomorphic or finite.

 \mathfrak{B} is in $\mathsf{HSP}^\mathsf{fin}(\mathfrak{A}) \leftrightarrow$ the natural homomorphism from $\overline{\mathsf{Clo}(\mathfrak{A})}$ to $\overline{\mathsf{Clo}(\mathfrak{B})}$ exists and is continuous.

Problem.

Can it be discontinuous?

Call a countable algebra $\mathfrak A$ oligomorphic iff $\overline{\mathsf{Clo}(\mathfrak A)}$ is.

Theorem ('Topological Birkhoff'; Bodirsky + MP '12)

Let \mathfrak{A} , \mathfrak{B} be oligomorphic or finite.

 $\mathfrak B$ is in $\mathsf{HSP}^\mathsf{fin}(\mathfrak A) \leftrightarrow$ the natural homomorphism from $\overline{\mathsf{Clo}(\mathfrak A)}$ to $\overline{\mathsf{Clo}(\mathfrak B)}$ exists and is continuous.

Problem.

- Can it be discontinuous?
- Can we reconstruct the topological structure of closed oligomorphic function clones from their algebraic structure?

Part III
Reconstructing the topology

Let **O** be the largest function clone on ω , and **C** be a closed subclone.

Let **O** be the largest function clone on ω , and **C** be a closed subclone.

Definition

■ C has reconstruction iff $C \cong D$ implies $C \cong^T D$ for all closed subclones D of O;

Let **O** be the largest function clone on ω , and **C** be a closed subclone.

Definition

- C has reconstruction iff $C \cong D$ implies $C \cong^T D$ for all closed subclones D of O;
- C has automatic homeomorphicity iff every clone isomorphism between C and a closed subclone of O is a homeomorphism;

Let **O** be the largest function clone on ω , and **C** be a closed subclone.

Definition

- C has reconstruction iff $C \cong D$ implies $C \cong^T D$ for all closed subclones D of O:
- C has automatic homeomorphicity iff every clone isomorphism between C and a closed subclone of O is a homeomorphism;
- C has <u>automatic continuity</u> iff every clone homomorphism from C into O is continuous.

Let **O** be the largest function clone on ω , and **C** be a closed subclone.

Definition

- C has reconstruction iff $C \cong D$ implies $C \cong^T D$ for all closed subclones D of O;
- C has automatic homeomorphicity iff every clone isomorphism between C and a closed subclone of O is a homeomorphism;
- C has <u>automatic continuity</u> iff every clone homomorphism from C into O is continuous.

Observation. (2) \implies (1).

Let **O** be the largest function clone on ω , and **C** be a closed subclone.

Definition

- C has reconstruction iff $C \cong D$ implies $C \cong^T D$ for all closed subclones D of O;
- C has automatic homeomorphicity iff every clone isomorphism between C and a closed subclone of O is a homeomorphism;
- C has <u>automatic continuity</u> iff every clone homomorphism from C into O is continuous.

Observation. $(2) \implies (1)$.

Fact. For groups (3) \implies (2).

Groups: the small index property

Groups: the small index property

Our favorite automorphism groups have automatic continuity:

Groups: the small index property

Our favorite automorphism groups have automatic continuity:

- \blacksquare (N; =) (Dixon+Neumann+Thomas'86)
- \blacksquare (\mathbb{Q} ; <) and the atomless Boolean algebra (Truss'89)
- the random graph (Hodges+Hodkinson+Lascar+Shelah'93)
- the random K_n -free graphs (Herwig'98)

Our favorite automorphism groups have automatic homeomorphicity:

Our favorite automorphism groups have automatic homeomorphicity:

the random graph $(\mathbb{Q}; <)$ all homogeneous countable graphs various ω -categorical semilinear orders the random partial order the random tournament (Rubin '94)

Our favorite automorphism groups have automatic homeomorphicity:

- the random graph $(\mathbb{Q}; <)$ all homogeneous countable graphs various ω -categorical semilinear orders the random partial order the random tournament (Rubin '94)
- the random k-hypergraphs the Henson digraphs (Barbina+MacPherson '07).

Part IV
Negative results

Proposition

If Δ is $\omega\text{-categorical},$ then $\mathrm{Emb}(\Delta)$ does not have automatic continuity.

Proposition

If Δ is $\omega\text{-categorical},$ then $\mathrm{Emb}(\Delta)$ does not have automatic continuity.

Thus concentrate on

■ isomorphisms (i.e., automatic homeomorphicity)

Proposition

If Δ is ω -categorical, then $\mathrm{Emb}(\Delta)$ does not have automatic continuity.

Thus concentrate on

- isomorphisms (i.e., automatic homeomorphicity)
- homomorphisms to special clones

Proposition

If Δ is ω -categorical, then $\mathrm{Emb}(\Delta)$ does not have automatic continuity.

Thus concentrate on

- isomorphisms (i.e., automatic homeomorphicity)
- homomorphisms to special clones in particular to the projection clone 1

Proposition

If Δ is ω -categorical, then $\mathrm{Emb}(\Delta)$ does not have automatic continuity.

Thus concentrate on

- isomorphisms (i.e., automatic homeomorphicity)
- homomorphisms to special clones –
 in particular to the projection clone 1
- **1** is the clone of projections on a set of size \geq 2.

Proposition

If Δ is ω -categorical, then $\mathrm{Emb}(\Delta)$ does not have automatic continuity.

Thus concentrate on

- isomorphisms (i.e., automatic homeomorphicity)
- homomorphisms to special clones –
 in particular to the projection clone 1
- **1** is the clone of projections on a set of size \geq 2.

Important in constraint satisfaction:

"main reason" for NP-hardness of the CSP of a structure.

Theorem (Bodirsky + MP + Pongrácz '13)

There exists a closed oligomorphic clone with a discontinuous homomorphism to 1.

Theorem (Bodirsky + MP + Pongrácz '13)

There exists a closed oligomorphic clone with a discontinuous homomorphism to 1.

Involves non-principal ultrafilter:

Theorem (Bodirsky + MP + Pongrácz '13)

There exists a closed oligomorphic clone with a discontinuous homomorphism to 1.

■ Involves non-principal ultrafilter: unfair in the CSP context.

Theorem (Bodirsky + MP + Pongrácz '13)

There exists a closed oligomorphic clone with a discontinuous homomorphism to 1.

- Involves non-principal ultrafilter: unfair in the CSP context.
- Also has a continuous homomorphism to 1.

Automatic homeomorphicity + reconstruction

Automatic homeomorphicity + reconstruction

Theorem (Bodirsky + MP + Pongrácz '13)

There exists a closed oligomorphic clone **C** and $\xi \colon \mathbf{C} \to \mathbf{C}$ such that:

- \blacksquare ξ is an isomorphism;
- \blacksquare ξ is not continuous.

Thus **C** does not have automatic homeomorphicity.

Automatic homeomorphicity + reconstruction

Theorem (Bodirsky + MP + Pongrácz '13)

There exists a closed oligomorphic clone **C** and ξ : **C** \rightarrow **C** such that:

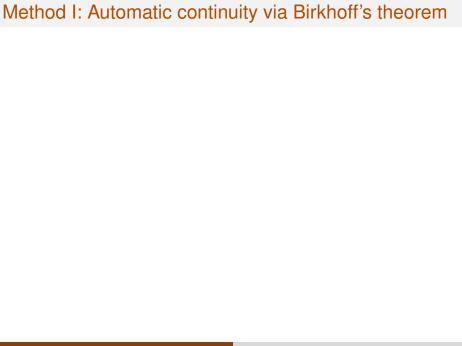
- $\blacksquare \xi$ is an isomorphism;
- \blacksquare ξ is not continuous.

Thus **C** does not have automatic homeomorphicity.

Theorem (Evans + Hewitt '90)

There exists an closed oligomorphic group which does not have reconstruction.

Part V
Positive results



Let **C** be a closed subclone of **O**, and $\xi : \mathbf{C} \to \mathbf{O}$ be a homomorphism.

Let **C** be a closed subclone of **O**, and $\xi : \mathbf{C} \to \mathbf{O}$ be a homomorphism.

Theorem (Birkhoff '35)

The algebra $(\omega; \xi[\mathbf{C}])$ is an HSP of the algebra $(\omega; \mathbf{C})$.

Let **C** be a closed subclone of **O**, and $\xi \colon \mathbf{C} \to \mathbf{O}$ be a homomorphism.

Theorem (Birkhoff '35)

The algebra $(\omega; \xi[\mathbf{C}])$ is an HSP of the algebra $(\omega; \mathbf{C})$.

The only possibly discontinuous step is an infinite product.

Let **C** be a closed subclone of **O**, and $\xi : \mathbf{C} \to \mathbf{O}$ be a homomorphism.

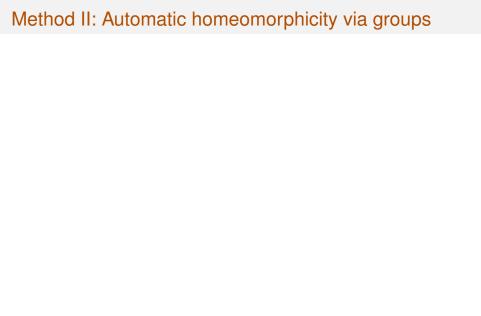
Theorem (Birkhoff '35)

The algebra $(\omega; \xi[\mathbf{C}])$ is an HSP of the algebra $(\omega; \mathbf{C})$.

The only possibly discontinuous step is an infinite product.

Theorem (Bodirsky + MP + Pongrácz '13)

Any closed subclone of ${\bf O}$ containing ω^ω has automatic continuity and automatic homeomorphicity.



Let ${\bf C}$ be a closed subclone of ${\bf O}$ whose group ${\bf G}_C$ of invertibles has automatic homeomorphicity.

Let ${\bf C}$ be a closed subclone of ${\bf O}$ whose group ${\bf G}_C$ of invertibles has automatic homeomorphicity. Show:

Let ${\bf C}$ be a closed subclone of ${\bf O}$ whose group ${\bf G}_C$ of invertibles has automatic homeomorphicity. Show:

■ the closure of \mathbf{G}_C in \mathbf{O} has reconstruction;

Let \mathbf{C} be a closed subclone of \mathbf{O} whose group \mathbf{G}_C of invertibles has automatic homeomorphicity. Show:

- the closure of \mathbf{G}_C in \mathbf{O} has reconstruction;
- the clone of unary functions of C has reconstruction;

Let \mathbf{C} be a closed subclone of \mathbf{O} whose group \mathbf{G}_C of invertibles has automatic homeomorphicity. Show:

- the closure of \mathbf{G}_C in \mathbf{O} has reconstruction;
- the clone of unary functions of C has reconstruction;
- C has reconstruction.

Let ${\bf C}$ be a closed subclone of ${\bf O}$ whose group ${\bf G}_C$ of invertibles has automatic homeomorphicity.

Show:

- the closure of G_C in O has reconstruction;
- the clone of unary functions of **C** has reconstruction;
- C has reconstruction.

Theorem (Bodirsky + MP + Pongrácz '13)

Let G be the random graph.

The following have automatic homeomorphicity:

Let ${\bf C}$ be a closed subclone of ${\bf O}$ whose group ${\bf G}_C$ of invertibles has automatic homeomorphicity.

- the closure of \mathbf{G}_C in \mathbf{O} has reconstruction;
- the clone of unary functions of **C** has reconstruction;
- C has reconstruction.

Theorem (Bodirsky + MP + Pongrácz '13)

Let *G* be the random graph.

The following have automatic homeomorphicity:

■ End(G);

Show:

Let ${\bf C}$ be a closed subclone of ${\bf O}$ whose group ${\bf G}_C$ of invertibles has automatic homeomorphicity.

- the closure of \mathbf{G}_C in \mathbf{O} has reconstruction;
- the clone of unary functions of **C** has reconstruction;
- C has reconstruction.

Theorem (Bodirsky + MP + Pongrácz '13)

Let G be the random graph.

The following have automatic homeomorphicity:

■ End(G);

Show:

■ Pol(*G*);

Let ${\bf C}$ be a closed subclone of ${\bf O}$ whose group ${\bf G}_C$ of invertibles has automatic homeomorphicity.

- the closure of \mathbf{G}_C in \mathbf{O} has reconstruction;
- the clone of unary functions of **C** has reconstruction;
- C has reconstruction.

Theorem (Bodirsky + MP + Pongrácz '13)

Let G be the random graph.

The following have automatic homeomorphicity:

■ End(G);

Show:

- Pol(*G*);
- All minimal tractable clones containing Aut(G).

Part VIOpen problems

Which oligomorphic closed subclones of O have automatic homeomorphicity?

- Which oligomorphic closed subclones of O have automatic homeomorphicity?
- Is there an oligomorphic closed subclone of O which does not have reconstruction?

- Which oligomorphic closed subclones of O have automatic homeomorphicity?
- Is there an oligomorphic closed subclone of O which does not have reconstruction?
- Is there an oligomorphic closed subclone of O which has a homomorphism to the projection clone 1, but no continuous one?

- Which oligomorphic closed subclones of O have automatic homeomorphicity?
- Is there an oligomorphic closed subclone of O which does not have reconstruction?
- Is there an oligomorphic closed subclone of O which has a homomorphism to the projection clone 1, but no continuous one?
- In ZF?

- Which oligomorphic closed subclones of O have automatic homeomorphicity?
- Is there an oligomorphic closed subclone of O which does not have reconstruction?
- Is there an oligomorphic closed subclone of O which has a homomorphism to the projection clone 1, but no continuous one?
- In ZF?
- Which topological clones are closed subclones of O?

Thank you!